Botan  2.13.0
Crypto and TLS for C++11
rsa.cpp
Go to the documentation of this file.
1 /*
2 * RSA
3 * (C) 1999-2010,2015,2016,2018,2019 Jack Lloyd
4 *
5 * Botan is released under the Simplified BSD License (see license.txt)
6 */
7 
8 #include <botan/rsa.h>
9 #include <botan/internal/pk_ops_impl.h>
10 #include <botan/keypair.h>
11 #include <botan/blinding.h>
12 #include <botan/reducer.h>
13 #include <botan/workfactor.h>
14 #include <botan/der_enc.h>
15 #include <botan/ber_dec.h>
16 #include <botan/monty.h>
17 #include <botan/divide.h>
18 #include <botan/internal/monty_exp.h>
19 
20 #if defined(BOTAN_HAS_OPENSSL)
21  #include <botan/internal/openssl.h>
22 #endif
23 
24 #if defined(BOTAN_TARGET_OS_HAS_THREADS)
25  #include <future>
26 #endif
27 
28 namespace Botan {
29 
30 class RSA_Public_Data final
31  {
32  public:
33  RSA_Public_Data(BigInt&& n, BigInt&& e) :
34  m_n(n),
35  m_e(e),
36  m_monty_n(std::make_shared<Montgomery_Params>(m_n)),
37  m_public_modulus_bits(m_n.bits()),
38  m_public_modulus_bytes(m_n.bytes())
39  {}
40 
41  BigInt public_op(const BigInt& m) const
42  {
43  const size_t powm_window = 1;
44  auto powm_m_n = monty_precompute(m_monty_n, m, powm_window, false);
45  return monty_execute_vartime(*powm_m_n, m_e);
46  }
47 
48  const BigInt& get_n() const { return m_n; }
49  const BigInt& get_e() const { return m_e; }
50  size_t public_modulus_bits() const { return m_public_modulus_bits; }
51  size_t public_modulus_bytes() const { return m_public_modulus_bytes; }
52 
53  private:
54  BigInt m_n;
55  BigInt m_e;
56  std::shared_ptr<const Montgomery_Params> m_monty_n;
57  size_t m_public_modulus_bits;
58  size_t m_public_modulus_bytes;
59  };
60 
61 class RSA_Private_Data final
62  {
63  public:
64  RSA_Private_Data(BigInt&& d, BigInt&& p, BigInt&& q,
65  BigInt&& d1, BigInt&& d2, BigInt&& c) :
66  m_d(d),
67  m_p(p),
68  m_q(q),
69  m_d1(d1),
70  m_d2(d2),
71  m_c(c),
72  m_mod_p(m_p),
73  m_mod_q(m_q),
74  m_monty_p(std::make_shared<Montgomery_Params>(m_p, m_mod_p)),
75  m_monty_q(std::make_shared<Montgomery_Params>(m_q, m_mod_q)),
76  m_p_bits(m_p.bits()),
77  m_q_bits(m_q.bits())
78  {}
79 
80  const BigInt& get_d() const { return m_d; }
81  const BigInt& get_p() const { return m_p; }
82  const BigInt& get_q() const { return m_q; }
83  const BigInt& get_d1() const { return m_d1; }
84  const BigInt& get_d2() const { return m_d2; }
85  const BigInt& get_c() const { return m_c; }
86 
87  //private:
88  BigInt m_d;
89  BigInt m_p;
90  BigInt m_q;
91  BigInt m_d1;
92  BigInt m_d2;
93  BigInt m_c;
94 
95  Modular_Reducer m_mod_p;
96  Modular_Reducer m_mod_q;
97  std::shared_ptr<const Montgomery_Params> m_monty_p;
98  std::shared_ptr<const Montgomery_Params> m_monty_q;
99  size_t m_p_bits;
100  size_t m_q_bits;
101  };
102 
103 std::shared_ptr<const RSA_Public_Data> RSA_PublicKey::public_data() const
104  {
105  return m_public;
106  }
107 
108 const BigInt& RSA_PublicKey::get_n() const { return m_public->get_n(); }
109 const BigInt& RSA_PublicKey::get_e() const { return m_public->get_e(); }
110 
112  {
113  if(n.is_negative() || n.is_even() || e.is_negative() || e.is_even())
114  throw Decoding_Error("Invalid RSA public key parameters");
115  m_public = std::make_shared<RSA_Public_Data>(std::move(n), std::move(e));
116  }
117 
119  const std::vector<uint8_t>& key_bits)
120  {
121  BigInt n, e;
122  BER_Decoder(key_bits)
124  .decode(n)
125  .decode(e)
126  .end_cons();
127 
128  init(std::move(n), std::move(e));
129  }
130 
131 RSA_PublicKey::RSA_PublicKey(const BigInt& modulus, const BigInt& exponent)
132  {
133  BigInt n = modulus;
134  BigInt e = exponent;
135  init(std::move(n), std::move(e));
136  }
137 
139  {
140  return m_public->public_modulus_bits();
141  }
142 
144  {
145  return if_work_factor(key_length());
146  }
147 
149  {
151  }
152 
153 std::vector<uint8_t> RSA_PublicKey::public_key_bits() const
154  {
155  std::vector<uint8_t> output;
156  DER_Encoder der(output);
157  der.start_cons(SEQUENCE)
158  .encode(get_n())
159  .encode(get_e())
160  .end_cons();
161 
162  return output;
163  }
164 
165 /*
166 * Check RSA Public Parameters
167 */
169  {
170  if(get_n() < 35 || get_n().is_even() || get_e() < 3 || get_e().is_even())
171  return false;
172  return true;
173  }
174 
175 std::shared_ptr<const RSA_Private_Data> RSA_PrivateKey::private_data() const
176  {
177  return m_private;
178  }
179 
181  {
182  return DER_Encoder()
184  .encode(static_cast<size_t>(0))
185  .encode(get_n())
186  .encode(get_e())
187  .encode(get_d())
188  .encode(get_p())
189  .encode(get_q())
190  .encode(get_d1())
191  .encode(get_d2())
192  .encode(get_c())
193  .end_cons()
194  .get_contents();
195  }
196 
197 const BigInt& RSA_PrivateKey::get_p() const { return m_private->get_p(); }
198 const BigInt& RSA_PrivateKey::get_q() const { return m_private->get_q(); }
199 const BigInt& RSA_PrivateKey::get_d() const { return m_private->get_d(); }
200 const BigInt& RSA_PrivateKey::get_c() const { return m_private->get_c(); }
201 const BigInt& RSA_PrivateKey::get_d1() const { return m_private->get_d1(); }
202 const BigInt& RSA_PrivateKey::get_d2() const { return m_private->get_d2(); }
203 
204 void RSA_PrivateKey::init(BigInt&& d, BigInt&& p, BigInt&& q,
205  BigInt&& d1, BigInt&& d2, BigInt&& c)
206  {
207  m_private = std::make_shared<RSA_Private_Data>(
208  std::move(d), std::move(p), std::move(q), std::move(d1), std::move(d2), std::move(c));
209  }
210 
212  const secure_vector<uint8_t>& key_bits)
213  {
214  BigInt n, e, d, p, q, d1, d2, c;
215 
216  BER_Decoder(key_bits)
218  .decode_and_check<size_t>(0, "Unknown PKCS #1 key format version")
219  .decode(n)
220  .decode(e)
221  .decode(d)
222  .decode(p)
223  .decode(q)
224  .decode(d1)
225  .decode(d2)
226  .decode(c)
227  .end_cons();
228 
229  RSA_PublicKey::init(std::move(n), std::move(e));
230 
231  RSA_PrivateKey::init(std::move(d), std::move(p), std::move(q),
232  std::move(d1), std::move(d2), std::move(c));
233  }
234 
236  const BigInt& prime2,
237  const BigInt& exp,
238  const BigInt& d_exp,
239  const BigInt& mod)
240  {
241  BigInt p = prime1;
242  BigInt q = prime2;
243  BigInt n = mod;
244  if(n.is_zero())
245  n = p * q;
246 
247  BigInt e = exp;
248 
249  BigInt d = d_exp;
250 
251  const BigInt p_minus_1 = p - 1;
252  const BigInt q_minus_1 = q - 1;
253 
254  if(d.is_zero())
255  {
256  const BigInt phi_n = lcm(p_minus_1, q_minus_1);
257  d = inverse_mod(e, phi_n);
258  }
259 
260  BigInt d1 = ct_modulo(d, p_minus_1);
261  BigInt d2 = ct_modulo(d, q_minus_1);
262  BigInt c = inverse_mod(q, p);
263 
264  RSA_PublicKey::init(std::move(n), std::move(e));
265 
266  RSA_PrivateKey::init(std::move(d), std::move(p), std::move(q),
267  std::move(d1), std::move(d2), std::move(c));
268  }
269 
270 /*
271 * Create a RSA private key
272 */
274  size_t bits, size_t exp)
275  {
276  if(bits < 1024)
277  throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
278  std::to_string(bits) + " bits long");
279  if(exp < 3 || exp % 2 == 0)
280  throw Invalid_Argument(algo_name() + ": Invalid encryption exponent");
281 
282  BigInt n, e, d, p, q, d1, d2, c;
283 
284  e = exp;
285 
286  const size_t p_bits = (bits + 1) / 2;
287  const size_t q_bits = bits - p_bits;
288 
289  do
290  {
291  // TODO could generate primes in thread pool
292  p = generate_rsa_prime(rng, rng, p_bits, e);
293  q = generate_rsa_prime(rng, rng, q_bits, e);
294  n = p * q;
295  } while(n.bits() != bits);
296 
297  const BigInt p_minus_1 = p - 1;
298  const BigInt q_minus_1 = q - 1;
299 
300  const BigInt phi_n = lcm(p_minus_1, q_minus_1);
301  // FIXME: this uses binary ext gcd because phi_n is even
302  d = inverse_mod(e, phi_n);
303  d1 = ct_modulo(d, p_minus_1);
304  d2 = ct_modulo(d, q_minus_1);
305  c = inverse_mod(q, p); // p odd, so uses const time algorithm
306 
307  RSA_PublicKey::init(std::move(n), std::move(e));
308 
309  RSA_PrivateKey::init(std::move(d), std::move(p), std::move(q),
310  std::move(d1), std::move(d2), std::move(c));
311  }
312 
313 /*
314 * Check Private RSA Parameters
315 */
317  {
318  if(get_n() < 35 || get_n().is_even() || get_e() < 3 || get_e().is_even())
319  return false;
320 
321  if(get_d() < 2 || get_p() < 3 || get_q() < 3)
322  return false;
323 
324  if(get_p() * get_q() != get_n())
325  return false;
326 
327  if(get_d1() != ct_modulo(get_d(), get_p() - 1))
328  return false;
329  if(get_d2() != ct_modulo(get_d(), get_q() - 1))
330  return false;
331  if(get_c() != inverse_mod(get_q(), get_p()))
332  return false;
333 
334  const size_t prob = (strong) ? 128 : 12;
335 
336  if(!is_prime(get_p(), rng, prob))
337  return false;
338  if(!is_prime(get_q(), rng, prob))
339  return false;
340 
341  if(strong)
342  {
343  if(ct_modulo(get_e() * get_d(), lcm(get_p() - 1, get_q() - 1)) != 1)
344  return false;
345 
346  return KeyPair::signature_consistency_check(rng, *this, "EMSA4(SHA-256)");
347  }
348 
349  return true;
350  }
351 
352 namespace {
353 
354 /**
355 * RSA private (decrypt/sign) operation
356 */
357 class RSA_Private_Operation
358  {
359  protected:
360  size_t public_modulus_bits() const { return m_public->public_modulus_bits(); }
361  size_t public_modulus_bytes() const { return m_public->public_modulus_bytes(); }
362 
363  explicit RSA_Private_Operation(const RSA_PrivateKey& rsa, RandomNumberGenerator& rng) :
364  m_public(rsa.public_data()),
365  m_private(rsa.private_data()),
366  m_blinder(m_public->get_n(), rng,
367  [this](const BigInt& k) { return m_public->public_op(k); },
368  [this](const BigInt& k) { return inverse_mod(k, m_public->get_n()); }),
369  m_blinding_bits(64),
370  m_max_d1_bits(m_private->m_p_bits + m_blinding_bits),
371  m_max_d2_bits(m_private->m_q_bits + m_blinding_bits)
372  {
373  }
374 
375  secure_vector<uint8_t> raw_op(const uint8_t input[], size_t input_len)
376  {
377  const BigInt input_bn(input, input_len);
378  if(input_bn >= m_public->get_n())
379  throw Invalid_Argument("RSA private op - input is too large");
380 
381  // TODO: This should be a function on blinder
382  // BigInt Blinder::run_blinded_function(std::function<BigInt, BigInt> fn, const BigInt& input);
383 
384  const BigInt recovered = m_blinder.unblind(rsa_private_op(m_blinder.blind(input_bn)));
385  BOTAN_ASSERT(input_bn == m_public->public_op(recovered), "RSA consistency check");
386  return BigInt::encode_1363(recovered, m_public->public_modulus_bytes());
387  }
388 
389  private:
390 
391  BigInt rsa_private_op(const BigInt& m) const
392  {
393  /*
394  TODO
395  Consider using Montgomery reduction instead of Barrett, using
396  the "Smooth RSA-CRT" method. https://eprint.iacr.org/2007/039.pdf
397  */
398 
399  static constexpr size_t powm_window = 4;
400 
401  // Compute this in main thread to avoid racing on the rng
402  const BigInt d1_mask(m_blinder.rng(), m_blinding_bits);
403 
404 #if defined(BOTAN_TARGET_OS_HAS_THREADS) && !defined(BOTAN_HAS_VALGRIND)
405  #define BOTAN_RSA_USE_ASYNC
406 #endif
407 
408 #if defined(BOTAN_RSA_USE_ASYNC)
409  /*
410  * Precompute m.sig_words in the main thread before calling async. Otherwise
411  * the two threads race (during Modular_Reducer::reduce) and while the output
412  * is correct in both threads, helgrind warns.
413  */
414  m.sig_words();
415 
416  auto future_j1 = std::async(std::launch::async, [this, &m, &d1_mask]() {
417 #endif
418  const BigInt masked_d1 = m_private->get_d1() + (d1_mask * (m_private->get_p() - 1));
419  auto powm_d1_p = monty_precompute(m_private->m_monty_p, m_private->m_mod_p.reduce(m), powm_window);
420  BigInt j1 = monty_execute(*powm_d1_p, masked_d1, m_max_d1_bits);
421 
422 #if defined(BOTAN_RSA_USE_ASYNC)
423  return j1;
424  });
425 #endif
426 
427  const BigInt d2_mask(m_blinder.rng(), m_blinding_bits);
428  const BigInt masked_d2 = m_private->get_d2() + (d2_mask * (m_private->get_q() - 1));
429  auto powm_d2_q = monty_precompute(m_private->m_monty_q, m_private->m_mod_q.reduce(m), powm_window);
430  const BigInt j2 = monty_execute(*powm_d2_q, masked_d2, m_max_d2_bits);
431 
432 #if defined(BOTAN_RSA_USE_ASYNC)
433  BigInt j1 = future_j1.get();
434 #endif
435 
436  /*
437  * To recover the final value from the CRT representation (j1,j2)
438  * we use Garner's algorithm:
439  * c = q^-1 mod p (this is precomputed)
440  * h = c*(j1-j2) mod p
441  * m = j2 + h*q
442  *
443  * We must avoid leaking if j1 >= j2 or not, as doing so allows deriving
444  * information about the secret prime. Do this by first adding p to j1,
445  * which should ensure the subtraction of j2 does not underflow. But
446  * this may still underflow if p and q are imbalanced in size.
447  */
448 
449  j1 = m_private->m_mod_p.multiply(m_private->m_mod_p.reduce((m_private->get_p() + j1) - j2), m_private->get_c());
450  return mul_add(j1, m_private->get_q(), j2);
451  }
452 
453  std::shared_ptr<const RSA_Public_Data> m_public;
454  std::shared_ptr<const RSA_Private_Data> m_private;
455 
456  // XXX could the blinder starting pair be shared?
457  Blinder m_blinder;
458  const size_t m_blinding_bits;
459  const size_t m_max_d1_bits;
460  const size_t m_max_d2_bits;
461  };
462 
463 class RSA_Signature_Operation final : public PK_Ops::Signature_with_EMSA,
464  private RSA_Private_Operation
465  {
466  public:
467  size_t max_input_bits() const override { return public_modulus_bits() - 1; }
468 
469  size_t signature_length() const override { return public_modulus_bytes(); }
470 
471  RSA_Signature_Operation(const RSA_PrivateKey& rsa, const std::string& emsa, RandomNumberGenerator& rng) :
472  PK_Ops::Signature_with_EMSA(emsa),
473  RSA_Private_Operation(rsa, rng)
474  {
475  }
476 
477  secure_vector<uint8_t> raw_sign(const uint8_t input[], size_t input_len,
478  RandomNumberGenerator&) override
479  {
480  return raw_op(input, input_len);
481  }
482  };
483 
484 class RSA_Decryption_Operation final : public PK_Ops::Decryption_with_EME,
485  private RSA_Private_Operation
486  {
487  public:
488 
489  RSA_Decryption_Operation(const RSA_PrivateKey& rsa, const std::string& eme, RandomNumberGenerator& rng) :
490  PK_Ops::Decryption_with_EME(eme),
491  RSA_Private_Operation(rsa, rng)
492  {
493  }
494 
495  size_t plaintext_length(size_t) const override { return public_modulus_bytes(); }
496 
497  secure_vector<uint8_t> raw_decrypt(const uint8_t input[], size_t input_len) override
498  {
499  return raw_op(input, input_len);
500  }
501  };
502 
503 class RSA_KEM_Decryption_Operation final : public PK_Ops::KEM_Decryption_with_KDF,
504  private RSA_Private_Operation
505  {
506  public:
507 
508  RSA_KEM_Decryption_Operation(const RSA_PrivateKey& key,
509  const std::string& kdf,
510  RandomNumberGenerator& rng) :
511  PK_Ops::KEM_Decryption_with_KDF(kdf),
512  RSA_Private_Operation(key, rng)
513  {}
514 
515  secure_vector<uint8_t>
516  raw_kem_decrypt(const uint8_t encap_key[], size_t len) override
517  {
518  return raw_op(encap_key, len);
519  }
520  };
521 
522 /**
523 * RSA public (encrypt/verify) operation
524 */
525 class RSA_Public_Operation
526  {
527  public:
528  explicit RSA_Public_Operation(const RSA_PublicKey& rsa) :
529  m_public(rsa.public_data())
530  {}
531 
532  size_t get_max_input_bits() const
533  {
534  const size_t n_bits = m_public->public_modulus_bits();
535 
536  /*
537  Make Coverity happy that n_bits - 1 won't underflow
538 
539  5 bit minimum: smallest possible RSA key is 3*5
540  */
541  BOTAN_ASSERT_NOMSG(n_bits >= 5);
542  return n_bits - 1;
543  }
544 
545  protected:
546  BigInt public_op(const BigInt& m) const
547  {
548  if(m >= m_public->get_n())
549  throw Invalid_Argument("RSA public op - input is too large");
550 
551  return m_public->public_op(m);
552  }
553 
554  size_t public_modulus_bytes() const { return m_public->public_modulus_bytes(); }
555 
556  const BigInt& get_n() const { return m_public->get_n(); }
557 
558  std::shared_ptr<const RSA_Public_Data> m_public;
559  };
560 
561 class RSA_Encryption_Operation final : public PK_Ops::Encryption_with_EME,
562  private RSA_Public_Operation
563  {
564  public:
565 
566  RSA_Encryption_Operation(const RSA_PublicKey& rsa, const std::string& eme) :
567  PK_Ops::Encryption_with_EME(eme),
568  RSA_Public_Operation(rsa)
569  {
570  }
571 
572  size_t ciphertext_length(size_t) const override { return public_modulus_bytes(); }
573 
574  size_t max_raw_input_bits() const override { return get_max_input_bits(); }
575 
576  secure_vector<uint8_t> raw_encrypt(const uint8_t input[], size_t input_len,
577  RandomNumberGenerator&) override
578  {
579  BigInt input_bn(input, input_len);
580  return BigInt::encode_1363(public_op(input_bn), public_modulus_bytes());
581  }
582  };
583 
584 class RSA_Verify_Operation final : public PK_Ops::Verification_with_EMSA,
585  private RSA_Public_Operation
586  {
587  public:
588 
589  size_t max_input_bits() const override { return get_max_input_bits(); }
590 
591  RSA_Verify_Operation(const RSA_PublicKey& rsa, const std::string& emsa) :
592  PK_Ops::Verification_with_EMSA(emsa),
593  RSA_Public_Operation(rsa)
594  {
595  }
596 
597  bool with_recovery() const override { return true; }
598 
599  secure_vector<uint8_t> verify_mr(const uint8_t input[], size_t input_len) override
600  {
601  BigInt input_bn(input, input_len);
602  return BigInt::encode_locked(public_op(input_bn));
603  }
604  };
605 
606 class RSA_KEM_Encryption_Operation final : public PK_Ops::KEM_Encryption_with_KDF,
607  private RSA_Public_Operation
608  {
609  public:
610 
611  RSA_KEM_Encryption_Operation(const RSA_PublicKey& key,
612  const std::string& kdf) :
613  PK_Ops::KEM_Encryption_with_KDF(kdf),
614  RSA_Public_Operation(key) {}
615 
616  private:
617  void raw_kem_encrypt(secure_vector<uint8_t>& out_encapsulated_key,
618  secure_vector<uint8_t>& raw_shared_key,
619  Botan::RandomNumberGenerator& rng) override
620  {
621  const BigInt r = BigInt::random_integer(rng, 1, get_n());
622  const BigInt c = public_op(r);
623 
624  out_encapsulated_key = BigInt::encode_locked(c);
625  raw_shared_key = BigInt::encode_locked(r);
626  }
627  };
628 
629 }
630 
631 std::unique_ptr<PK_Ops::Encryption>
633  const std::string& params,
634  const std::string& provider) const
635  {
636 #if defined(BOTAN_HAS_OPENSSL)
637  if(provider == "openssl" || provider.empty())
638  {
639  try
640  {
641  return make_openssl_rsa_enc_op(*this, params);
642  }
643  catch(Exception& e)
644  {
645  /*
646  * If OpenSSL for some reason could not handle this (eg due to OAEP params),
647  * throw if openssl was specifically requested but otherwise just fall back
648  * to the normal version.
649  */
650  if(provider == "openssl")
651  throw Lookup_Error("OpenSSL RSA provider rejected key:" + std::string(e.what()));
652  }
653  }
654 #endif
655 
656  if(provider == "base" || provider.empty())
657  return std::unique_ptr<PK_Ops::Encryption>(new RSA_Encryption_Operation(*this, params));
658  throw Provider_Not_Found(algo_name(), provider);
659  }
660 
661 std::unique_ptr<PK_Ops::KEM_Encryption>
663  const std::string& params,
664  const std::string& provider) const
665  {
666  if(provider == "base" || provider.empty())
667  return std::unique_ptr<PK_Ops::KEM_Encryption>(new RSA_KEM_Encryption_Operation(*this, params));
668  throw Provider_Not_Found(algo_name(), provider);
669  }
670 
671 std::unique_ptr<PK_Ops::Verification>
672 RSA_PublicKey::create_verification_op(const std::string& params,
673  const std::string& provider) const
674  {
675 #if defined(BOTAN_HAS_OPENSSL)
676  if(provider == "openssl" || provider.empty())
677  {
678  std::unique_ptr<PK_Ops::Verification> res = make_openssl_rsa_ver_op(*this, params);
679  if(res)
680  return res;
681  }
682 #endif
683 
684  if(provider == "base" || provider.empty())
685  return std::unique_ptr<PK_Ops::Verification>(new RSA_Verify_Operation(*this, params));
686 
687  throw Provider_Not_Found(algo_name(), provider);
688  }
689 
690 std::unique_ptr<PK_Ops::Decryption>
692  const std::string& params,
693  const std::string& provider) const
694  {
695 #if defined(BOTAN_HAS_OPENSSL)
696  if(provider == "openssl" || provider.empty())
697  {
698  try
699  {
700  return make_openssl_rsa_dec_op(*this, params);
701  }
702  catch(Exception& e)
703  {
704  if(provider == "openssl")
705  throw Lookup_Error("OpenSSL RSA provider rejected key:" + std::string(e.what()));
706  }
707  }
708 #endif
709 
710  if(provider == "base" || provider.empty())
711  return std::unique_ptr<PK_Ops::Decryption>(new RSA_Decryption_Operation(*this, params, rng));
712 
713  throw Provider_Not_Found(algo_name(), provider);
714  }
715 
716 std::unique_ptr<PK_Ops::KEM_Decryption>
718  const std::string& params,
719  const std::string& provider) const
720  {
721  if(provider == "base" || provider.empty())
722  return std::unique_ptr<PK_Ops::KEM_Decryption>(new RSA_KEM_Decryption_Operation(*this, params, rng));
723 
724  throw Provider_Not_Found(algo_name(), provider);
725  }
726 
727 std::unique_ptr<PK_Ops::Signature>
729  const std::string& params,
730  const std::string& provider) const
731  {
732 #if defined(BOTAN_HAS_OPENSSL)
733  if(provider == "openssl" || provider.empty())
734  {
735  std::unique_ptr<PK_Ops::Signature> res = make_openssl_rsa_sig_op(*this, params);
736  if(res)
737  return res;
738  }
739 #endif
740 
741  if(provider == "base" || provider.empty())
742  return std::unique_ptr<PK_Ops::Signature>(new RSA_Signature_Operation(*this, params, rng));
743 
744  throw Provider_Not_Found(algo_name(), provider);
745  }
746 
747 }
BigInt mul_add(const BigInt &a, const BigInt &b, const BigInt &c)
Definition: mp_numth.cpp:30
std::unique_ptr< PK_Ops::Decryption > create_decryption_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:691
size_t if_work_factor(size_t bits)
Definition: workfactor.cpp:38
bool check_key(RandomNumberGenerator &rng, bool) const override
Definition: rsa.cpp:168
size_t estimated_strength() const override
Definition: rsa.cpp:143
const BigInt & get_d1() const
Definition: rsa.cpp:201
const BigInt & get_d() const
Definition: rsa.cpp:199
const BigInt & get_e() const
Definition: rsa.cpp:109
size_t key_length() const override
Definition: rsa.cpp:138
std::unique_ptr< PK_Ops::KEM_Encryption > create_kem_encryption_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:662
secure_vector< uint8_t > private_key_bits() const override
Definition: rsa.cpp:180
size_t bits() const
Definition: bigint.cpp:288
BER_Decoder & decode_and_check(const T &expected, const std::string &error_msg)
Definition: ber_dec.h:277
std::unique_ptr< PK_Ops::KEM_Decryption > create_kem_decryption_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:717
int(* final)(unsigned char *, CTX *)
secure_vector< uint8_t > get_contents()
Definition: der_enc.cpp:152
bool is_zero() const
Definition: bigint.h:419
Definition: bigint.h:1135
bool is_prime(const BigInt &n, RandomNumberGenerator &rng, size_t prob, bool is_random)
Definition: numthry.cpp:528
#define BOTAN_ASSERT_NOMSG(expr)
Definition: assert.h:68
BigInt ct_modulo(const BigInt &x, const BigInt &y)
Definition: divide.cpp:118
std::string to_string(const BER_Object &obj)
Definition: asn1_obj.cpp:213
static BigInt random_integer(RandomNumberGenerator &rng, const BigInt &min, const BigInt &max)
Definition: big_rand.cpp:45
DER_Encoder & end_cons()
Definition: der_enc.cpp:191
BER_Decoder & decode(bool &out)
Definition: ber_dec.h:170
const BigInt & get_q() const
Definition: rsa.cpp:198
const char * what() const noexcept override
Definition: exceptn.h:96
static secure_vector< uint8_t > encode_locked(const BigInt &n)
Definition: bigint.h:775
#define BOTAN_ASSERT(expr, assertion_made)
Definition: assert.h:55
DER_Encoder & encode(bool b)
Definition: der_enc.cpp:285
BigInt monty_execute_vartime(const Montgomery_Exponentation_State &precomputed_state, const BigInt &k)
Definition: monty_exp.cpp:171
bool signature_consistency_check(RandomNumberGenerator &rng, const Private_Key &private_key, const Public_Key &public_key, const std::string &padding)
Definition: keypair.cpp:49
virtual OID get_oid() const
Definition: pk_keys.cpp:53
BER_Decoder & end_cons()
Definition: ber_dec.cpp:300
BigInt lcm(const BigInt &a, const BigInt &b)
Definition: numthry.cpp:120
std::vector< uint8_t > public_key_bits() const override
Definition: rsa.cpp:153
const BigInt & get_d2() const
Definition: rsa.cpp:202
BigInt inverse_mod(const BigInt &n, const BigInt &mod)
Definition: numthry.cpp:325
std::string algo_name() const override
Definition: rsa.h:43
secure_vector< uint8_t > decode(DataSource &source, std::string &label)
Definition: pem.cpp:68
BER_Decoder start_cons(ASN1_Tag type_tag, ASN1_Tag class_tag=UNIVERSAL)
Definition: ber_dec.cpp:290
std::shared_ptr< const Montgomery_Exponentation_State > monty_precompute(std::shared_ptr< const Montgomery_Params > params, const BigInt &g, size_t window_bits, bool const_time)
Definition: monty_exp.cpp:157
std::shared_ptr< const RSA_Public_Data > public_data() const
Definition: rsa.cpp:103
Definition: alg_id.cpp:13
AlgorithmIdentifier algorithm_identifier() const override
Definition: rsa.cpp:148
std::unique_ptr< PK_Ops::Verification > create_verification_op(const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:672
std::shared_ptr< const RSA_Private_Data > private_data() const
Definition: rsa.cpp:175
RSA_PrivateKey(const AlgorithmIdentifier &alg_id, const secure_vector< uint8_t > &key_bits)
Definition: rsa.cpp:211
std::shared_ptr< const RSA_Public_Data > m_public
Definition: rsa.h:86
void init(BigInt &&n, BigInt &&e)
Definition: rsa.cpp:111
DER_Encoder & start_cons(ASN1_Tag type_tag, ASN1_Tag class_tag=UNIVERSAL)
Definition: der_enc.cpp:181
static secure_vector< uint8_t > encode_1363(const BigInt &n, size_t bytes)
Definition: big_code.cpp:111
const BigInt & get_p() const
Definition: rsa.cpp:197
std::unique_ptr< PK_Ops::Encryption > create_encryption_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:632
std::vector< T, secure_allocator< T > > secure_vector
Definition: secmem.h:65
bool check_key(RandomNumberGenerator &rng, bool) const override
Definition: rsa.cpp:316
BigInt generate_rsa_prime(RandomNumberGenerator &keygen_rng, RandomNumberGenerator &prime_test_rng, size_t bits, const BigInt &coprime, size_t prob)
Definition: make_prm.cpp:207
const BigInt & get_c() const
Definition: rsa.cpp:200
BigInt monty_execute(const Montgomery_Exponentation_State &precomputed_state, const BigInt &k, size_t max_k_bits)
Definition: monty_exp.cpp:165
std::unique_ptr< PK_Ops::Signature > create_signature_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:728
const BigInt & get_n() const
Definition: rsa.cpp:108