
Botan Tutorial

Jack Lloyd
lloyd@randombit.net

2010/08/07

Contents

1 Introduction 2

2 Initializing the Library 2

3 Introduction to Pipe 2

4 Hashing a File 3

5 Symmetric Cryptography 3
5.1 Authentication . 3
5.2 User Authentication . 3

6 Public Key Cryptography 3

1

1 Introduction

This document essentially sets up various simple scenarios and then shows how to solve the problems using
botan. It’s fairly simple, and doesn’t cover many of the available APIs and algorithms, especially the more
obscure or unusual ones. It is a supplement to the API documentation and the example applications, which
are included in the distribution.

2 Initializing the Library

The first step to using botan is to create a LibraryInitializer object, which handles creating various
internal structures, and also destroying them at shutdown.

#include <botan/botan.h>

int main()
{
Botan::LibraryInitializer init;
return 0;
}

If your application is multi-threaded, you need to tell botan this so that it will use locking where necessary.
This is done by passing a string to the constructor of LibraryInitializer:

Botan::LibraryInitializer init("thread_safe=yes");

3 Introduction to Pipe

Most operations in botan are specified in terms of transformations on streams. The class that handles the
I/O and management for these streams is called Pipe. You can construct a Pipe with one or more Filters,
which sequentially process messages. You can only update a single message at a time, but you can leave the
final output contents in a Pipe and read them out as desired.

Here is how you might hex encode two messages:

std::string message1 = "this is the first message";
const byte message2[] = "a second message";
Pipe pipe(new Hex_Encoder);

pipe.start_msg(); // must be called before writing to the pipe
pipe.write(message1);
pipe.end_msg(); // must be called to signal completion

/*
process_msg(x) is equivalent to calling

start_msg(); write(x); end_msg();
*/
pipe.process_msg(message2);

Pipe::message_id n = pipe.message_count(); // returns 2

/* you can read a message as a string, here we read message 0 */

2

std::string first_result = pipe.read_all_as_string(0);

/* or a piece at a time using array/length, now we’ll read the
second message (message id 1)

*/

byte output[4096] = { 0 };
u32bit got = read(output, sizeof(output), 1);
if(got >= sizeof(output))
// have to read again to get more of the message

You can also read output while the message is still active (before the call to end msg), using the same
interfaces. You can find out how much data is currently available for a particular Pipe by calling the
member function remaining, which takes a message sequence number and returns the number of bytes that
are currently available to read from that message.

4 Hashing a File

Hashing a file is done using a Hash Filter, which takes a string which specifies which hash function you
want to use:

Pipe pipe(new Hash_Filter("SHA-256"));

The output of a Hash Filter is raw binary. The filter will not produce any output at all until you call
end msg.

5 Symmetric Cryptography

5.1 Authentication

5.2 User Authentication

6 Public Key Cryptography

3

