Botan 3.6.1
Crypto and TLS for C&
Botan::Modular_Reducer Class Referencefinal

#include <reducer.h>

Public Member Functions

BigInt cube (const BigInt &x) const
 
const BigIntget_modulus () const
 
bool initialized () const
 
 Modular_Reducer ()
 
 Modular_Reducer (const BigInt &mod)
 
BigInt multiply (const BigInt &x, const BigInt &y) const
 
BigInt multiply (const BigInt &x, const BigInt &y, const BigInt &z) const
 
void reduce (BigInt &out, const BigInt &x, secure_vector< word > &ws) const
 
BigInt reduce (const BigInt &x) const
 
BigInt square (const BigInt &x) const
 

Detailed Description

Modular Reducer (using Barrett's technique)

Definition at line 20 of file reducer.h.

Constructor & Destructor Documentation

◆ Modular_Reducer() [1/2]

Botan::Modular_Reducer::Modular_Reducer ( )
inline

Definition at line 64 of file reducer.h.

64{ m_mod_words = 0; }

◆ Modular_Reducer() [2/2]

Botan::Modular_Reducer::Modular_Reducer ( const BigInt & mod)
explicit

Definition at line 19 of file reducer.cpp.

19 {
20 if(mod < 0) {
21 throw Invalid_Argument("Modular_Reducer: modulus must be positive");
22 }
23
24 // Left uninitialized if mod == 0
25 m_mod_words = 0;
26
27 if(mod > 0) {
28 m_modulus = mod;
29 m_mod_words = m_modulus.sig_words();
30
31 // Compute mu = floor(2^{2k} / m)
32 m_mu.set_bit(2 * BOTAN_MP_WORD_BITS * m_mod_words);
33 m_mu = ct_divide(m_mu, m_modulus);
34 }
35}
size_t sig_words() const
Definition bigint.h:616
void set_bit(size_t n)
Definition bigint.h:464
#define BOTAN_MP_WORD_BITS
Definition build.h:71
void ct_divide(const BigInt &x, const BigInt &y, BigInt &q_out, BigInt &r_out)
Definition divide.cpp:48

References BOTAN_MP_WORD_BITS, Botan::ct_divide(), Botan::BigInt::set_bit(), and Botan::BigInt::sig_words().

Member Function Documentation

◆ cube()

BigInt Botan::Modular_Reducer::cube ( const BigInt & x) const
inline

Cube mod p

Parameters
xthe value to cube
Returns
(x * x * x) % p

Definition at line 52 of file reducer.h.

52{ return multiply(x, this->square(x)); }
BigInt square(const BigInt &x) const
Definition reducer.h:45
BigInt multiply(const BigInt &x, const BigInt &y) const
Definition reducer.h:32

References Botan::square().

Referenced by Botan::EC_Group::verify_group().

◆ get_modulus()

const BigInt & Botan::Modular_Reducer::get_modulus ( ) const
inline

Definition at line 22 of file reducer.h.

22{ return m_modulus; }

Referenced by Botan::EC_Point_Base_Point_Precompute::EC_Point_Base_Point_Precompute().

◆ initialized()

bool Botan::Modular_Reducer::initialized ( ) const
inline

Definition at line 62 of file reducer.h.

62{ return (m_mod_words != 0); }

Referenced by Botan::Blinder::blind(), and Botan::Blinder::unblind().

◆ multiply() [1/2]

BigInt Botan::Modular_Reducer::multiply ( const BigInt & x,
const BigInt & y ) const
inline

◆ multiply() [2/2]

BigInt Botan::Modular_Reducer::multiply ( const BigInt & x,
const BigInt & y,
const BigInt & z ) const
inline

Multiply mod p

Returns
(x * y * z) % p

Definition at line 38 of file reducer.h.

38{ return multiply(x, multiply(y, z)); }

References multiply().

Referenced by multiply().

◆ reduce() [1/2]

void Botan::Modular_Reducer::reduce ( BigInt & out,
const BigInt & x,
secure_vector< word > & ws ) const

Low level reduction function. Mostly for internal use. Sometimes useful for performance by reducing temporaries Reduce x mod p and place the output in out. ** X and out must not reference each other ** ws is a temporary workspace.

Definition at line 69 of file reducer.cpp.

69 {
70 if(&t1 == &x) {
71 throw Invalid_State("Modular_Reducer arguments cannot alias");
72 }
73 if(m_mod_words == 0) {
74 throw Invalid_State("Modular_Reducer: Never initalized");
75 }
76
77 const size_t x_sw = x.sig_words();
78
79 if(x_sw > 2 * m_mod_words) {
80 // too big, fall back to slow boat division
81 t1 = ct_modulo(x, m_modulus);
82 return;
83 }
84
85 t1 = x;
86 t1.set_sign(BigInt::Positive);
87 t1 >>= (BOTAN_MP_WORD_BITS * (m_mod_words - 1));
88
89 t1.mul(m_mu, ws);
90 t1 >>= (BOTAN_MP_WORD_BITS * (m_mod_words + 1));
91
92 // TODO add masked mul to avoid computing high bits
93 t1.mul(m_modulus, ws);
94 t1.mask_bits(BOTAN_MP_WORD_BITS * (m_mod_words + 1));
95
96 t1.rev_sub(x._data(), std::min(x_sw, m_mod_words + 1), ws);
97
98 /*
99 * If t1 < 0 then we must add b^(k+1) where b = 2^w. To avoid a
100 * side channel perform the addition unconditionally, with ws set
101 * to either b^(k+1) or else 0.
102 */
103 const word t1_neg = t1.is_negative();
104
105 if(ws.size() < m_mod_words + 2) {
106 ws.resize(m_mod_words + 2);
107 }
108 clear_mem(ws.data(), ws.size());
109 ws[m_mod_words + 1] = t1_neg;
110
111 t1.add(ws.data(), m_mod_words + 2, BigInt::Positive);
112
113 // Per HAC this step requires at most 2 subtractions
114 t1.ct_reduce_below(m_modulus, ws, 2);
115
116 cnd_rev_sub(t1.is_nonzero() && x.is_negative(), t1, m_modulus._data(), m_modulus.size(), ws);
117}
size_t size() const
Definition bigint.h:610
const word * _data() const
Definition bigint.h:936
BigInt ct_modulo(const BigInt &x, const BigInt &y)
Definition divide.cpp:117
constexpr void clear_mem(T *ptr, size_t n)
Definition mem_ops.h:120

References Botan::BigInt::_data(), Botan::BigInt::add(), BOTAN_MP_WORD_BITS, Botan::clear_mem(), Botan::ct_modulo(), Botan::BigInt::ct_reduce_below(), Botan::BigInt::is_negative(), Botan::BigInt::is_nonzero(), Botan::BigInt::mask_bits(), Botan::BigInt::mul(), Botan::BigInt::Positive, Botan::BigInt::rev_sub(), Botan::BigInt::set_sign(), Botan::BigInt::sig_words(), and Botan::BigInt::size().

◆ reduce() [2/2]

◆ square()

BigInt Botan::Modular_Reducer::square ( const BigInt & x) const
inline

The documentation for this class was generated from the following files: