Botan  2.10.0
Crypto and TLS for C++11
cbc.cpp
Go to the documentation of this file.
1 /*
2 * CBC Mode
3 * (C) 1999-2007,2013,2017 Jack Lloyd
4 * (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
5 * (C) 2018 Ribose Inc
6 *
7 * Botan is released under the Simplified BSD License (see license.txt)
8 */
9 
10 #include <botan/cbc.h>
11 #include <botan/mode_pad.h>
12 #include <botan/internal/rounding.h>
13 
14 namespace Botan {
15 
17  m_cipher(cipher),
18  m_padding(padding),
19  m_block_size(cipher->block_size())
20  {
21  if(m_padding && !m_padding->valid_blocksize(m_block_size))
22  throw Invalid_Argument("Padding " + m_padding->name() +
23  " cannot be used with " +
24  cipher->name() + "/CBC");
25  }
26 
28  {
29  m_cipher->clear();
30  reset();
31  }
32 
34  {
35  m_state.clear();
36  }
37 
38 std::string CBC_Mode::name() const
39  {
40  if(m_padding)
41  return cipher().name() + "/CBC/" + padding().name();
42  else
43  return cipher().name() + "/CBC/CTS";
44  }
45 
47  {
48  return cipher().parallel_bytes();
49  }
50 
52  {
53  return cipher().key_spec();
54  }
55 
57  {
58  return block_size();
59  }
60 
61 bool CBC_Mode::valid_nonce_length(size_t n) const
62  {
63  return (n == 0 || n == block_size());
64  }
65 
66 void CBC_Mode::key_schedule(const uint8_t key[], size_t length)
67  {
68  m_cipher->set_key(key, length);
69  m_state.clear();
70  }
71 
72 void CBC_Mode::start_msg(const uint8_t nonce[], size_t nonce_len)
73  {
74  if(!valid_nonce_length(nonce_len))
75  throw Invalid_IV_Length(name(), nonce_len);
76 
77  /*
78  * A nonce of zero length means carry the last ciphertext value over
79  * as the new IV, as unfortunately some protocols require this. If
80  * this is the first message then we use an IV of all zeros.
81  */
82  if(nonce_len)
83  m_state.assign(nonce, nonce + nonce_len);
84  else if(m_state.empty())
85  m_state.resize(m_cipher->block_size());
86  // else leave the state alone
87  }
88 
90  {
91  return 0;
92  }
93 
94 size_t CBC_Encryption::output_length(size_t input_length) const
95  {
96  if(input_length == 0)
97  return block_size();
98  else
99  return round_up(input_length, block_size());
100  }
101 
102 size_t CBC_Encryption::process(uint8_t buf[], size_t sz)
103  {
104  BOTAN_STATE_CHECK(state().empty() == false);
105  const size_t BS = block_size();
106 
107  BOTAN_ASSERT(sz % BS == 0, "CBC input is full blocks");
108  const size_t blocks = sz / BS;
109 
110  if(blocks > 0)
111  {
112  xor_buf(&buf[0], state_ptr(), BS);
113  cipher().encrypt(&buf[0]);
114 
115  for(size_t i = 1; i != blocks; ++i)
116  {
117  xor_buf(&buf[BS*i], &buf[BS*(i-1)], BS);
118  cipher().encrypt(&buf[BS*i]);
119  }
120 
121  state().assign(&buf[BS*(blocks-1)], &buf[BS*blocks]);
122  }
123 
124  return sz;
125  }
126 
127 void CBC_Encryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
128  {
129  BOTAN_STATE_CHECK(state().empty() == false);
130  BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
131 
132  const size_t BS = block_size();
133 
134  const size_t bytes_in_final_block = (buffer.size()-offset) % BS;
135 
136  padding().add_padding(buffer, bytes_in_final_block, BS);
137 
138  if((buffer.size()-offset) % BS)
139  throw Internal_Error("Did not pad to full block size in " + name());
140 
141  update(buffer, offset);
142  }
143 
145  {
146  return (n == block_size());
147  }
148 
150  {
151  return block_size() + 1;
152  }
153 
154 size_t CTS_Encryption::output_length(size_t input_length) const
155  {
156  return input_length; // no ciphertext expansion in CTS
157  }
158 
159 void CTS_Encryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
160  {
161  BOTAN_STATE_CHECK(state().empty() == false);
162  BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
163  uint8_t* buf = buffer.data() + offset;
164  const size_t sz = buffer.size() - offset;
165 
166  const size_t BS = block_size();
167 
168  if(sz < BS + 1)
169  throw Encoding_Error(name() + ": insufficient data to encrypt");
170 
171  if(sz % BS == 0)
172  {
173  update(buffer, offset);
174 
175  // swap last two blocks
176  for(size_t i = 0; i != BS; ++i)
177  std::swap(buffer[buffer.size()-BS+i], buffer[buffer.size()-2*BS+i]);
178  }
179  else
180  {
181  const size_t full_blocks = ((sz / BS) - 1) * BS;
182  const size_t final_bytes = sz - full_blocks;
183  BOTAN_ASSERT(final_bytes > BS && final_bytes < 2*BS, "Left over size in expected range");
184 
185  secure_vector<uint8_t> last(buf + full_blocks, buf + full_blocks + final_bytes);
186  buffer.resize(full_blocks + offset);
187  update(buffer, offset);
188 
189  xor_buf(last.data(), state_ptr(), BS);
190  cipher().encrypt(last.data());
191 
192  for(size_t i = 0; i != final_bytes - BS; ++i)
193  {
194  last[i] ^= last[i + BS];
195  last[i + BS] ^= last[i];
196  }
197 
198  cipher().encrypt(last.data());
199 
200  buffer += last;
201  }
202  }
203 
204 size_t CBC_Decryption::output_length(size_t input_length) const
205  {
206  return input_length; // precise for CTS, worst case otherwise
207  }
208 
210  {
211  return block_size();
212  }
213 
214 size_t CBC_Decryption::process(uint8_t buf[], size_t sz)
215  {
216  BOTAN_STATE_CHECK(state().empty() == false);
217 
218  const size_t BS = block_size();
219 
220  BOTAN_ASSERT(sz % BS == 0, "Input is full blocks");
221  size_t blocks = sz / BS;
222 
223  while(blocks)
224  {
225  const size_t to_proc = std::min(BS * blocks, m_tempbuf.size());
226 
227  cipher().decrypt_n(buf, m_tempbuf.data(), to_proc / BS);
228 
229  xor_buf(m_tempbuf.data(), state_ptr(), BS);
230  xor_buf(&m_tempbuf[BS], buf, to_proc - BS);
231  copy_mem(state_ptr(), buf + (to_proc - BS), BS);
232 
233  copy_mem(buf, m_tempbuf.data(), to_proc);
234 
235  buf += to_proc;
236  blocks -= to_proc / BS;
237  }
238 
239  return sz;
240  }
241 
242 void CBC_Decryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
243  {
244  BOTAN_STATE_CHECK(state().empty() == false);
245  BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
246  const size_t sz = buffer.size() - offset;
247 
248  const size_t BS = block_size();
249 
250  if(sz == 0 || sz % BS)
251  throw Decoding_Error(name() + ": Ciphertext not a multiple of block size");
252 
253  update(buffer, offset);
254 
255  const size_t pad_bytes = BS - padding().unpad(&buffer[buffer.size()-BS], BS);
256  buffer.resize(buffer.size() - pad_bytes); // remove padding
257  if(pad_bytes == 0 && padding().name() != "NoPadding")
258  {
259  throw Decoding_Error("Invalid CBC padding");
260  }
261  }
262 
264  {
265  CBC_Mode::reset();
266  zeroise(m_tempbuf);
267  }
268 
270  {
271  return (n == block_size());
272  }
273 
275  {
276  return block_size() + 1;
277  }
278 
279 void CTS_Decryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
280  {
281  BOTAN_STATE_CHECK(state().empty() == false);
282  BOTAN_ASSERT(buffer.size() >= offset, "Offset is sane");
283  const size_t sz = buffer.size() - offset;
284  uint8_t* buf = buffer.data() + offset;
285 
286  const size_t BS = block_size();
287 
288  if(sz < BS + 1)
289  throw Encoding_Error(name() + ": insufficient data to decrypt");
290 
291  if(sz % BS == 0)
292  {
293  // swap last two blocks
294 
295  for(size_t i = 0; i != BS; ++i)
296  std::swap(buffer[buffer.size()-BS+i], buffer[buffer.size()-2*BS+i]);
297 
298  update(buffer, offset);
299  }
300  else
301  {
302  const size_t full_blocks = ((sz / BS) - 1) * BS;
303  const size_t final_bytes = sz - full_blocks;
304  BOTAN_ASSERT(final_bytes > BS && final_bytes < 2*BS, "Left over size in expected range");
305 
306  secure_vector<uint8_t> last(buf + full_blocks, buf + full_blocks + final_bytes);
307  buffer.resize(full_blocks + offset);
308  update(buffer, offset);
309 
310  cipher().decrypt(last.data());
311 
312  xor_buf(last.data(), &last[BS], final_bytes - BS);
313 
314  for(size_t i = 0; i != final_bytes - BS; ++i)
315  std::swap(last[i], last[i + BS]);
316 
317  cipher().decrypt(last.data());
318  xor_buf(last.data(), state_ptr(), BS);
319 
320  buffer += last;
321  }
322  }
323 
324 }
void finish(secure_vector< uint8_t > &final_block, size_t offset=0) override
Definition: cbc.cpp:159
secure_vector< uint8_t > & state()
Definition: cbc.h:51
Key_Length_Specification key_spec() const override
Definition: cbc.cpp:51
size_t parallel_bytes() const
Definition: block_cipher.h:64
void clear() override
Definition: cbc.cpp:27
void finish(secure_vector< uint8_t > &final_block, size_t offset=0) override
Definition: cbc.cpp:242
std::string name() const override
Definition: cbc.cpp:38
virtual size_t unpad(const uint8_t block[], size_t len) const =0
const BlockCipherModePaddingMethod & padding() const
Definition: cbc.h:43
bool valid_nonce_length(size_t n) const override
Definition: cbc.cpp:61
virtual void decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const =0
size_t update_granularity() const override
Definition: cbc.cpp:46
CBC_Mode(BlockCipher *cipher, BlockCipherModePaddingMethod *padding)
Definition: cbc.cpp:16
void update(secure_vector< uint8_t > &buffer, size_t offset=0)
Definition: cipher_mode.h:112
#define BOTAN_STATE_CHECK(expr)
Definition: assert.h:49
void decrypt(const uint8_t in[], uint8_t out[]) const
Definition: block_cipher.h:92
size_t default_nonce_length() const override
Definition: cbc.cpp:56
#define BOTAN_ASSERT(expr, assertion_made)
Definition: assert.h:55
size_t minimum_final_size() const override
Definition: cbc.cpp:209
bool valid_nonce_length(size_t n) const override
Definition: cbc.cpp:144
void reset() override
Definition: cbc.cpp:263
void xor_buf(uint8_t out[], const uint8_t in[], size_t length)
Definition: mem_ops.h:202
virtual std::string name() const =0
void reset() override
Definition: cbc.cpp:33
size_t output_length(size_t input_length) const override
Definition: cbc.cpp:204
uint8_t * state_ptr()
Definition: cbc.h:53
size_t process(uint8_t buf[], size_t size) override
Definition: cbc.cpp:102
void copy_mem(T *out, const T *in, size_t n)
Definition: mem_ops.h:122
Definition: alg_id.cpp:13
size_t block_size() const
Definition: cbc.h:49
void encrypt(const uint8_t in[], uint8_t out[]) const
Definition: block_cipher.h:82
virtual Key_Length_Specification key_spec() const =0
virtual void add_padding(secure_vector< uint8_t > &buffer, size_t final_block_bytes, size_t block_size) const =0
void finish(secure_vector< uint8_t > &final_block, size_t offset=0) override
Definition: cbc.cpp:127
size_t minimum_final_size() const override
Definition: cbc.cpp:89
void finish(secure_vector< uint8_t > &final_block, size_t offset=0) override
Definition: cbc.cpp:279
const BlockCipher & cipher() const
Definition: cbc.h:41
std::vector< T, secure_allocator< T > > secure_vector
Definition: secmem.h:65
size_t minimum_final_size() const override
Definition: cbc.cpp:149
size_t output_length(size_t input_length) const override
Definition: cbc.cpp:154
size_t round_up(size_t n, size_t align_to)
Definition: rounding.h:21
virtual std::string name() const =0
size_t output_length(size_t input_length) const override
Definition: cbc.cpp:94
size_t process(uint8_t buf[], size_t size) override
Definition: cbc.cpp:214
bool valid_nonce_length(size_t n) const override
Definition: cbc.cpp:269
size_t minimum_final_size() const override
Definition: cbc.cpp:274
void zeroise(std::vector< T, Alloc > &vec)
Definition: secmem.h:160