Botan 3.10.0
Crypto and TLS for C&
hybrid_public_key.cpp
Go to the documentation of this file.
1/**
2* Composite key pair that exposes the Public/Private key API but combines
3* multiple key agreement schemes into a hybrid algorithm.
4*
5* (C) 2023 Jack Lloyd
6* 2023 Fabian Albert, René Meusel - Rohde & Schwarz Cybersecurity
7*
8* Botan is released under the Simplified BSD License (see license.txt)
9*/
10
11#include <botan/internal/hybrid_public_key.h>
12
13#include <botan/ec_group.h>
14#include <botan/pk_algs.h>
15#include <botan/internal/hybrid_kem_ops.h>
16#include <botan/internal/kex_to_kem_adapter.h>
17#include <botan/internal/stl_util.h>
18#include <sstream>
19
20namespace Botan::TLS {
21
22namespace {
23
24std::vector<std::pair<std::string, std::string>> algorithm_specs_for_group(Group_Params group) {
25 BOTAN_ARG_CHECK(group.is_pqc_hybrid(), "Group is not hybrid");
26
27 switch(group.code()) {
28 // draft-kwiatkowski-tls-ecdhe-mlkem-02 Section 3
29 //
30 // NIST's special publication 800-56Cr2 approves the usage of HKDF with
31 // two distinct shared secrets, with the condition that the first one
32 // is computed by a FIPS-approved key-establishment scheme. FIPS also
33 // requires a certified implementation of the scheme, which will remain
34 // more ubiqutous for secp256r1 in the coming years.
35 //
36 // For this reason we put the ML-KEM-768 shared secret first in
37 // X25519MLKEM768, and the secp256r1 shared secret first in
38 // SecP256r1MLKEM768.
39 case Group_Params::HYBRID_X25519_ML_KEM_768:
40 return {{"ML-KEM", "ML-KEM-768"}, {"X25519", "X25519"}};
41 case Group_Params::HYBRID_SECP256R1_ML_KEM_768:
42 return {{"ECDH", "secp256r1"}, {"ML-KEM", "ML-KEM-768"}};
43 case Group_Params::HYBRID_SECP384R1_ML_KEM_1024:
44 return {{"ECDH", "secp384r1"}, {"ML-KEM", "ML-KEM-1024"}};
45
46 case Group_Params::HYBRID_X25519_eFRODOKEM_640_SHAKE_OQS:
47 return {{"X25519", "X25519"}, {"FrodoKEM", "eFrodoKEM-640-SHAKE"}};
48 case Group_Params::HYBRID_X25519_eFRODOKEM_640_AES_OQS:
49 return {{"X25519", "X25519"}, {"FrodoKEM", "eFrodoKEM-640-AES"}};
50 case Group_Params::HYBRID_X448_eFRODOKEM_976_SHAKE_OQS:
51 return {{"X448", "X448"}, {"FrodoKEM", "eFrodoKEM-976-SHAKE"}};
52 case Group_Params::HYBRID_X448_eFRODOKEM_976_AES_OQS:
53 return {{"X448", "X448"}, {"FrodoKEM", "eFrodoKEM-976-AES"}};
54
55 case Group_Params::HYBRID_SECP256R1_eFRODOKEM_640_SHAKE_OQS:
56 return {{"ECDH", "secp256r1"}, {"FrodoKEM", "eFrodoKEM-640-SHAKE"}};
57 case Group_Params::HYBRID_SECP256R1_eFRODOKEM_640_AES_OQS:
58 return {{"ECDH", "secp256r1"}, {"FrodoKEM", "eFrodoKEM-640-AES"}};
59
60 case Group_Params::HYBRID_SECP384R1_eFRODOKEM_976_SHAKE_OQS:
61 return {{"ECDH", "secp384r1"}, {"FrodoKEM", "eFrodoKEM-976-SHAKE"}};
62 case Group_Params::HYBRID_SECP384R1_eFRODOKEM_976_AES_OQS:
63 return {{"ECDH", "secp384r1"}, {"FrodoKEM", "eFrodoKEM-976-AES"}};
64
65 case Group_Params::HYBRID_SECP521R1_eFRODOKEM_1344_SHAKE_OQS:
66 return {{"ECDH", "secp521r1"}, {"FrodoKEM", "eFrodoKEM-1344-SHAKE"}};
67 case Group_Params::HYBRID_SECP521R1_eFRODOKEM_1344_AES_OQS:
68 return {{"ECDH", "secp521r1"}, {"FrodoKEM", "eFrodoKEM-1344-AES"}};
69
70 default:
71 return {};
72 }
73}
74
75std::vector<AlgorithmIdentifier> algorithm_identifiers_for_group(Group_Params group) {
76 BOTAN_ASSERT_NOMSG(group.is_pqc_hybrid());
77
78 const auto specs = algorithm_specs_for_group(group);
79 std::vector<AlgorithmIdentifier> result;
80 result.reserve(specs.size());
81
82 // This maps the string-based algorithm specs hard-coded above to OID-based
83 // AlgorithmIdentifier objects. The mapping is needed because
84 // load_public_key() depends on those while create_private_key() requires the
85 // strong-based spec.
86 //
87 // TODO: This is inconvenient, confusing and error-prone. Find a better way
88 // to load arbitrary public keys.
89 for(const auto& spec : specs) {
90 if(spec.first == "ECDH") {
91 result.push_back(AlgorithmIdentifier("ECDH", EC_Group::from_name(spec.second).DER_encode()));
92 } else {
93 result.push_back(AlgorithmIdentifier(spec.second, AlgorithmIdentifier::USE_EMPTY_PARAM));
94 }
95 }
96
97 return result;
98}
99
100std::vector<size_t> public_key_lengths_for_group(Group_Params group) {
101 BOTAN_ASSERT_NOMSG(group.is_pqc_hybrid());
102
103 // This duplicates information of the algorithm internals.
104 //
105 // TODO: Find a way to expose important algorithm constants globally
106 // in the library, to avoid violating the DRY principle.
107 switch(group.code()) {
108 case Group_Params::HYBRID_X25519_ML_KEM_768:
109 return {1184, 32};
110 case Group_Params::HYBRID_SECP256R1_ML_KEM_768:
111 return {65, 1184};
112 case Group_Params::HYBRID_SECP384R1_ML_KEM_1024:
113 return {97, 1568};
114
115 case Group_Params::HYBRID_X25519_eFRODOKEM_640_SHAKE_OQS:
116 case Group_Params::HYBRID_X25519_eFRODOKEM_640_AES_OQS:
117 return {32, 9616};
118
119 case Group_Params::HYBRID_X448_eFRODOKEM_976_SHAKE_OQS:
120 case Group_Params::HYBRID_X448_eFRODOKEM_976_AES_OQS:
121 return {56, 15632};
122
123 case Group_Params::HYBRID_SECP256R1_eFRODOKEM_640_SHAKE_OQS:
124 case Group_Params::HYBRID_SECP256R1_eFRODOKEM_640_AES_OQS:
125 return {65, 9616};
126
127 case Group_Params::HYBRID_SECP384R1_eFRODOKEM_976_SHAKE_OQS:
128 case Group_Params::HYBRID_SECP384R1_eFRODOKEM_976_AES_OQS:
129 return {97, 15632};
130
131 case Group_Params::HYBRID_SECP521R1_eFRODOKEM_1344_SHAKE_OQS:
132 case Group_Params::HYBRID_SECP521R1_eFRODOKEM_1344_AES_OQS:
133 return {133, 21520};
134
135 default:
136 return {};
137 }
138}
139
140std::vector<std::unique_ptr<Public_Key>> convert_kex_to_kem_pks(std::vector<std::unique_ptr<Public_Key>> pks) {
141 std::vector<std::unique_ptr<Public_Key>> result;
142 std::transform(pks.begin(), pks.end(), std::back_inserter(result), [](auto& key) -> std::unique_ptr<Public_Key> {
143 BOTAN_ARG_CHECK(key != nullptr, "Public key list contains a nullptr");
144 if(key->supports_operation(PublicKeyOperation::KeyAgreement) &&
145 !key->supports_operation(PublicKeyOperation::KeyEncapsulation)) {
146 return std::make_unique<KEX_to_KEM_Adapter_PublicKey>(std::move(key));
147 } else {
148 return std::move(key);
149 }
150 });
151 return result;
152}
153
154std::vector<std::unique_ptr<Private_Key>> convert_kex_to_kem_sks(std::vector<std::unique_ptr<Private_Key>> sks) {
155 std::vector<std::unique_ptr<Private_Key>> result;
156 std::transform(sks.begin(), sks.end(), std::back_inserter(result), [](auto& key) -> std::unique_ptr<Private_Key> {
157 BOTAN_ARG_CHECK(key != nullptr, "Private key list contains a nullptr");
158 if(key->supports_operation(PublicKeyOperation::KeyAgreement) &&
159 !key->supports_operation(PublicKeyOperation::KeyEncapsulation)) {
160 auto* ka_key = dynamic_cast<PK_Key_Agreement_Key*>(key.get());
161 BOTAN_ASSERT_NONNULL(ka_key);
162 (void)key.release();
163 return std::make_unique<KEX_to_KEM_Adapter_PrivateKey>(std::unique_ptr<PK_Key_Agreement_Key>(ka_key));
164 } else {
165 return std::move(key);
166 }
167 });
168 return result;
169}
170
171template <typename KEM_Operation>
172void concat_secret_combiner(KEM_Operation& op,
173 std::span<uint8_t> out_shared_secret,
174 const std::vector<secure_vector<uint8_t>>& shared_secrets,
175 size_t desired_shared_key_len) {
176 BOTAN_ARG_CHECK(out_shared_secret.size() == op.shared_key_length(desired_shared_key_len),
177 "Invalid output buffer size");
178
179 BufferStuffer shared_secret_stuffer(out_shared_secret);
180 for(const auto& ss : shared_secrets) {
181 shared_secret_stuffer.append(ss);
182 }
183 BOTAN_ASSERT_NOMSG(shared_secret_stuffer.full());
184}
185
186template <typename KEM_Operation>
187size_t concat_shared_key_length(const std::vector<KEM_Operation>& operation) {
188 return reduce(
189 operation, size_t(0), [](size_t acc, const auto& op) { return acc + op.shared_key_length(0 /*no KDF*/); });
190}
191
192/// Encryptor that simply concatenates the multiple shared secrets
193class Hybrid_TLS_KEM_Encryptor final : public KEM_Encryption_with_Combiner {
194 public:
195 Hybrid_TLS_KEM_Encryptor(const std::vector<std::unique_ptr<Public_Key>>& public_keys, std::string_view provider) :
196 KEM_Encryption_with_Combiner(public_keys, provider) {}
197
198 void combine_shared_secrets(std::span<uint8_t> out_shared_secret,
199 const std::vector<secure_vector<uint8_t>>& shared_secrets,
200 const std::vector<std::vector<uint8_t>>& /*ciphertexts*/,
201 size_t desired_shared_key_len,
202 std::span<const uint8_t> /*salt*/) override {
203 concat_secret_combiner(*this, out_shared_secret, shared_secrets, desired_shared_key_len);
204 }
205
206 size_t shared_key_length(size_t /*desired_shared_key_len*/) const override {
207 return concat_shared_key_length(encryptors());
208 }
209};
210
211/// Decryptor that simply concatenates the multiple shared secrets
212class Hybrid_TLS_KEM_Decryptor final : public KEM_Decryption_with_Combiner {
213 public:
214 Hybrid_TLS_KEM_Decryptor(const std::vector<std::unique_ptr<Private_Key>>& private_keys,
215 RandomNumberGenerator& rng,
216 const std::string_view provider) :
217 KEM_Decryption_with_Combiner(private_keys, rng, provider) {}
218
219 void combine_shared_secrets(std::span<uint8_t> out_shared_secret,
220 const std::vector<secure_vector<uint8_t>>& shared_secrets,
221 const std::vector<std::vector<uint8_t>>& /*ciphertexts*/,
222 size_t desired_shared_key_len,
223 std::span<const uint8_t> /*salt*/) override {
224 concat_secret_combiner(*this, out_shared_secret, shared_secrets, desired_shared_key_len);
225 }
226
227 size_t shared_key_length(size_t /*desired_shared_key_len*/) const override {
228 return concat_shared_key_length(decryptors());
229 }
230};
231
232} // namespace
233
234std::unique_ptr<Hybrid_KEM_PublicKey> Hybrid_KEM_PublicKey::load_for_group(
235 Group_Params group, std::span<const uint8_t> concatenated_public_keys) {
236 const auto public_key_lengths = public_key_lengths_for_group(group);
237 auto alg_ids = algorithm_identifiers_for_group(group);
238 BOTAN_ASSERT_NOMSG(public_key_lengths.size() == alg_ids.size());
239
240 const auto expected_public_keys_length =
241 reduce(public_key_lengths, size_t(0), [](size_t acc, size_t len) { return acc + len; });
242 if(expected_public_keys_length != concatenated_public_keys.size()) {
243 throw Decoding_Error("Concatenated public values have an unexpected length");
244 }
245
246 BufferSlicer public_key_slicer(concatenated_public_keys);
247 std::vector<std::unique_ptr<Public_Key>> pks;
248 pks.reserve(alg_ids.size());
249 for(size_t idx = 0; idx < alg_ids.size(); ++idx) {
250 pks.emplace_back(load_public_key(alg_ids[idx], public_key_slicer.take(public_key_lengths[idx])));
251 }
252 BOTAN_ASSERT_NOMSG(public_key_slicer.empty());
253 return std::make_unique<Hybrid_KEM_PublicKey>(std::move(pks));
254}
255
256Hybrid_KEM_PublicKey::Hybrid_KEM_PublicKey(std::vector<std::unique_ptr<Public_Key>> pks) :
257 Hybrid_PublicKey(convert_kex_to_kem_pks(std::move(pks))) {}
258
259Hybrid_KEM_PrivateKey::Hybrid_KEM_PrivateKey(std::vector<std::unique_ptr<Private_Key>> sks) :
260 Hybrid_PublicKey(convert_kex_to_kem_pks(extract_public_keys(sks))),
261 Hybrid_PrivateKey(convert_kex_to_kem_sks(std::move(sks))) {}
262
264 std::ostringstream algo_name("Hybrid(");
265 for(size_t i = 0; i < public_keys().size(); ++i) {
266 if(i > 0) {
267 algo_name << ",";
268 }
269 algo_name << public_keys().at(i)->algo_name();
270 }
271 algo_name << ")";
272 return algo_name.str();
273}
274
276 throw Botan::Not_Implemented("Hybrid keys don't have an algorithm identifier");
277}
278
279std::vector<uint8_t> Hybrid_KEM_PublicKey::public_key_bits() const {
280 return raw_public_key_bits();
281}
282
283std::vector<uint8_t> Hybrid_KEM_PublicKey::raw_public_key_bits() const {
284 // draft-ietf-tls-hybrid-design-06 3.2
285 // The values are directly concatenated, without any additional encoding
286 // or length fields; this assumes that the representation and length of
287 // elements is fixed once the algorithm is fixed. If concatenation were
288 // to be used with values that are not fixed-length, a length prefix or
289 // other unambiguous encoding must be used to ensure that the composition
290 // of the two values is injective.
291 return reduce(public_keys(), std::vector<uint8_t>(), [](auto pkb, const auto& key) {
292 return concat(pkb, key->raw_public_key_bits());
293 });
294}
295
296std::unique_ptr<Private_Key> Hybrid_KEM_PublicKey::generate_another(RandomNumberGenerator& rng) const {
297 return std::make_unique<Hybrid_KEM_PrivateKey>(generate_other_sks_from_pks(rng));
298}
299
300std::unique_ptr<Botan::PK_Ops::KEM_Encryption> Hybrid_KEM_PublicKey::create_kem_encryption_op(
301 std::string_view params, std::string_view provider) const {
302 if(params != "Raw" && !params.empty()) {
303 throw Botan::Invalid_Argument("Hybrid KEM encryption does not support KDFs");
304 }
305 return std::make_unique<Hybrid_TLS_KEM_Encryptor>(public_keys(), provider);
306}
307
308std::unique_ptr<Hybrid_KEM_PrivateKey> Hybrid_KEM_PrivateKey::generate_from_group(Group_Params group,
310 const auto algo_spec = algorithm_specs_for_group(group);
311 std::vector<std::unique_ptr<Private_Key>> private_keys;
312 private_keys.reserve(algo_spec.size());
313 for(const auto& spec : algo_spec) {
314 private_keys.push_back(create_private_key(spec.first, rng, spec.second));
315 }
316 return std::make_unique<Hybrid_KEM_PrivateKey>(std::move(private_keys));
317}
318
319std::unique_ptr<Botan::PK_Ops::KEM_Decryption> Hybrid_KEM_PrivateKey::create_kem_decryption_op(
320 RandomNumberGenerator& rng, std::string_view params, std::string_view provider) const {
321 if(params != "Raw" && !params.empty()) {
322 throw Botan::Invalid_Argument("Hybrid KEM decryption does not support KDFs");
323 }
324 return std::make_unique<Hybrid_TLS_KEM_Decryptor>(private_keys(), rng, provider);
325}
326
327} // namespace Botan::TLS
#define BOTAN_ASSERT_NOMSG(expr)
Definition assert.h:75
#define BOTAN_ARG_CHECK(expr, msg)
Definition assert.h:33
bool empty() const
Definition stl_util.h:120
std::span< const uint8_t > take(const size_t count)
Definition stl_util.h:89
static EC_Group from_name(std::string_view name)
Definition ec_group.cpp:384
std::vector< uint8_t > DER_encode(EC_Group_Encoding form) const
Definition ec_group.cpp:640
const std::vector< std::unique_ptr< Private_Key > > & private_keys() const
Definition hybrid_kem.h:119
Hybrid_PrivateKey(const Hybrid_PrivateKey &)=delete
static std::vector< std::unique_ptr< Public_Key > > extract_public_keys(const std::vector< std::unique_ptr< Private_Key > > &private_keys)
Hybrid_PublicKey(std::vector< std::unique_ptr< Public_Key > > public_keys)
Constructor for a list of multiple KEM public keys.
std::vector< std::unique_ptr< Private_Key > > generate_other_sks_from_pks(RandomNumberGenerator &rng) const
Helper function for generate_another. Generate a new private key for each public key in this hybrid k...
const std::vector< std::unique_ptr< Public_Key > > & public_keys() const
Definition hybrid_kem.h:66
static std::unique_ptr< Hybrid_KEM_PrivateKey > generate_from_group(Group_Params group, RandomNumberGenerator &rng)
std::unique_ptr< PK_Ops::KEM_Decryption > create_kem_decryption_op(RandomNumberGenerator &rng, std::string_view params, std::string_view provider="base") const override
Hybrid_KEM_PrivateKey(std::vector< std::unique_ptr< Private_Key > > private_keys)
AlgorithmIdentifier algorithm_identifier() const override
std::vector< uint8_t > raw_public_key_bits() const override
Hybrid_KEM_PublicKey(std::vector< std::unique_ptr< Public_Key > > pks)
static std::unique_ptr< Hybrid_KEM_PublicKey > load_for_group(Group_Params group, std::span< const uint8_t > concatenated_public_values)
std::unique_ptr< Private_Key > generate_another(RandomNumberGenerator &rng) const final
std::string algo_name() const override
std::unique_ptr< PK_Ops::KEM_Encryption > create_kem_encryption_op(std::string_view params, std::string_view provider="base") const override
std::vector< uint8_t > public_key_bits() const override
std::unique_ptr< Private_Key > create_private_key(std::string_view alg_name, RandomNumberGenerator &rng, std::string_view params, std::string_view provider)
Definition pk_algs.cpp:487
RetT reduce(const std::vector< KeyT > &keys, RetT acc, ReducerT reducer)
Definition stl_util.h:38
constexpr auto concat(Rs &&... ranges)
Definition stl_util.h:254
std::unique_ptr< Public_Key > load_public_key(const AlgorithmIdentifier &alg_id, std::span< const uint8_t > key_bits)
Definition pk_algs.cpp:124