Botan 3.10.0
Crypto and TLS for C&
seed.cpp
Go to the documentation of this file.
1/*
2* SEED
3* (C) 1999-2007,2020 Jack Lloyd
4*
5* Botan is released under the Simplified BSD License (see license.txt)
6*/
7
8#include <botan/internal/seed.h>
9
10#include <botan/internal/loadstor.h>
11#include <botan/internal/prefetch.h>
12
13namespace Botan {
14
15namespace {
16
17alignas(256) const uint8_t SEED_S0[256] = {
18 0xA9, 0x85, 0xD6, 0xD3, 0x54, 0x1D, 0xAC, 0x25, 0x5D, 0x43, 0x18, 0x1E, 0x51, 0xFC, 0xCA, 0x63, 0x28, 0x44, 0x20,
19 0x9D, 0xE0, 0xE2, 0xC8, 0x17, 0xA5, 0x8F, 0x03, 0x7B, 0xBB, 0x13, 0xD2, 0xEE, 0x70, 0x8C, 0x3F, 0xA8, 0x32, 0xDD,
20 0xF6, 0x74, 0xEC, 0x95, 0x0B, 0x57, 0x5C, 0x5B, 0xBD, 0x01, 0x24, 0x1C, 0x73, 0x98, 0x10, 0xCC, 0xF2, 0xD9, 0x2C,
21 0xE7, 0x72, 0x83, 0x9B, 0xD1, 0x86, 0xC9, 0x60, 0x50, 0xA3, 0xEB, 0x0D, 0xB6, 0x9E, 0x4F, 0xB7, 0x5A, 0xC6, 0x78,
22 0xA6, 0x12, 0xAF, 0xD5, 0x61, 0xC3, 0xB4, 0x41, 0x52, 0x7D, 0x8D, 0x08, 0x1F, 0x99, 0x00, 0x19, 0x04, 0x53, 0xF7,
23 0xE1, 0xFD, 0x76, 0x2F, 0x27, 0xB0, 0x8B, 0x0E, 0xAB, 0xA2, 0x6E, 0x93, 0x4D, 0x69, 0x7C, 0x09, 0x0A, 0xBF, 0xEF,
24 0xF3, 0xC5, 0x87, 0x14, 0xFE, 0x64, 0xDE, 0x2E, 0x4B, 0x1A, 0x06, 0x21, 0x6B, 0x66, 0x02, 0xF5, 0x92, 0x8A, 0x0C,
25 0xB3, 0x7E, 0xD0, 0x7A, 0x47, 0x96, 0xE5, 0x26, 0x80, 0xAD, 0xDF, 0xA1, 0x30, 0x37, 0xAE, 0x36, 0x15, 0x22, 0x38,
26 0xF4, 0xA7, 0x45, 0x4C, 0x81, 0xE9, 0x84, 0x97, 0x35, 0xCB, 0xCE, 0x3C, 0x71, 0x11, 0xC7, 0x89, 0x75, 0xFB, 0xDA,
27 0xF8, 0x94, 0x59, 0x82, 0xC4, 0xFF, 0x49, 0x39, 0x67, 0xC0, 0xCF, 0xD7, 0xB8, 0x0F, 0x8E, 0x42, 0x23, 0x91, 0x6C,
28 0xDB, 0xA4, 0x34, 0xF1, 0x48, 0xC2, 0x6F, 0x3D, 0x2D, 0x40, 0xBE, 0x3E, 0xBC, 0xC1, 0xAA, 0xBA, 0x4E, 0x55, 0x3B,
29 0xDC, 0x68, 0x7F, 0x9C, 0xD8, 0x4A, 0x56, 0x77, 0xA0, 0xED, 0x46, 0xB5, 0x2B, 0x65, 0xFA, 0xE3, 0xB9, 0xB1, 0x9F,
30 0x5E, 0xF9, 0xE6, 0xB2, 0x31, 0xEA, 0x6D, 0x5F, 0xE4, 0xF0, 0xCD, 0x88, 0x16, 0x3A, 0x58, 0xD4, 0x62, 0x29, 0x07,
31 0x33, 0xE8, 0x1B, 0x05, 0x79, 0x90, 0x6A, 0x2A, 0x9A,
32};
33
34alignas(256) const uint8_t SEED_S1[256] = {
35 0x38, 0xE8, 0x2D, 0xA6, 0xCF, 0xDE, 0xB3, 0xB8, 0xAF, 0x60, 0x55, 0xC7, 0x44, 0x6F, 0x6B, 0x5B, 0xC3, 0x62, 0x33,
36 0xB5, 0x29, 0xA0, 0xE2, 0xA7, 0xD3, 0x91, 0x11, 0x06, 0x1C, 0xBC, 0x36, 0x4B, 0xEF, 0x88, 0x6C, 0xA8, 0x17, 0xC4,
37 0x16, 0xF4, 0xC2, 0x45, 0xE1, 0xD6, 0x3F, 0x3D, 0x8E, 0x98, 0x28, 0x4E, 0xF6, 0x3E, 0xA5, 0xF9, 0x0D, 0xDF, 0xD8,
38 0x2B, 0x66, 0x7A, 0x27, 0x2F, 0xF1, 0x72, 0x42, 0xD4, 0x41, 0xC0, 0x73, 0x67, 0xAC, 0x8B, 0xF7, 0xAD, 0x80, 0x1F,
39 0xCA, 0x2C, 0xAA, 0x34, 0xD2, 0x0B, 0xEE, 0xE9, 0x5D, 0x94, 0x18, 0xF8, 0x57, 0xAE, 0x08, 0xC5, 0x13, 0xCD, 0x86,
40 0xB9, 0xFF, 0x7D, 0xC1, 0x31, 0xF5, 0x8A, 0x6A, 0xB1, 0xD1, 0x20, 0xD7, 0x02, 0x22, 0x04, 0x68, 0x71, 0x07, 0xDB,
41 0x9D, 0x99, 0x61, 0xBE, 0xE6, 0x59, 0xDD, 0x51, 0x90, 0xDC, 0x9A, 0xA3, 0xAB, 0xD0, 0x81, 0x0F, 0x47, 0x1A, 0xE3,
42 0xEC, 0x8D, 0xBF, 0x96, 0x7B, 0x5C, 0xA2, 0xA1, 0x63, 0x23, 0x4D, 0xC8, 0x9E, 0x9C, 0x3A, 0x0C, 0x2E, 0xBA, 0x6E,
43 0x9F, 0x5A, 0xF2, 0x92, 0xF3, 0x49, 0x78, 0xCC, 0x15, 0xFB, 0x70, 0x75, 0x7F, 0x35, 0x10, 0x03, 0x64, 0x6D, 0xC6,
44 0x74, 0xD5, 0xB4, 0xEA, 0x09, 0x76, 0x19, 0xFE, 0x40, 0x12, 0xE0, 0xBD, 0x05, 0xFA, 0x01, 0xF0, 0x2A, 0x5E, 0xA9,
45 0x56, 0x43, 0x85, 0x14, 0x89, 0x9B, 0xB0, 0xE5, 0x48, 0x79, 0x97, 0xFC, 0x1E, 0x82, 0x21, 0x8C, 0x1B, 0x5F, 0x77,
46 0x54, 0xB2, 0x1D, 0x25, 0x4F, 0x00, 0x46, 0xED, 0x58, 0x52, 0xEB, 0x7E, 0xDA, 0xC9, 0xFD, 0x30, 0x95, 0x65, 0x3C,
47 0xB6, 0xE4, 0xBB, 0x7C, 0x0E, 0x50, 0x39, 0x26, 0x32, 0x84, 0x69, 0x93, 0x37, 0xE7, 0x24, 0xA4, 0xCB, 0x53, 0x0A,
48 0x87, 0xD9, 0x4C, 0x83, 0x8F, 0xCE, 0x3B, 0x4A, 0xB7,
49};
50
51/*
52* SEED G Function
53*/
54BOTAN_FORCE_INLINE uint32_t SEED_G(uint32_t X) {
55 const uint32_t M = 0x01010101;
56 const uint32_t s0 = M * SEED_S0[get_byte<3>(X)];
57 const uint32_t s1 = M * SEED_S1[get_byte<2>(X)];
58 const uint32_t s2 = M * SEED_S0[get_byte<1>(X)];
59 const uint32_t s3 = M * SEED_S1[get_byte<0>(X)];
60
61 const uint32_t M0 = 0x3FCFF3FC;
62 const uint32_t M1 = 0xFC3FCFF3;
63 const uint32_t M2 = 0xF3FC3FCF;
64 const uint32_t M3 = 0xCFF3FC3F;
65
66 return (s0 & M0) ^ (s1 & M1) ^ (s2 & M2) ^ (s3 & M3);
67}
68
69} // namespace
70
71/*
72* SEED Encryption
73*/
74void SEED::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
76
77 prefetch_arrays(SEED_S0, SEED_S1);
78
79 while(blocks >= 2) {
80 uint32_t B00 = load_be<uint32_t>(in, 0);
81 uint32_t B01 = load_be<uint32_t>(in, 1);
82 uint32_t B02 = load_be<uint32_t>(in, 2);
83 uint32_t B03 = load_be<uint32_t>(in, 3);
84 uint32_t B10 = load_be<uint32_t>(in, 4);
85 uint32_t B11 = load_be<uint32_t>(in, 5);
86 uint32_t B12 = load_be<uint32_t>(in, 6);
87 uint32_t B13 = load_be<uint32_t>(in, 7);
88
89 for(size_t j = 0; j != 16; j += 2) {
90 uint32_t T00 = B02 ^ m_K[2 * j];
91 uint32_t T10 = B12 ^ m_K[2 * j];
92 uint32_t T01 = SEED_G(B02 ^ B03 ^ m_K[2 * j + 1]);
93 uint32_t T11 = SEED_G(B12 ^ B13 ^ m_K[2 * j + 1]);
94 T00 = SEED_G(T01 + T00);
95 T10 = SEED_G(T11 + T10);
96 T01 = SEED_G(T01 + T00);
97 T11 = SEED_G(T11 + T10);
98 B01 ^= T01;
99 B11 ^= T11;
100 B00 ^= T00 + T01;
101 B10 ^= T10 + T11;
102
103 T00 = B00 ^ m_K[2 * j + 2];
104 T10 = B10 ^ m_K[2 * j + 2];
105 T01 = SEED_G(B00 ^ B01 ^ m_K[2 * j + 3]);
106 T11 = SEED_G(B10 ^ B11 ^ m_K[2 * j + 3]);
107 T10 = SEED_G(T11 + T10);
108 T00 = SEED_G(T01 + T00);
109 T01 = SEED_G(T01 + T00);
110 T11 = SEED_G(T11 + T10);
111 B03 ^= T01;
112 B13 ^= T11;
113 B02 ^= T00 + T01;
114 B12 ^= T10 + T11;
115 }
116
117 store_be(out, B02, B03, B00, B01, B12, B13, B10, B11);
118
119 in += 2 * BLOCK_SIZE;
120 out += 2 * BLOCK_SIZE;
121
122 blocks -= 2;
123 }
124
125 for(size_t i = 0; i != blocks; ++i) {
126 uint32_t B0 = load_be<uint32_t>(in, 0);
127 uint32_t B1 = load_be<uint32_t>(in, 1);
128 uint32_t B2 = load_be<uint32_t>(in, 2);
129 uint32_t B3 = load_be<uint32_t>(in, 3);
130
131 for(size_t j = 0; j != 16; j += 2) {
132 uint32_t T0 = B2 ^ m_K[2 * j];
133 uint32_t T1 = SEED_G(B2 ^ B3 ^ m_K[2 * j + 1]);
134 T0 = SEED_G(T1 + T0);
135 T1 = SEED_G(T1 + T0);
136 B1 ^= T1;
137 B0 ^= T0 + T1;
138
139 T0 = B0 ^ m_K[2 * j + 2];
140 T1 = SEED_G(B0 ^ B1 ^ m_K[2 * j + 3]);
141 T0 = SEED_G(T1 + T0);
142 T1 = SEED_G(T1 + T0);
143 B3 ^= T1;
144 B2 ^= T0 + T1;
145 }
146
147 store_be(out, B2, B3, B0, B1);
148
149 in += BLOCK_SIZE;
150 out += BLOCK_SIZE;
151 }
152}
153
154/*
155* SEED Decryption
156*/
157void SEED::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
159
160 prefetch_arrays(SEED_S0, SEED_S1);
161
162 while(blocks >= 2) {
163 uint32_t B00 = load_be<uint32_t>(in, 0);
164 uint32_t B01 = load_be<uint32_t>(in, 1);
165 uint32_t B02 = load_be<uint32_t>(in, 2);
166 uint32_t B03 = load_be<uint32_t>(in, 3);
167 uint32_t B10 = load_be<uint32_t>(in, 4);
168 uint32_t B11 = load_be<uint32_t>(in, 5);
169 uint32_t B12 = load_be<uint32_t>(in, 6);
170 uint32_t B13 = load_be<uint32_t>(in, 7);
171
172 for(size_t j = 0; j != 16; j += 2) {
173 uint32_t T00 = B02 ^ m_K[30 - 2 * j];
174 uint32_t T10 = B12 ^ m_K[30 - 2 * j];
175 uint32_t T01 = SEED_G(B02 ^ B03 ^ m_K[31 - 2 * j]);
176 uint32_t T11 = SEED_G(B12 ^ B13 ^ m_K[31 - 2 * j]);
177 T00 = SEED_G(T01 + T00);
178 T10 = SEED_G(T11 + T10);
179 T01 = SEED_G(T01 + T00);
180 T11 = SEED_G(T11 + T10);
181 B01 ^= T01;
182 B11 ^= T11;
183 B00 ^= T00 + T01;
184 B10 ^= T10 + T11;
185
186 T00 = B00 ^ m_K[28 - 2 * j];
187 T10 = B10 ^ m_K[28 - 2 * j];
188 T01 = SEED_G(B00 ^ B01 ^ m_K[29 - 2 * j]);
189 T11 = SEED_G(B10 ^ B11 ^ m_K[29 - 2 * j]);
190 T00 = SEED_G(T01 + T00);
191 T10 = SEED_G(T11 + T10);
192 T01 = SEED_G(T01 + T00);
193 T11 = SEED_G(T11 + T10);
194 B03 ^= T01;
195 B13 ^= T11;
196 B02 ^= T00 + T01;
197 B12 ^= T10 + T11;
198 }
199
200 store_be(out, B02, B03, B00, B01, B12, B13, B10, B11);
201
202 in += 2 * BLOCK_SIZE;
203 out += 2 * BLOCK_SIZE;
204 blocks -= 2;
205 }
206
207 for(size_t i = 0; i != blocks; ++i) {
208 uint32_t B0 = load_be<uint32_t>(in, 0);
209 uint32_t B1 = load_be<uint32_t>(in, 1);
210 uint32_t B2 = load_be<uint32_t>(in, 2);
211 uint32_t B3 = load_be<uint32_t>(in, 3);
212
213 for(size_t j = 0; j != 16; j += 2) {
214 uint32_t T0 = B2 ^ m_K[30 - 2 * j];
215 uint32_t T1 = SEED_G(B2 ^ B3 ^ m_K[31 - 2 * j]);
216 T0 = SEED_G(T1 + T0);
217 T1 = SEED_G(T1 + T0);
218 B1 ^= T1;
219 B0 ^= T0 + T1;
220
221 T0 = B0 ^ m_K[28 - 2 * j];
222 T1 = SEED_G(B0 ^ B1 ^ m_K[29 - 2 * j]);
223 T0 = SEED_G(T1 + T0);
224 T1 = SEED_G(T1 + T0);
225 B3 ^= T1;
226 B2 ^= T0 + T1;
227 }
228
229 store_be(out, B2, B3, B0, B1);
230
231 in += BLOCK_SIZE;
232 out += BLOCK_SIZE;
233 }
234}
235
237 return !m_K.empty();
238}
239
240/*
241* SEED Key Schedule
242*/
243void SEED::key_schedule(std::span<const uint8_t> key) {
244 const uint32_t RC[16] = {0x9E3779B9,
245 0x3C6EF373,
246 0x78DDE6E6,
247 0xF1BBCDCC,
248 0xE3779B99,
249 0xC6EF3733,
250 0x8DDE6E67,
251 0x1BBCDCCF,
252 0x3779B99E,
253 0x6EF3733C,
254 0xDDE6E678,
255 0xBBCDCCF1,
256 0x779B99E3,
257 0xEF3733C6,
258 0xDE6E678D,
259 0xBCDCCF1B};
260
262
263 for(size_t i = 0; i != 4; ++i) {
264 WK[i] = load_be<uint32_t>(key.data(), i);
265 }
266
267 m_K.resize(32);
268
269 for(size_t i = 0; i != 16; i += 2) {
270 m_K[2 * i] = SEED_G(WK[0] + WK[2] - RC[i]);
271 m_K[2 * i + 1] = SEED_G(WK[1] - WK[3] + RC[i]) ^ m_K[2 * i];
272
273 uint32_t T = (WK[0] & 0xFF) << 24;
274 WK[0] = (WK[0] >> 8) | (get_byte<3>(WK[1]) << 24);
275 WK[1] = (WK[1] >> 8) | T;
276
277 m_K[2 * i + 2] = SEED_G(WK[0] + WK[2] - RC[i + 1]);
278 m_K[2 * i + 3] = SEED_G(WK[1] - WK[3] + RC[i + 1]) ^ m_K[2 * i + 2];
279
280 T = get_byte<0>(WK[3]);
281 WK[3] = (WK[3] << 8) | get_byte<0>(WK[2]);
282 WK[2] = (WK[2] << 8) | T;
283 }
284}
285
287 zap(m_K);
288}
289
290} // namespace Botan
void encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const override
Definition seed.cpp:74
bool has_keying_material() const override
Definition seed.cpp:236
void decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const override
Definition seed.cpp:157
void clear() override
Definition seed.cpp:286
#define BOTAN_FORCE_INLINE
Definition compiler.h:87
constexpr uint8_t get_byte(T input)
Definition loadstor.h:79
void zap(std::vector< T, Alloc > &vec)
Definition secmem.h:134
T prefetch_arrays(T(&... arr)[Ns]) noexcept
Definition prefetch.h:35
std::vector< T, secure_allocator< T > > secure_vector
Definition secmem.h:69
constexpr auto store_be(ParamTs &&... params)
Definition loadstor.h:745
constexpr auto load_be(ParamTs &&... params)
Definition loadstor.h:504