Botan  2.14.0
Crypto and TLS for C++11
rsa.cpp
Go to the documentation of this file.
1 /*
2 * RSA
3 * (C) 1999-2010,2015,2016,2018,2019 Jack Lloyd
4 *
5 * Botan is released under the Simplified BSD License (see license.txt)
6 */
7 
8 #include <botan/rsa.h>
9 #include <botan/internal/pk_ops_impl.h>
10 #include <botan/keypair.h>
11 #include <botan/blinding.h>
12 #include <botan/reducer.h>
13 #include <botan/workfactor.h>
14 #include <botan/der_enc.h>
15 #include <botan/ber_dec.h>
16 #include <botan/monty.h>
17 #include <botan/divide.h>
18 #include <botan/internal/monty_exp.h>
19 
20 #if defined(BOTAN_HAS_OPENSSL)
21  #include <botan/internal/openssl.h>
22 #endif
23 
24 #if defined(BOTAN_HAS_THREAD_UTILS)
25  #include <botan/internal/thread_pool.h>
26 #endif
27 
28 namespace Botan {
29 
30 class RSA_Public_Data final
31  {
32  public:
33  RSA_Public_Data(BigInt&& n, BigInt&& e) :
34  m_n(n),
35  m_e(e),
36  m_monty_n(std::make_shared<Montgomery_Params>(m_n)),
37  m_public_modulus_bits(m_n.bits()),
38  m_public_modulus_bytes(m_n.bytes())
39  {}
40 
41  BigInt public_op(const BigInt& m) const
42  {
43  const size_t powm_window = 1;
44  auto powm_m_n = monty_precompute(m_monty_n, m, powm_window, false);
45  return monty_execute_vartime(*powm_m_n, m_e);
46  }
47 
48  const BigInt& get_n() const { return m_n; }
49  const BigInt& get_e() const { return m_e; }
50  size_t public_modulus_bits() const { return m_public_modulus_bits; }
51  size_t public_modulus_bytes() const { return m_public_modulus_bytes; }
52 
53  private:
54  BigInt m_n;
55  BigInt m_e;
56  std::shared_ptr<const Montgomery_Params> m_monty_n;
57  size_t m_public_modulus_bits;
58  size_t m_public_modulus_bytes;
59  };
60 
61 class RSA_Private_Data final
62  {
63  public:
64  RSA_Private_Data(BigInt&& d, BigInt&& p, BigInt&& q,
65  BigInt&& d1, BigInt&& d2, BigInt&& c) :
66  m_d(d),
67  m_p(p),
68  m_q(q),
69  m_d1(d1),
70  m_d2(d2),
71  m_c(c),
72  m_mod_p(m_p),
73  m_mod_q(m_q),
74  m_monty_p(std::make_shared<Montgomery_Params>(m_p, m_mod_p)),
75  m_monty_q(std::make_shared<Montgomery_Params>(m_q, m_mod_q)),
76  m_p_bits(m_p.bits()),
77  m_q_bits(m_q.bits())
78  {}
79 
80  const BigInt& get_d() const { return m_d; }
81  const BigInt& get_p() const { return m_p; }
82  const BigInt& get_q() const { return m_q; }
83  const BigInt& get_d1() const { return m_d1; }
84  const BigInt& get_d2() const { return m_d2; }
85  const BigInt& get_c() const { return m_c; }
86 
87  //private:
88  BigInt m_d;
89  BigInt m_p;
90  BigInt m_q;
91  BigInt m_d1;
92  BigInt m_d2;
93  BigInt m_c;
94 
95  Modular_Reducer m_mod_p;
96  Modular_Reducer m_mod_q;
97  std::shared_ptr<const Montgomery_Params> m_monty_p;
98  std::shared_ptr<const Montgomery_Params> m_monty_q;
99  size_t m_p_bits;
100  size_t m_q_bits;
101  };
102 
103 std::shared_ptr<const RSA_Public_Data> RSA_PublicKey::public_data() const
104  {
105  return m_public;
106  }
107 
108 const BigInt& RSA_PublicKey::get_n() const { return m_public->get_n(); }
109 const BigInt& RSA_PublicKey::get_e() const { return m_public->get_e(); }
110 
112  {
113  if(n.is_negative() || n.is_even() || e.is_negative() || e.is_even())
114  throw Decoding_Error("Invalid RSA public key parameters");
115  m_public = std::make_shared<RSA_Public_Data>(std::move(n), std::move(e));
116  }
117 
119  const std::vector<uint8_t>& key_bits)
120  {
121  BigInt n, e;
122  BER_Decoder(key_bits)
124  .decode(n)
125  .decode(e)
126  .end_cons();
127 
128  init(std::move(n), std::move(e));
129  }
130 
132  {
133  BigInt n = modulus;
134  BigInt e = exponent;
135  init(std::move(n), std::move(e));
136  }
137 
139  {
140  return m_public->public_modulus_bits();
141  }
142 
144  {
145  return if_work_factor(key_length());
146  }
147 
149  {
151  }
152 
153 std::vector<uint8_t> RSA_PublicKey::public_key_bits() const
154  {
155  std::vector<uint8_t> output;
156  DER_Encoder der(output);
157  der.start_cons(SEQUENCE)
158  .encode(get_n())
159  .encode(get_e())
160  .end_cons();
161 
162  return output;
163  }
164 
165 /*
166 * Check RSA Public Parameters
167 */
169  {
170  if(get_n() < 35 || get_n().is_even() || get_e() < 3 || get_e().is_even())
171  return false;
172  return true;
173  }
174 
175 std::shared_ptr<const RSA_Private_Data> RSA_PrivateKey::private_data() const
176  {
177  return m_private;
178  }
179 
181  {
182  return DER_Encoder()
184  .encode(static_cast<size_t>(0))
185  .encode(get_n())
186  .encode(get_e())
187  .encode(get_d())
188  .encode(get_p())
189  .encode(get_q())
190  .encode(get_d1())
191  .encode(get_d2())
192  .encode(get_c())
193  .end_cons()
194  .get_contents();
195  }
196 
197 const BigInt& RSA_PrivateKey::get_p() const { return m_private->get_p(); }
198 const BigInt& RSA_PrivateKey::get_q() const { return m_private->get_q(); }
199 const BigInt& RSA_PrivateKey::get_d() const { return m_private->get_d(); }
200 const BigInt& RSA_PrivateKey::get_c() const { return m_private->get_c(); }
201 const BigInt& RSA_PrivateKey::get_d1() const { return m_private->get_d1(); }
202 const BigInt& RSA_PrivateKey::get_d2() const { return m_private->get_d2(); }
203 
204 void RSA_PrivateKey::init(BigInt&& d, BigInt&& p, BigInt&& q,
205  BigInt&& d1, BigInt&& d2, BigInt&& c)
206  {
207  m_private = std::make_shared<RSA_Private_Data>(
208  std::move(d), std::move(p), std::move(q), std::move(d1), std::move(d2), std::move(c));
209  }
210 
212  const secure_vector<uint8_t>& key_bits)
213  {
214  BigInt n, e, d, p, q, d1, d2, c;
215 
216  BER_Decoder(key_bits)
218  .decode_and_check<size_t>(0, "Unknown PKCS #1 key format version")
219  .decode(n)
220  .decode(e)
221  .decode(d)
222  .decode(p)
223  .decode(q)
224  .decode(d1)
225  .decode(d2)
226  .decode(c)
227  .end_cons();
228 
229  RSA_PublicKey::init(std::move(n), std::move(e));
230 
231  RSA_PrivateKey::init(std::move(d), std::move(p), std::move(q),
232  std::move(d1), std::move(d2), std::move(c));
233  }
234 
236  const BigInt& prime2,
237  const BigInt& exp,
238  const BigInt& d_exp,
239  const BigInt& mod)
240  {
241  BigInt p = prime1;
242  BigInt q = prime2;
243  BigInt n = mod;
244  if(n.is_zero())
245  n = p * q;
246 
247  BigInt e = exp;
248 
249  BigInt d = d_exp;
250 
251  const BigInt p_minus_1 = p - 1;
252  const BigInt q_minus_1 = q - 1;
253 
254  if(d.is_zero())
255  {
256  const BigInt phi_n = lcm(p_minus_1, q_minus_1);
257  d = inverse_mod(e, phi_n);
258  }
259 
260  BigInt d1 = ct_modulo(d, p_minus_1);
261  BigInt d2 = ct_modulo(d, q_minus_1);
262  BigInt c = inverse_mod(q, p);
263 
264  RSA_PublicKey::init(std::move(n), std::move(e));
265 
266  RSA_PrivateKey::init(std::move(d), std::move(p), std::move(q),
267  std::move(d1), std::move(d2), std::move(c));
268  }
269 
270 /*
271 * Create a RSA private key
272 */
274  size_t bits, size_t exp)
275  {
276  if(bits < 1024)
277  throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
278  std::to_string(bits) + " bits long");
279  if(exp < 3 || exp % 2 == 0)
280  throw Invalid_Argument(algo_name() + ": Invalid encryption exponent");
281 
282  BigInt n, e, d, p, q, d1, d2, c;
283 
284  e = exp;
285 
286  const size_t p_bits = (bits + 1) / 2;
287  const size_t q_bits = bits - p_bits;
288 
289  do
290  {
291  // TODO could generate primes in thread pool
292  p = generate_rsa_prime(rng, rng, p_bits, e);
293  q = generate_rsa_prime(rng, rng, q_bits, e);
294  n = p * q;
295  } while(n.bits() != bits);
296 
297  const BigInt p_minus_1 = p - 1;
298  const BigInt q_minus_1 = q - 1;
299 
300  const BigInt phi_n = lcm(p_minus_1, q_minus_1);
301  d = inverse_mod(e, phi_n);
302  d1 = ct_modulo(d, p_minus_1);
303  d2 = ct_modulo(d, q_minus_1);
304  c = inverse_mod(q, p);
305 
306  RSA_PublicKey::init(std::move(n), std::move(e));
307 
308  RSA_PrivateKey::init(std::move(d), std::move(p), std::move(q),
309  std::move(d1), std::move(d2), std::move(c));
310  }
311 
312 /*
313 * Check Private RSA Parameters
314 */
316  {
317  if(get_n() < 35 || get_n().is_even() || get_e() < 3 || get_e().is_even())
318  return false;
319 
320  if(get_d() < 2 || get_p() < 3 || get_q() < 3)
321  return false;
322 
323  if(get_p() * get_q() != get_n())
324  return false;
325 
326  if(get_d1() != ct_modulo(get_d(), get_p() - 1))
327  return false;
328  if(get_d2() != ct_modulo(get_d(), get_q() - 1))
329  return false;
330  if(get_c() != inverse_mod(get_q(), get_p()))
331  return false;
332 
333  const size_t prob = (strong) ? 128 : 12;
334 
335  if(!is_prime(get_p(), rng, prob))
336  return false;
337  if(!is_prime(get_q(), rng, prob))
338  return false;
339 
340  if(strong)
341  {
342  if(ct_modulo(get_e() * get_d(), lcm(get_p() - 1, get_q() - 1)) != 1)
343  return false;
344 
345  return KeyPair::signature_consistency_check(rng, *this, "EMSA4(SHA-256)");
346  }
347 
348  return true;
349  }
350 
351 namespace {
352 
353 /**
354 * RSA private (decrypt/sign) operation
355 */
356 class RSA_Private_Operation
357  {
358  protected:
359  size_t public_modulus_bits() const { return m_public->public_modulus_bits(); }
360  size_t public_modulus_bytes() const { return m_public->public_modulus_bytes(); }
361 
362  explicit RSA_Private_Operation(const RSA_PrivateKey& rsa, RandomNumberGenerator& rng) :
363  m_public(rsa.public_data()),
364  m_private(rsa.private_data()),
365  m_blinder(m_public->get_n(), rng,
366  [this](const BigInt& k) { return m_public->public_op(k); },
367  [this](const BigInt& k) { return inverse_mod(k, m_public->get_n()); }),
368  m_blinding_bits(64),
369  m_max_d1_bits(m_private->m_p_bits + m_blinding_bits),
370  m_max_d2_bits(m_private->m_q_bits + m_blinding_bits)
371  {
372  }
373 
374  secure_vector<uint8_t> raw_op(const uint8_t input[], size_t input_len)
375  {
376  const BigInt input_bn(input, input_len);
377  if(input_bn >= m_public->get_n())
378  throw Invalid_Argument("RSA private op - input is too large");
379 
380  // TODO: This should be a function on blinder
381  // BigInt Blinder::run_blinded_function(std::function<BigInt, BigInt> fn, const BigInt& input);
382 
383  const BigInt recovered = m_blinder.unblind(rsa_private_op(m_blinder.blind(input_bn)));
384  BOTAN_ASSERT(input_bn == m_public->public_op(recovered), "RSA consistency check");
385  return BigInt::encode_1363(recovered, m_public->public_modulus_bytes());
386  }
387 
388  private:
389 
390  BigInt rsa_private_op(const BigInt& m) const
391  {
392  /*
393  TODO
394  Consider using Montgomery reduction instead of Barrett, using
395  the "Smooth RSA-CRT" method. https://eprint.iacr.org/2007/039.pdf
396  */
397 
398  static constexpr size_t powm_window = 4;
399 
400  // Compute this in main thread to avoid racing on the rng
401  const BigInt d1_mask(m_blinder.rng(), m_blinding_bits);
402 
403 #if defined(BOTAN_HAS_THREAD_UTILS) && !defined(BOTAN_HAS_VALGRIND)
404  #define BOTAN_RSA_USE_ASYNC
405 #endif
406 
407 #if defined(BOTAN_RSA_USE_ASYNC)
408  /*
409  * Precompute m.sig_words in the main thread before calling async. Otherwise
410  * the two threads race (during Modular_Reducer::reduce) and while the output
411  * is correct in both threads, helgrind warns.
412  */
413  m.sig_words();
414 
415  auto future_j1 = Thread_Pool::global_instance().run([this, &m, &d1_mask]() {
416 #endif
417  const BigInt masked_d1 = m_private->get_d1() + (d1_mask * (m_private->get_p() - 1));
418  auto powm_d1_p = monty_precompute(m_private->m_monty_p, m_private->m_mod_p.reduce(m), powm_window);
419  BigInt j1 = monty_execute(*powm_d1_p, masked_d1, m_max_d1_bits);
420 
421 #if defined(BOTAN_RSA_USE_ASYNC)
422  return j1;
423  });
424 #endif
425 
426  const BigInt d2_mask(m_blinder.rng(), m_blinding_bits);
427  const BigInt masked_d2 = m_private->get_d2() + (d2_mask * (m_private->get_q() - 1));
428  auto powm_d2_q = monty_precompute(m_private->m_monty_q, m_private->m_mod_q.reduce(m), powm_window);
429  const BigInt j2 = monty_execute(*powm_d2_q, masked_d2, m_max_d2_bits);
430 
431 #if defined(BOTAN_RSA_USE_ASYNC)
432  BigInt j1 = future_j1.get();
433 #endif
434 
435  /*
436  * To recover the final value from the CRT representation (j1,j2)
437  * we use Garner's algorithm:
438  * c = q^-1 mod p (this is precomputed)
439  * h = c*(j1-j2) mod p
440  * m = j2 + h*q
441  *
442  * We must avoid leaking if j1 >= j2 or not, as doing so allows deriving
443  * information about the secret prime. Do this by first adding p to j1,
444  * which should ensure the subtraction of j2 does not underflow. But
445  * this may still underflow if p and q are imbalanced in size.
446  */
447 
448  j1 = m_private->m_mod_p.multiply(m_private->m_mod_p.reduce((m_private->get_p() + j1) - j2), m_private->get_c());
449  return mul_add(j1, m_private->get_q(), j2);
450  }
451 
452  std::shared_ptr<const RSA_Public_Data> m_public;
453  std::shared_ptr<const RSA_Private_Data> m_private;
454 
455  // XXX could the blinder starting pair be shared?
456  Blinder m_blinder;
457  const size_t m_blinding_bits;
458  const size_t m_max_d1_bits;
459  const size_t m_max_d2_bits;
460  };
461 
462 class RSA_Signature_Operation final : public PK_Ops::Signature_with_EMSA,
463  private RSA_Private_Operation
464  {
465  public:
466  size_t max_input_bits() const override { return public_modulus_bits() - 1; }
467 
468  size_t signature_length() const override { return public_modulus_bytes(); }
469 
470  RSA_Signature_Operation(const RSA_PrivateKey& rsa, const std::string& emsa, RandomNumberGenerator& rng) :
471  PK_Ops::Signature_with_EMSA(emsa),
472  RSA_Private_Operation(rsa, rng)
473  {
474  }
475 
476  secure_vector<uint8_t> raw_sign(const uint8_t input[], size_t input_len,
477  RandomNumberGenerator&) override
478  {
479  return raw_op(input, input_len);
480  }
481  };
482 
483 class RSA_Decryption_Operation final : public PK_Ops::Decryption_with_EME,
484  private RSA_Private_Operation
485  {
486  public:
487 
488  RSA_Decryption_Operation(const RSA_PrivateKey& rsa, const std::string& eme, RandomNumberGenerator& rng) :
489  PK_Ops::Decryption_with_EME(eme),
490  RSA_Private_Operation(rsa, rng)
491  {
492  }
493 
494  size_t plaintext_length(size_t) const override { return public_modulus_bytes(); }
495 
496  secure_vector<uint8_t> raw_decrypt(const uint8_t input[], size_t input_len) override
497  {
498  return raw_op(input, input_len);
499  }
500  };
501 
502 class RSA_KEM_Decryption_Operation final : public PK_Ops::KEM_Decryption_with_KDF,
503  private RSA_Private_Operation
504  {
505  public:
506 
507  RSA_KEM_Decryption_Operation(const RSA_PrivateKey& key,
508  const std::string& kdf,
509  RandomNumberGenerator& rng) :
510  PK_Ops::KEM_Decryption_with_KDF(kdf),
511  RSA_Private_Operation(key, rng)
512  {}
513 
514  secure_vector<uint8_t>
515  raw_kem_decrypt(const uint8_t encap_key[], size_t len) override
516  {
517  return raw_op(encap_key, len);
518  }
519  };
520 
521 /**
522 * RSA public (encrypt/verify) operation
523 */
524 class RSA_Public_Operation
525  {
526  public:
527  explicit RSA_Public_Operation(const RSA_PublicKey& rsa) :
528  m_public(rsa.public_data())
529  {}
530 
531  size_t get_max_input_bits() const
532  {
533  const size_t n_bits = m_public->public_modulus_bits();
534 
535  /*
536  Make Coverity happy that n_bits - 1 won't underflow
537 
538  5 bit minimum: smallest possible RSA key is 3*5
539  */
540  BOTAN_ASSERT_NOMSG(n_bits >= 5);
541  return n_bits - 1;
542  }
543 
544  protected:
545  BigInt public_op(const BigInt& m) const
546  {
547  if(m >= m_public->get_n())
548  throw Invalid_Argument("RSA public op - input is too large");
549 
550  return m_public->public_op(m);
551  }
552 
553  size_t public_modulus_bytes() const { return m_public->public_modulus_bytes(); }
554 
555  const BigInt& get_n() const { return m_public->get_n(); }
556 
557  std::shared_ptr<const RSA_Public_Data> m_public;
558  };
559 
560 class RSA_Encryption_Operation final : public PK_Ops::Encryption_with_EME,
561  private RSA_Public_Operation
562  {
563  public:
564 
565  RSA_Encryption_Operation(const RSA_PublicKey& rsa, const std::string& eme) :
566  PK_Ops::Encryption_with_EME(eme),
567  RSA_Public_Operation(rsa)
568  {
569  }
570 
571  size_t ciphertext_length(size_t) const override { return public_modulus_bytes(); }
572 
573  size_t max_raw_input_bits() const override { return get_max_input_bits(); }
574 
575  secure_vector<uint8_t> raw_encrypt(const uint8_t input[], size_t input_len,
576  RandomNumberGenerator&) override
577  {
578  BigInt input_bn(input, input_len);
579  return BigInt::encode_1363(public_op(input_bn), public_modulus_bytes());
580  }
581  };
582 
583 class RSA_Verify_Operation final : public PK_Ops::Verification_with_EMSA,
584  private RSA_Public_Operation
585  {
586  public:
587 
588  size_t max_input_bits() const override { return get_max_input_bits(); }
589 
590  RSA_Verify_Operation(const RSA_PublicKey& rsa, const std::string& emsa) :
591  PK_Ops::Verification_with_EMSA(emsa),
592  RSA_Public_Operation(rsa)
593  {
594  }
595 
596  bool with_recovery() const override { return true; }
597 
598  secure_vector<uint8_t> verify_mr(const uint8_t input[], size_t input_len) override
599  {
600  BigInt input_bn(input, input_len);
601  return BigInt::encode_locked(public_op(input_bn));
602  }
603  };
604 
605 class RSA_KEM_Encryption_Operation final : public PK_Ops::KEM_Encryption_with_KDF,
606  private RSA_Public_Operation
607  {
608  public:
609 
610  RSA_KEM_Encryption_Operation(const RSA_PublicKey& key,
611  const std::string& kdf) :
612  PK_Ops::KEM_Encryption_with_KDF(kdf),
613  RSA_Public_Operation(key) {}
614 
615  private:
616  void raw_kem_encrypt(secure_vector<uint8_t>& out_encapsulated_key,
617  secure_vector<uint8_t>& raw_shared_key,
618  Botan::RandomNumberGenerator& rng) override
619  {
620  const BigInt r = BigInt::random_integer(rng, 1, get_n());
621  const BigInt c = public_op(r);
622 
623  out_encapsulated_key = BigInt::encode_locked(c);
624  raw_shared_key = BigInt::encode_locked(r);
625  }
626  };
627 
628 }
629 
630 std::unique_ptr<PK_Ops::Encryption>
632  const std::string& params,
633  const std::string& provider) const
634  {
635 #if defined(BOTAN_HAS_OPENSSL)
636  if(provider == "openssl" || provider.empty())
637  {
638  try
639  {
640  return make_openssl_rsa_enc_op(*this, params);
641  }
642  catch(Exception& e)
643  {
644  /*
645  * If OpenSSL for some reason could not handle this (eg due to OAEP params),
646  * throw if openssl was specifically requested but otherwise just fall back
647  * to the normal version.
648  */
649  if(provider == "openssl")
650  throw Lookup_Error("OpenSSL RSA provider rejected key:" + std::string(e.what()));
651  }
652  }
653 #endif
654 
655  if(provider == "base" || provider.empty())
656  return std::unique_ptr<PK_Ops::Encryption>(new RSA_Encryption_Operation(*this, params));
657  throw Provider_Not_Found(algo_name(), provider);
658  }
659 
660 std::unique_ptr<PK_Ops::KEM_Encryption>
662  const std::string& params,
663  const std::string& provider) const
664  {
665  if(provider == "base" || provider.empty())
666  return std::unique_ptr<PK_Ops::KEM_Encryption>(new RSA_KEM_Encryption_Operation(*this, params));
667  throw Provider_Not_Found(algo_name(), provider);
668  }
669 
670 std::unique_ptr<PK_Ops::Verification>
671 RSA_PublicKey::create_verification_op(const std::string& params,
672  const std::string& provider) const
673  {
674 #if defined(BOTAN_HAS_OPENSSL)
675  if(provider == "openssl" || provider.empty())
676  {
677  std::unique_ptr<PK_Ops::Verification> res = make_openssl_rsa_ver_op(*this, params);
678  if(res)
679  return res;
680  }
681 #endif
682 
683  if(provider == "base" || provider.empty())
684  return std::unique_ptr<PK_Ops::Verification>(new RSA_Verify_Operation(*this, params));
685 
686  throw Provider_Not_Found(algo_name(), provider);
687  }
688 
689 std::unique_ptr<PK_Ops::Decryption>
691  const std::string& params,
692  const std::string& provider) const
693  {
694 #if defined(BOTAN_HAS_OPENSSL)
695  if(provider == "openssl" || provider.empty())
696  {
697  try
698  {
699  return make_openssl_rsa_dec_op(*this, params);
700  }
701  catch(Exception& e)
702  {
703  if(provider == "openssl")
704  throw Lookup_Error("OpenSSL RSA provider rejected key:" + std::string(e.what()));
705  }
706  }
707 #endif
708 
709  if(provider == "base" || provider.empty())
710  return std::unique_ptr<PK_Ops::Decryption>(new RSA_Decryption_Operation(*this, params, rng));
711 
712  throw Provider_Not_Found(algo_name(), provider);
713  }
714 
715 std::unique_ptr<PK_Ops::KEM_Decryption>
717  const std::string& params,
718  const std::string& provider) const
719  {
720  if(provider == "base" || provider.empty())
721  return std::unique_ptr<PK_Ops::KEM_Decryption>(new RSA_KEM_Decryption_Operation(*this, params, rng));
722 
723  throw Provider_Not_Found(algo_name(), provider);
724  }
725 
726 std::unique_ptr<PK_Ops::Signature>
728  const std::string& params,
729  const std::string& provider) const
730  {
731 #if defined(BOTAN_HAS_OPENSSL)
732  if(provider == "openssl" || provider.empty())
733  {
734  std::unique_ptr<PK_Ops::Signature> res = make_openssl_rsa_sig_op(*this, params);
735  if(res)
736  return res;
737  }
738 #endif
739 
740  if(provider == "base" || provider.empty())
741  return std::unique_ptr<PK_Ops::Signature>(new RSA_Signature_Operation(*this, params, rng));
742 
743  throw Provider_Not_Found(algo_name(), provider);
744  }
745 
746 }
BigInt mul_add(const BigInt &a, const BigInt &b, const BigInt &c)
Definition: mp_numth.cpp:30
std::unique_ptr< PK_Ops::Decryption > create_decryption_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:690
size_t if_work_factor(size_t bits)
Definition: workfactor.cpp:38
bool check_key(RandomNumberGenerator &rng, bool) const override
Definition: rsa.cpp:168
size_t estimated_strength() const override
Definition: rsa.cpp:143
const BigInt & get_d1() const
Definition: rsa.cpp:201
const BigInt & get_d() const
Definition: rsa.cpp:199
const BigInt & get_e() const
Definition: rsa.cpp:109
size_t key_length() const override
Definition: rsa.cpp:138
std::unique_ptr< PK_Ops::KEM_Encryption > create_kem_encryption_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:661
secure_vector< uint8_t > private_key_bits() const override
Definition: rsa.cpp:180
size_t bits() const
Definition: bigint.cpp:297
BER_Decoder & decode_and_check(const T &expected, const std::string &error_msg)
Definition: ber_dec.h:277
std::unique_ptr< PK_Ops::KEM_Decryption > create_kem_decryption_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:716
int(* final)(unsigned char *, CTX *)
secure_vector< uint8_t > get_contents()
Definition: der_enc.cpp:152
bool is_zero() const
Definition: bigint.h:421
Definition: bigint.h:1142
bool is_prime(const BigInt &n, RandomNumberGenerator &rng, size_t prob, bool is_random)
Definition: numthry.cpp:210
#define BOTAN_ASSERT_NOMSG(expr)
Definition: assert.h:68
BigInt ct_modulo(const BigInt &x, const BigInt &y)
Definition: divide.cpp:118
std::string to_string(const BER_Object &obj)
Definition: asn1_obj.cpp:213
static BigInt random_integer(RandomNumberGenerator &rng, const BigInt &min, const BigInt &max)
Definition: big_rand.cpp:45
DER_Encoder & end_cons()
Definition: der_enc.cpp:191
BER_Decoder & decode(bool &out)
Definition: ber_dec.h:170
const BigInt & get_q() const
Definition: rsa.cpp:198
const char * what() const noexcept override
Definition: exceptn.h:96
static secure_vector< uint8_t > encode_locked(const BigInt &n)
Definition: bigint.h:782
#define BOTAN_ASSERT(expr, assertion_made)
Definition: assert.h:55
auto run(F &&f, Args &&... args) -> std::future< typename std::result_of< F(Args...)>::type >
Definition: thread_pool.h:57
DER_Encoder & encode(bool b)
Definition: der_enc.cpp:285
BigInt const BigInt & mod
Definition: numthry.h:105
BigInt monty_execute_vartime(const Montgomery_Exponentation_State &precomputed_state, const BigInt &k)
Definition: monty_exp.cpp:171
bool signature_consistency_check(RandomNumberGenerator &rng, const Private_Key &private_key, const Public_Key &public_key, const std::string &padding)
Definition: keypair.cpp:49
virtual OID get_oid() const
Definition: pk_keys.cpp:53
BER_Decoder & end_cons()
Definition: ber_dec.cpp:300
BigInt lcm(const BigInt &a, const BigInt &b)
Definition: numthry.cpp:125
std::vector< uint8_t > public_key_bits() const override
Definition: rsa.cpp:153
BigInt const BigInt & modulus
Definition: numthry.h:100
const BigInt & get_d2() const
Definition: rsa.cpp:202
BigInt inverse_mod(const BigInt &n, const BigInt &mod)
Definition: mod_inv.cpp:250
std::string algo_name() const override
Definition: rsa.h:43
secure_vector< uint8_t > decode(DataSource &source, std::string &label)
Definition: pem.cpp:68
BER_Decoder start_cons(ASN1_Tag type_tag, ASN1_Tag class_tag=UNIVERSAL)
Definition: ber_dec.cpp:290
std::shared_ptr< const Montgomery_Exponentation_State > monty_precompute(std::shared_ptr< const Montgomery_Params > params, const BigInt &g, size_t window_bits, bool const_time)
Definition: monty_exp.cpp:157
std::shared_ptr< const RSA_Public_Data > public_data() const
Definition: rsa.cpp:103
Definition: alg_id.cpp:13
AlgorithmIdentifier algorithm_identifier() const override
Definition: rsa.cpp:148
std::unique_ptr< PK_Ops::Verification > create_verification_op(const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:671
std::shared_ptr< const RSA_Private_Data > private_data() const
Definition: rsa.cpp:175
RSA_PrivateKey(const AlgorithmIdentifier &alg_id, const secure_vector< uint8_t > &key_bits)
Definition: rsa.cpp:211
std::shared_ptr< const RSA_Public_Data > m_public
Definition: rsa.h:86
void init(BigInt &&n, BigInt &&e)
Definition: rsa.cpp:111
DER_Encoder & start_cons(ASN1_Tag type_tag, ASN1_Tag class_tag=UNIVERSAL)
Definition: der_enc.cpp:181
static secure_vector< uint8_t > encode_1363(const BigInt &n, size_t bytes)
Definition: big_code.cpp:111
static Thread_Pool & global_instance()
Definition: thread_pool.cpp:15
const BigInt & get_p() const
Definition: rsa.cpp:197
std::unique_ptr< PK_Ops::Encryption > create_encryption_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:631
std::vector< T, secure_allocator< T > > secure_vector
Definition: secmem.h:65
bool check_key(RandomNumberGenerator &rng, bool) const override
Definition: rsa.cpp:315
BigInt generate_rsa_prime(RandomNumberGenerator &keygen_rng, RandomNumberGenerator &prime_test_rng, size_t bits, const BigInt &coprime, size_t prob)
Definition: make_prm.cpp:197
const BigInt & get_c() const
Definition: rsa.cpp:200
BigInt monty_execute(const Montgomery_Exponentation_State &precomputed_state, const BigInt &k, size_t max_k_bits)
Definition: monty_exp.cpp:165
std::unique_ptr< PK_Ops::Signature > create_signature_op(RandomNumberGenerator &rng, const std::string &params, const std::string &provider) const override
Definition: rsa.cpp:727
const BigInt & get_n() const
Definition: rsa.cpp:108