Building The Library¶
This document describes how to build Botan on Unix/POSIX and Windows systems. The POSIX oriented descriptions should apply to most common Unix systems (including Apple macOS/Darwin), along with POSIX-ish systems like QNX.
Note
Botan is available already in nearly all packaging systems so you probably only need to build from source if you need unusual options or are building for an old system which has out of date packages.
Currently systems such as VMS, OS/390, and OS/400 are not supported by the build system, primarily due to lack of access and interest. Please contact the maintainer if you would like to build Botan on such a system.
Botan’s build is controlled by configure.py, which is a Python script. Python 3.x or later is required.
For the impatient, this works for most systems:
$ ./configure.py [--prefix=/some/directory]
$ make
$ make install
Or using nmake
, if you’re compiling on Windows with Visual C++. On
platforms that do not understand the ‘#!’ convention for beginning
script files, or that have Python installed in an unusual spot, you
might need to prefix the configure.py
command with python3
or
/path/to/python3
:
$ python3 ./configure.py [arguments]
Configuring the Build¶
The first step is to run configure.py
, which is a Python script
that creates various directories, config files, and a Makefile for
building everything. This script should run under a vanilla install of
Python 3.x.
The script will attempt to guess what kind of system you are trying to
compile for (and will print messages telling you what it guessed).
You can override this process by passing the options --cc
,
--os
, and --cpu
.
You can pass basically anything reasonable with --cpu
: the script
knows about a large number of different architectures, their
sub-models, and common aliases for them. You should only select the
64-bit version of a CPU (such as “sparc64” or “mips64”) if your
operating system knows how to handle 64-bit object code - a 32-bit
kernel on a 64-bit CPU will generally not like 64-bit code.
By default the script tries to figure out what will work on your system, and use that. It will print a display at the end showing which modules have and have not been enabled. For instance on one system we might see lines like:
INFO: Skipping (dependency failure): certstor_sqlite3 sessions_sqlite3
INFO: Skipping (incompatible CPU): aes_power8
INFO: Skipping (incompatible OS): darwin_secrandom getentropy win32_stats
INFO: Skipping (incompatible compiler): aes_armv8 pmull sha1_armv8 sha2_32_armv8
INFO: Skipping (no enabled compression schemes): compression
INFO: Skipping (requires external dependency): boost bzip2 lzma sqlite3 tpm zlib
The ones that are skipped because they are require an external
dependency have to be explicitly asked for, because they rely on third
party libraries which your system might not have or that you might not
want the resulting binary to depend on. For instance to enable zlib
support, add --with-zlib
to your invocation of configure.py
.
All available modules can be listed with --list-modules
.
Some modules may be marked as ‘deprecated’ or ‘experimental’. Deprecated
modules are available and built by default, but they will be removed in a
future release of the library. Use --disable-deprecated-features
to
disable all of these modules or --disable-modules=MODS
for finer grained
control. Experimental modules are under active development and not built
by default. Their API may change in future minor releases. Applications may
still enable and use such modules using --enable-modules=MODS
or using
--enable-experimental-features
to enable all experimental features.
You can control which algorithms and modules are built using the
options --enable-modules=MODS
and --disable-modules=MODS
, for
instance --enable-modules=zlib
and --disable-modules=xtea,idea
.
Modules not listed on the command line will simply be loaded if needed
or if configured to load by default. If you use --minimized-build
,
only the most core modules will be included; you can then explicitly
enable things that you want to use with --enable-modules
. This is
useful for creating a minimal build targeting to a specific
application, especially in conjunction with the amalgamation option;
see The Amalgamation Build and Minimized Builds.
For instance:
$ ./configure.py --minimized-build --enable-modules=rsa,eme_oaep,emsa_pssr
will set up a build that only includes RSA, OAEP, PSS along with any required dependencies. Note that a minimized build does not by default include any random number generator, which is needed for example to generate keys, nonces and IVs. See Random Number Generators on which random number generators are available.
Common Build Targets¶
Build everthing that is configured:
$ make all
Build the unit test binary (./botan-test
to run):
$ make tests
Build and run the tests:
$ make check
Build the documentation (Doxygen API reference and Sphinx handbook):
$ make docs
Install the library:
$ make install
Remove all generated artefacts:
$ make clean
Cross Compiling¶
Cross compiling refers to building software on one type of host (say Linux x86-64) but creating a binary for some other type (say MinGW x86-32). This is completely supported by the build system. To extend the example, we must tell configure.py to use the MinGW tools:
$ ./configure.py --os=mingw --cpu=x86_32 --cc-bin=i686-w64-mingw32-g++ --ar-command=i686-w64-mingw32-ar
...
$ make
...
$ file botan.exe
botan.exe: PE32 executable (console) Intel 80386, for MS Windows
Note
For whatever reason, some distributions of MinGW lack support for
threading or mutexes in the C++ standard library. You can work around
this by disabling thread support using --without-os-feature=threads
You can also specify the alternate tools by setting the CXX and AR environment variables (instead of the –cc-bin and –ar-command options), as is commonly done with autoconf builds.
On Unix¶
The basic build procedure on Unix and Unix-like systems is:
$ ./configure.py [various options]
$ make
$ make check
If the tests look OK, install:
$ make install
On Unix systems the script will default to using GCC; use --cc
if
you want something else. For instance use --cc=clang
for Clang.
The make install
target has a default directory in which it will
install Botan (typically /usr/local
). You can override this by
using the --prefix
argument to configure.py
, like so:
$ ./configure.py --prefix=/opt <other arguments>
On some systems shared libraries might not be immediately visible to
the runtime linker. For example, on Linux you may have to edit
/etc/ld.so.conf
and run ldconfig
(as root) in order for new
shared libraries to be picked up by the linker. An alternative is to
set your LD_LIBRARY_PATH
shell variable to include the directory
that the Botan libraries were installed into.
On macOS¶
A build on macOS works much like that on any other Unix-like system.
To build a universal binary for macOS, for older macOs releases, you need to set some additional build flags. Do this with the configure.py flag –cc-abi-flags:
--cc-abi-flags="-force_cpusubtype_ALL -mmacosx-version-min=10.4 -arch i386 -arch ppc"
for mac M1 on arm64, you can build the x86_64 arch version via Rosetta separately. Do this with with arch -x86_64 configure.py –library-suffix=-x86_64 Then using lipo to create a fat binary. lipo -create libbotan-arm64.dylib libbotan-x86_64.dylib -o libbotan.dylib
On Windows¶
Note
The earliest versions of Windows supported are Windows 7 and Windows 2008 R2
You need to have a copy of Python installed, and have both Python and your chosen compiler in your path. Open a command shell (or the SDK shell), and run:
$ python3 configure.py --cc=msvc --os=windows
$ nmake
$ nmake check
$ nmake install
Micosoft’s nmake
does not support building multiple jobs in parallel, which
is unfortunate when building on modern multicore machines. It is possible to use
the (somewhat unmaintained) Jom build tool, which is
a nmake
compatible build system that supports parallel builds. Alternately,
starting in Botan 3.2, there is additionally support for using the ninja
build tool as an alternative to nmake
:
$ python3 configure.py --cc=msvc --os=windows --build-tool=ninja
$ ninja
$ ninja check
$ ninja install
For MinGW, use:
$ python3 configure.py --cc=gcc --os=mingw
$ make
By default the install target will be C:\botan
; you can modify
this with the --prefix
option.
When building your applications, all you have to do is tell the
compiler to look for both include files and library files in
C:\botan
, and it will find both. Or you can move them to a
place where they will be in the default compiler search paths (consult
your documentation and/or local expert for details).
Ninja Support¶
Starting in Botan 3.2, there is additionally support for the ninja build system.
This is particularly useful on Windows as there the default build tool nmake
does not support parallel jobs. The ninja
based build also works on Unix and
macOs systems.
Support for ninja
is still new and there are probably some rough edges.
For iOS using XCode¶
For iOS, you typically build for 3 architectures: armv7 (32 bit, older iOS devices), armv8-a (64 bit, recent iOS devices) and x86_64 for the iPhone simulator. You can build for these 3 architectures and then create a universal binary containing code for all of these architectures, so you can link to Botan for the simulator as well as for an iOS device.
To cross compile for armv7, configure and make with:
$ ./configure.py --os=ios --prefix="iphone-32" --cpu=armv7 --cc=clang \
--cc-abi-flags="-arch armv7"
$ xcrun --sdk iphoneos make install
To cross compile for armv8-a, configure and make with:
$ ./configure.py --os=ios --prefix="iphone-64" --cpu=armv8-a --cc=clang \
--cc-abi-flags="-arch arm64"
$ xcrun --sdk iphoneos make install
To compile for the iPhone Simulator, configure and make with:
$ ./configure.py --os=ios --prefix="iphone-simulator" --cpu=x86_64 --cc=clang \
--cc-abi-flags="-arch x86_64"
$ xcrun --sdk iphonesimulator make install
Now create the universal binary and confirm the library is compiled for all three architectures:
$ xcrun --sdk iphoneos lipo -create -output libbotan-2.a \
iphone-32/lib/libbotan-2.a \
iphone-64/lib/libbotan-2.a \
iphone-simulator/lib/libbotan-2.a
$ xcrun --sdk iphoneos lipo -info libbotan-2.a
Architectures in the fat file: libbotan-2.a are: armv7 x86_64 armv64
The resulting static library can be linked to your app in Xcode.
For Android¶
Modern versions of Android NDK use Clang and support C++20. Simply
configure using the appropriate NDK compiler and ar
(ar
only
needed if building the static library). Here we build for Aarch64
targeting Android API 28:
$ export AR=/opt/android-ndk/toolchains/llvm/prebuilt/linux-x86_64/bin/llvm-ar
$ export CXX=/opt/android-ndk/toolchains/llvm/prebuilt/linux-x86_64/bin/aarch64-linux-android28-clang++
$ ./configure.py --os=android --cc=clang --cpu=arm64
$ make
If you are building for mobile development consider restricting the build to only what you need (see Minimized Builds)
Docker¶
To build android version, there is the possibility to use the docker way:
sudo ANDROID_SDK_VER=29 ANDROID_ARCH=aarch64 src/scripts/docker-android.sh
This will produce the docker-builds/android folder containing each architecture compiled.
Emscripten (WebAssembly)¶
To build for WebAssembly using Emscripten, try:
./configure.py --cpu=wasm --os=emscripten
make
This will produce HTML files botan-test.html
and botan.html
along with a static archive libbotan-3.a
which can be linked with
other modules.
Supporting Older Distros¶
Some “stable” distributions, notably RHEL/CentOS, ship very obsolete versions of binutils, which do not support more recent CPU instructions. As a result when building you may receive errors like:
Error: no such instruction: `sha256rnds2 %xmm0,%xmm4,%xmm3'
Depending on how old your binutils is, you may need to disable BMI2,
AVX2, SHA-NI, and/or RDSEED. These can be disabled by passing the
flags --disable-bmi2
, --disable-avx2
, --disable-sha-ni
,
and --disable-rdseed
to configure.py
.
Building Applications¶
Unix¶
Botan usually links in several different system libraries (such as
librt
or libz
), depending on which modules are configured at
compile time. In many environments, particularly ones using static
libraries, an application has to link against the same libraries as
Botan for the linking step to succeed. But how does it figure out what
libraries it is linked against?
The answer is to ask the botan
command line tool using
the config
and version
commands.
botan version
: Print the Botan version number.
botan config prefix
: If no argument, print the prefix where Botan is
installed (such as /opt
or /usr/local
).
botan config cflags
: Print options that should be passed to the
compiler whenever a C++ file is compiled. Typically this is used for
setting include paths.
botan config libs
: Print options for which libraries to link to
(this will include a reference to the botan library itself).
Your Makefile
can run botan config
and get the options
necessary for getting your application to compile and link, regardless
of whatever crazy libraries Botan might be linked against.
Windows¶
No special help exists for building applications on Windows. However, given that typically Windows software is distributed as binaries, this is less of a problem - only the developer needs to worry about it. As long as they can remember where they installed Botan, they just have to set the appropriate flags in their Makefile/project file.
CMake¶
Starting in Botan 3.3.0 we provide a botan-config.cmake
module to
discover the installed library binaries and headers. This hooks into
CMake’s find_package()
and comes with common features like version
detection. Also, library consumers may specify which botan modules they
require in find_package()
.
Examples:
find_package(Botan 3.3.0)
find_package(Botan 3.3.0 COMPONENTS rsa ecdsa tls13)
find_package(Botan 3.3.0 OPTIONAL_COMPONENTS tls13_pqc)
Language Wrappers¶
Building the Python wrappers¶
The Python wrappers for Botan use ctypes and the C89 API so no special build step is required, just import botan3.py
See Python Bindings for more information about the Python bindings.
Minimized Builds¶
Many developers wish to configure a minimized build which contains only the
specific features their application will use. In general this is straighforward:
use --minimized-build
plus --enable-modules=
to enable the specific modules
you wish to use. Any such configurations should build and pass the tests; if you
encounter a case where it doesn’t please file an issue.
The only trick is knowing which features you want to enable. The most common
difficulty comes with entropy sources. By default, none are enabled, which means
if you attempt to use AutoSeeded_RNG
, it will fail. The easiest resolution
is to also enable system_rng
which can act as either an entropy source or
used directly as the RNG.
If you are building for x86, ARM, or POWER, it can be beneficial to enable
hardware support for the relevant instruction sets with modules such as
aes_ni
and clmul
for x86, or aes_armv8
, pmull
, and
sha2_32_armv8
on ARMv8. SIMD optimizations such as chacha_avx2
also can
provide substantial performance improvements.
Note
In a future release, hardware specific modules will be enabled by default if the underlying “base” module is enabled.
If you are building a TLS application, you may (or may not) want to include
tls_cbc
which enables support for CBC ciphersuites. If tls_cbc
is
disabled, then it will not be possible to negotiate TLS v1.0/v1.1. In general
this should be considered a feature; only enable this if you need backward
compatability with obsolete clients or servers.
For TLS another useful feature which is not enabled by default is the
ChaCha20Poly1305 ciphersuites. To enable these, add chacha20poly1305
.
Configure Script Options¶
--cpu=CPU
¶
Set the target CPU architecture. If not used, the arch of the current system is detected (using Python’s platform module) and used.
--os=OS
¶
Set the target operating system.
--cc=COMPILER
¶
Set the desired build compiler
--cc-min-version=MAJOR.MINOR
¶
Set the minimal version of the target compiler. Use –cc-min-version=0.0 to support all compiler versions. Default is auto detection.
--cc-bin=BINARY
¶
Set path to compiler binary
If not provided, the value of the CXX
environment variable is used if set.
--cc-abi-flags=FLAGS
¶
Set ABI flags, which for the purposes of this option mean options which should be passed to both the compiler and linker.
--cxxflags=FLAGS
¶
Override all compiler flags. This is equivalent to setting CXXFLAGS
in the environment.
--extra-cxxflags=FLAGS
¶
Set extra compiler flags, which are appended to the default set. This is useful if you want to set just one or two additional options but leave the normal logic for selecting flags alone.
--ldflags=FLAGS
¶
Set flags to pass to the linker. This is equivalent to setting LDFLAGS
--ar-command=AR
¶
Set the path to the tool to use to create static archives (ar
).
This is normally only used for cross-compilation.
If not provided, the value of the AR
environment variable is used if set.
--ar-options=AR_OPTIONS
¶
Specify the options to pass to ar
.
If not provided, the value of the AR_OPTIONS
environment variable is used if set.
--msvc-runtime=RT
¶
Specify the MSVC runtime to use (MT, MD, MTd, or MDd). If not specified, picks either MD or MDd depending on if debug mode is set.
--compiler-cache
¶
Specify a compiler cache (like ccache) to use for each compiler invocation.
--with-endian=ORDER
¶
The parameter should be either “little” or “big”. If not used then if the target architecture has a default, that is used. Otherwise left unspecified, which causes less optimal codepaths to be used but will work on either little or big endian.
--with-os-features=FEAT
¶
Specify an OS feature to enable. See src/build-data/os
and
doc/os.rst
for more information.
--without-os-features=FEAT
¶
Specify an OS feature to disable.
--enable-experimental-features
¶
Enable all experimental modules and features. Note that these are unstable and
may change or even be removed in future releases. Also note that individual
experimental modules can be explicitly enabled using --enable-modules=MODS
.
--disable-experimental-features
¶
Disable all experimental modules and features. This is the default.
--enable-deprecated-features
¶
Enable all deprecated modules and features. Note that these are scheduled for removal in future releases. This is the default.
--disable-deprecated-features
¶
Disable all deprecated modules and features. Note that individual deprecated
modules can be explicitly disabled using --disable-modules=MODS
.
--disable-sse2
¶
Disable use of SSE2 intrinsics
--disable-ssse3
¶
Disable use of SSSE3 intrinsics
--disable-sse4.1
¶
Disable use of SSE4.1 intrinsics
--disable-sse4.2
¶
Disable use of SSE4.2 intrinsics
--disable-avx2
¶
Disable use of AVX2 intrinsics
--disable-bmi2
¶
Disable use of BMI2 intrinsics
--disable-rdrand
¶
Disable use of RDRAND intrinsics
--disable-rdseed
¶
Disable use of RDSEED intrinsics
--disable-aes-ni
¶
Disable use of AES-NI intrinsics
--disable-sha-ni
¶
Disable use of SHA-NI intrinsics
--disable-altivec
¶
Disable use of AltiVec intrinsics
--disable-neon
¶
Disable use of NEON intrinsics
--disable-armv8crypto
¶
Disable use of ARMv8 Crypto intrinsics
--disable-powercrypto
¶
Disable use of POWER Crypto intrinsics
--system-cert-bundle=PATH
¶
Set a path to a file containing one or more trusted CA certificates in PEM format. If not given, some default locations are checked.
--with-debug-info
¶
Include debug symbols.
--with-sanitizers
¶
Enable some default set of sanitizer checks. What exactly is enabled depends on the compiler.
--enable-sanitizers=SAN
¶
Enable specific sanitizers. See src/build-data/cc
for more information.
--without-stack-protector
¶
Disable stack smashing protections. not recommended
--with-coverage-info
¶
Add coverage info
--disable-static-library
¶
Disable building static library
--optimize-for-size
¶
Optimize for code size.
--no-optimizations
¶
Disable all optimizations for debugging.
--debug-mode
¶
Enable debug info and disable optimizations
--amalgamation
¶
Use amalgamation to build
--name-amalgamation
¶
Specify an alternative amalgamation file name. By default we use botan_all.
--with-build-dir=DIR
¶
Setup the build in a specified directory instead of ./build
--with-external-includedir=DIR
¶
Search for includes in this directory. Provide this parameter multiple times to define multiple additional include directories.
--with-external-libdir=DIR
¶
Add DIR to the link path. Provide this parameter multiple times to define multiple additional library link directories.
--define-build-macro
¶
Set a compile-time pre-processor definition (i.e. add a -D… to the compiler invocations). Provide this parameter multiple times to add multiple compile-time definitions. Both KEY=VALUE and KEY (without specific value) are supported.
--with-sysroot-dir=DIR
¶
Use specified dir for system root while cross-compiling
--link-method=METHOD
¶
During build setup a directory linking to each header file is created. Choose how the links are performed (options are “symlink”, “hardlink”, or “copy”).
--with-local-config=FILE
¶
Include the contents of FILE into the generated build.h
--distribution-info=STRING
¶
Set distribution specific version information
--maintainer-mode
¶
A build configuration used by library developers, which enables extra warnings and turns most warnings into errors.
Warning
When this option is used, all relevant warnings available in the most recent release of GCC/Clang are enabled, so it may fail to build if your compiler is not sufficiently recent. In addition there may be non-default configurations or unusual platforms which cause warnings which are converted to errors. Patches addressing such warnings are welcome, but otherwise no support is available when using this option.
--werror-mode
¶
Turns most warnings into errors.
--no-install-python-module
¶
Skip installing Python module.
--with-python-versions=N.M
¶
Where to install botan3.py. By default this is chosen to be the
version of Python that is running configure.py
.
--with-valgrind
¶
Use valgrind API to perform additional checks. Not needed by end users.
--unsafe-fuzzer-mode
¶
Disable essential checks for testing. UNSAFE FOR PRODUCTION
--build-fuzzers=TYPE
¶
Select which interface the fuzzer uses. Options are “afl”, “libfuzzer”, “klee”, or “test”. The “test” mode builds fuzzers that read one input from stdin and then exit.
--with-fuzzer-lib=LIB
¶
Specify an additional library that fuzzer binaries must link with.
--build-targets=BUILD_TARGETS
¶
Build only the specific targets and tools
(static
, shared
, cli
, tests
, bogo_shim
).
--without-documentation
¶
Skip building/installing documentation
--with-sphinx
¶
Use Sphinx to generate the handbook
--with-pdf
¶
Use Sphinx to generate PDF doc
--with-rst2man
¶
Use rst2man to generate a man page for the CLI
--with-doxygen
¶
Use Doxygen to generate API reference
--module-policy=POL
¶
The option --module-policy=POL
enables modules required by and
disables modules prohibited by a text policy in src/build-data/policy
.
Additional modules can be enabled if not prohibited by the policy.
Currently available policies include bsi
, nist
and modern
:
$ ./configure.py --module-policy=bsi --enable-modules=tls,xts
--enable-modules=MODS
¶
Enable some specific modules
--disable-modules=MODS
¶
Disable some specific modules
--minimized-build
¶
Start with the bare minimum. This is mostly useful in conjuction with
--enable-modules
to get a build that has just the features a
particular application requires.
--with-boost
¶
Use Boost.Asio for networking support. This primarily affects the command line utils.
--with-bzip2
¶
Enable bzip2 compression
--with-lzma
¶
Enable lzma compression
--with-zlib
¶
Enable using zlib compression
--with-commoncrypto
¶
Enable using CommonCrypto for certain operations
--with-sqlite3
¶
Enable using sqlite3 for data storage
--with-tpm
¶
Enable support for TPM
--program-suffix=SUFFIX
¶
A string to append to all program binaries.
--library-suffix=SUFFIX
¶
A string to append to all library names.
--prefix=DIR
¶
Set the install prefix.
--docdir=DIR
¶
Set the documentation installation dir.
--bindir=DIR
¶
Set the binary installation dir.
--libdir=DIR
¶
Set the library installation dir.
--mandir=DIR
¶
Set the man page installation dir.
--includedir=DIR
¶
Set the include file installation dir.
--list-modules
¶
List all modules that could be enabled or disabled using –enable-modules or –disable-modules.