
Botan Build Guide

Jack Lloyd
lloyd@randombit.net

2009-10-09

Contents

1 Introduction 2

2 For the Impatient 2

3 Building the Library 2
3.1 POSIX / Unix . 3
3.2 MS Windows . 3
3.3 Configuration Parameters . 4
3.4 Multiple Builds . 4
3.5 Local Configuration . 4

4 Modules 5

5 Building Applications 6
5.1 Unix . 6
5.2 MS Windows . 6

6 Language Wrappers 7
6.1 Building the Python wrappers . 7
6.2 Building the Perl XS wrappers . 7

1

1 Introduction

This document describes how to build Botan on Unix/POSIX and MS Windows systems. The POSIX
oriented descriptions should apply to most common Unix systems (including MacOS X), along with POSIX-
ish systems like BeOS, QNX, and Plan 9. Currently, systems other than Windows and POSIX (such as
VMS, MacOS 9, OS/390, OS/400, ...) are not supported by the build system, primarily due to lack of
access. Please contact the maintainer if you would like to build Botan on such a system.

Botan’s build is controlled by configure.py, which is a Python script. Python 2.4 or later is required.

2 For the Impatient

$./configure.py [--prefix=/some/directory]
$ make
$ make install

Or using nmake, if you’re compiling on Windows with Visual C++. On platforms that do not understand
the ’#!’ convention for beginning script files, or that have Python installed in an unusual spot, you might
need to prefix the configure.py command with python or /path/to/python.

3 Building the Library

The first step is to run configure.py, which is a Python script that creates various directories, config files,
and a Makefile for building everything. The script requires at least Python 2.4; any later version of Python
2.x should also work.

The script will attempt to guess what kind of system you are trying to compile for (and will print messages
telling you what it guessed). You can override this process by passing the options --cc, --os, and --cpu.

You can pass basically anything reasonable with --cpu: the script knows about a large number of different
architectures, their sub-models, and common aliases for them. You should only select the 64-bit version of
a CPU (such as “sparc64” or “mips64”) if your operating system knows how to handle 64-bit object code –
a 32-bit kernel on a 64-bit CPU will generally not like 64-bit code.

By default the script tries to figure out what will work on your system, and use that. It will print a
display at the end showing which algorithms have and have not been enabled. For instance on one system
we might see lines like:

INFO: Skipping mod because CPU incompatible - asm_amd64 mp_amd64 mp_asm64 sha1_amd64
INFO: Skipping mod because OS incompatible - cryptoapi_rng win32_stats
INFO: Skipping mod because compiler incompatible - mp_ia32_msvc
INFO: Skipping mod because loaded on request only - bzip2 gnump openssl qt_mutex zlib

The ones that are ’loaded on request only’ have to be explicitly asked for, because they rely on third
party libraries which your system might not have. For instance to enable zlib support, add --with-zlib to
your invocation of configure.py.

You can control which algorithms and modules are built using the options “--enable-modules=MODS”
and “--disable-modules=MODS”, for instance
“--enable-modules=blowfish,md5,rsa,zlib --disable-modules=arc4,cmac”. Modules not listed on
the command line will simply be loaded if needed or if configured to load by default.

The script tries to guess what kind of makefile to generate, and it almost always guesses correctly
(basically, Visual C++ uses NMAKE with Windows commands, and everything else uses Unix make with

2

POSIX commands). Just in case, you can override it with --make-style=somestyle. The styles Botan
currently knows about are ’unix’ (normal Unix makefiles), and ’nmake’, the make variant commonly used
by Windows compilers. To add a new variant (eg, a build script for VMS), you will need to create a new
template file in src/build-data/makefile.

3.1 POSIX / Unix

The basic build procedure on Unix and Unix-like systems is:

$./configure.py [--enable-modules=<list>] [--cc=CC]
$ make
You may need to set your LD_LIBRARY_PATH or equivalent for ./check to run
$ make check # optional, but a good idea
$ make install

This will probably default to using GCC, depending on what can be found within your PATH.

The make install target has a default directory in which it will install Botan (typically /usr/local).
You can override this by using the --prefix argument to configure.py, like so:

./configure.py --prefix=/opt <other arguments>

On some systems shared libraries might not be immediately visible to the runtime linker. For example, on
Linux you may have to edit /etc/ld.so.conf and run ldconfig (as root) in order for new shared libraries
to be picked up by the linker. An alternative is to set your LD LIBRARY PATH shell variable to include the
directory that the Botan libraries were installed into.

3.2 MS Windows

The situation is not much different here. We’ll assume you’re using Visual C++ (for Cygwin, the Unix
instructions are probably more relevant). You need to have a copy of Python installed, and have both
Python and Visual C++ in your path.

> python configure.py --cc=msvc (or --cc=gcc for MinGW) [--cpu=CPU]
> nmake
> nmake check # optional, but recommended

For Win95 pre OSR2, the cryptoapi_rng module will not work, because CryptoAPI didn’t exist. And
all versions of NT4 lack the ToolHelp32 interface, which is how win32_stats does its slow polls, so a version
of the library built with that module will not load under NT4. Later systems (98/ME/2000/XP) support
both methods, so this shouldn’t be much of an issue.

Unfortunately, there currently isn’t an install script usable on Windows. Basically all you have to do is
copy the newly created libbotan.lib to someplace where you can find it later (say, C:\botan\). Then copy
the entire build\include\botan directory, which was constructed when you built the library, into the same
directory.

When building your applications, all you have to do is tell the compiler to look for both include files and
library files in C:\botan, and it will find both. Or you can move them to a place where they will be in the
default compiler search paths (consult your documentation and/or local expert for details).

3

3.3 Configuration Parameters

There are some configuration parameters which you may want to tweak before building the library. These
can be found in config.h. This file is overwritten every time the configure script is run (and does not exist
until after you run the script for the first time).

Also included in build/build.h are macros which are defined if one or more extensions are available.
All of them begin with BOTAN_HAS_. For example, if BOTAN_HAS_COMPRESSOR_BZIP2 is defined, then an
application using Botan can include <botan/bzip2.h> and use the Bzip2 filters.

BOTAN MP WORD BITS: This macro controls the size of the words used for calculations with the MPI
implementation in Botan. You can choose 8, 16, 32, or 64, with 32 being the default. You can use 8, 16,
or 32 bit words on any CPU, but the value should be set to the same size as the CPU’s registers for best
performance. You can only use 64-bit words if an assembly module (such as mp ia32 or mp asm64) is used.
If the appropriate module is available, 64 bits are used, otherwise this is set to 32. Unless you are building
for a 8 or 16-bit CPU, this isn’t worth messing with.

BOTAN VECTOR OVER ALLOCATE: The memory container SecureVector will over-allocate requests by this
amount (in elements). In several areas of the library, we grow a vector fairly often. By over-allocating by a
small amount, we don’t have to do allocations as often (which is good, because the allocators can be quite
slow). If you really want to reduce memory usage, set it to 0. Otherwise, the default should be perfectly
fine.

BOTAN DEFAULT BUFFER SIZE: This constant is used as the size of buffers throughout Botan. A good rule
of thumb would be to use the page size of your machine. The default should be fine for most, if not all,
purposes.

BOTAN GZIP OS CODE: The OS code is included in the Gzip header when compressing. The default is 255,
which means ’Unknown’. You can look in RFC 1952 for the full list; the most common are Windows (0) and
Unix (3). There is also a Macintosh (7), but it probably makes more sense to use the Unix code on OS X.

3.4 Multiple Builds

It may be useful to run multiple builds with different configurations. Specify --build-dir=<dir> to set up
a build environment in a different directory.

3.5 Local Configuration

You may want to do something peculiar with the configuration; to support this there is a flag to configure.py
called --with-local-config=<file>. The contents of the file are inserted into build/build.h which is
(indirectly) included into every Botan header and source file.

4

4 Modules

There are a fairly large number of modules included with Botan. Some of these are extremely useful, while
others are only necessary in very unusual circumstances. The modules included with this release are:

· alloc mmap: Allocates memory using memory mappings of temporary files. This means that if the
OS swaps all or part of the application, the sensitive data will be swapped to where we can later clean
it, rather than somewhere in the swap partition.

bzip2: Enables an application to perform bzip2 compression and decompression using the library.
Available on any system that has bzip2.

·· zlib: Enables an application to perform zlib compression and decompression using the library. Avail-
able on any system that has zlib.

· gnump: An engine that uses GNU MP to speed up PK operations. GNU MP 4.1 or later is required.

· openssl: An engine that uses OpenSSL to speed up public key operations and some ciphers/hashes.
OpenSSL 0.9.7 or later is required.

· beos stats: An entropy source that uses BeOS-specific APIs to gather (hopefully unpredictable) data
from the system.

· cryptoapi rng: An entropy source that uses the Win32 CryptoAPI function CryptGenRandom to
gather entropy. Supported on NT4, Win95 OSR2, and all later Windows systems.

· egd: An entropy source that accesses EGD (the entropy gathering daemon). Common on Unix systems
that don’t have /dev/random.

· proc walk: Gather entropy by reading files from a particular file tree. Usually used with /proc; most
other file trees don’t have sufficient variability over time to be useful.

· unix procs: Gather entropy by running various Unix programs, like arp and vmstat, and reading
their output in the hopes that at least some of it will be unpredictable to an attacker.

· win32 stats: Gather entropy by walking through various pieces of information about processes run-
ning on the system. Does not run on NT4, but should run on all other Win32 systems.

· fd unix: Let the users of Pipe perform I/O with Unix file descriptors in addition to iostream objects.

· pthread: Add support for using pthread mutexes to lock internal data structures. Important if you
are using threads with the library.

· qt mutex: Add support for using Qt mutexes to lock internal data structures.

· cpu counter: Use the contents of the CPU cycle counter when generating random bits to further
randomize the results. Works on x86 (Pentium and up), Alpha, and SPARCv9.

· posix rt: Use the POSIX realtime clock as a high-resolution timer.

· gettimeofday: Use the traditional Unix gettimeofday as a high resolution timer.

· win32 query perf ctr: Use Win32’s QueryPerformanceCounter as a high resolution timer.

5

5 Building Applications

5.1 Unix

Botan usually links in several different system libraries (such as librt and libz), depending on which
modules are configured at compile time. In many environments, particularly ones using static libraries, an
application has to link against the same libraries as Botan for the linking step to succeed. But how does it
figure out what libraries it is linked against?

The answer is to ask the botan-config script. This basically solves the same problem all the other
*-config scripts solve, and in basically the same manner.

There are 4 options:

--prefix[=DIR]: If no argument, print the prefix where Botan is installed (such as /opt or /usr/local).
If an argument is specified, other options given with the same command will execute as if Botan as actually
installed at DIR and not where it really is; or at least where botan-config thinks it really is. I should
mention that it

--version: Print the Botan version number.

--cflags: Print options that should be passed to the compiler whenever a C++ file is compiled. Typically
this is used for setting include paths.

--libs: Print options for which libraries to link to (this includes -lbotan).

Your Makefile can run botan-config and get the options necessary for getting your application to
compile and link, regardless of whatever crazy libraries Botan might be linked against.

Botan also by default installs a file for pkg-config, namespaced by the major and minor versions. So it
can be used, for instance, as

$ pkg-config botan-1.8 --modversion
1.8.0
$ pkg-config botan-1.8 --cflags
-I/usr/local/include
$ pkg-config botan-1.8 --libs
-L/usr/local/lib -lbotan -lm -lbz2 -lpthread -lrt

5.2 MS Windows

No special help exists for building applications on Windows. However, given that typically Windows software
is distributed as binaries, this is less of a problem - only the developer needs to worry about it. As long
as they can remember where they installed Botan, they just have to set the appropriate flags in their
Makefile/project file.

6

6 Language Wrappers

6.1 Building the Python wrappers

The Python wrappers for Botan use Boost.Python, so you must have Boost installed. To build the wrappers,
add the flag

--use-boost-python

to configure.py. This will create a second makefile, Makefile.python, with instructions for building
the Python module. After building the library, execute

$ make -f Makefile.python

to build the module. Currently only Unix systems are supported, and the Makefile assumes that the
version of Python you want to build against is the same one you used to run configure.py.

To install the module, use the install target.

Examples of using the Python module can be seen in doc/python

6.2 Building the Perl XS wrappers

To build the Perl XS wrappers, change your directory to src/wrap/perl-xs and run perl Makefile.PL,
then run make to build the module and make test to run the test suite.

$ perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Botan
$ make
cp Botan.pm blib/lib/Botan.pm
AutoSplitting blib/lib/Botan.pm (blib/lib/auto/Botan)
/usr/bin/perl5.8.8 /usr/lib64/perl5/5.8.8/ExtUtils/xsubpp [...]
g++ -c -Wno-write-strings -fexceptions -g [...]
Running Mkbootstrap for Botan ()
chmod 644 Botan.bs
rm -f blib/arch/auto/Botan/Botan.so
g++ -shared Botan.o -o blib/arch/auto/Botan/Botan.so \

-lbotan -lbz2 -lpthread -lrt -lz \

chmod 755 blib/arch/auto/Botan/Botan.so
cp Botan.bs blib/arch/auto/Botan/Botan.bs
chmod 644 blib/arch/auto/Botan/Botan.bs
Manifying blib/man3/Botan.3pm
$ make test
PERL_DL_NONLAZY=1 /usr/bin/perl5.8.8 [...]
t/base64......ok
t/filt........ok
t/hex.........ok
t/oid.........ok
t/pipe........ok
t/x509cert....ok
All tests successful.
Files=6, Tests=83, 0 wallclock secs (0.08 cusr + 0.02 csys = 0.10 CPU)

7

