
Botan API Reference (v1.4.4)

Jack Lloyd
lloyd@randombit.net

Contents

1 Introduction 4
1.1 Basic Conventions . 4
1.2 Targets . 4
1.3 Why Botan? . 5

2 Initializing the Library 6

3 Gotchas 7

4 The Basic Interface 8
4.1 Basic Algorithm Abilities . 8
4.2 Keys and IVs . 8
4.3 Symmetrically Keyed Algorithms . 9
4.4 Block Ciphers . 9
4.5 Stream Ciphers . 9
4.6 Hash Functions / Message Authentication Codes . 10

5 Public Key Cryptography 11
5.1 Creating PK Algorithm Key Objects . 11

5.1.1 Creating a DL Group . 11
5.2 Key Checking . 11
5.3 Getting a PK algorithm object . 12
5.4 Encryption . 12
5.5 Signatures . 13
5.6 Key Agreement . 13
5.7 Importing and Exporting PK Keys . 14

5.7.1 Public Keys . 14
5.7.2 Private Keys . 16
5.7.3 Limitations . 17

6 Filters and Pipes 18
6.1 Basic Filter Usage . 18

6.1.1 Fork . 18
6.1.2 Chain . 19
6.1.3 Data Sources . 20
6.1.4 Data Sinks . 20

6.2 The Pipe API . 20
6.2.1 Initializing Pipe . 20
6.2.2 Giving Data to a Pipe . 21
6.2.3 Getting Output from a Pipe . 21

6.3 A Filter Example . 23
6.4 Rolling Your Own . 24

1

6.5 Filter Catalog . 25
6.5.1 Keyed Filters . 25
6.5.2 Cipher Filters . 26
6.5.3 Hashes and MACs . 26
6.5.4 PK Filters . 27
6.5.5 Encoders . 27

7 Certificate Handling 28
7.1 So what’s in an X.509 certificate? . 28

7.1.1 X.509v3 Extensions . 29
7.1.2 Revocation Lists . 29

7.2 Reading Certificates . 30
7.3 Storing and Using Certificates . 30

7.3.1 Adding Certificates . 30
7.3.2 Adding CRLs . 30
7.3.3 Storing Certificates . 30
7.3.4 Searching for Certificates . 31
7.3.5 Certificate Stores . 31
7.3.6 Verifying Certificates . 32

7.4 Certificate Authorities . 33
7.4.1 Generating CRLs . 33
7.4.2 Self-Signed Certificates . 35
7.4.3 Creating PKCS #10 Requests . 35
7.4.4 Certificate Options . 35

8 CMS 37
8.1 Encoding . 37
8.2 Decoding . 37

9 Random Number Generators 38
9.1 Entropy Estimation . 38
9.2 The Global PRNG . 39
9.3 Randpool . 40
9.4 ANSI X9.17 . 40
9.5 Entropy Sources . 40

10 User Interfaces 41
10.1 Pulses . 41

11 Policy Configuration 43
11.1 Option Types . 43
11.2 Setting and Getting Options . 43
11.3 Available Options . 44
11.4 Configuration Files . 47

11.4.1 Syntax . 47

12 Miscellaneous 49
12.1 S2K Algorithms . 49

12.1.1 OpenPGP S2K . 49
12.2 Checksums . 49
12.3 Exceptions . 50
12.4 Threads and Mutexes . 50
12.5 Secure Memory . 50
12.6 Allocators . 51
12.7 Timers . 52

2

13 Botan’s Modules 53
13.1 Pipe I/O for Unix File Descriptors . 53
13.2 Entropy Sources . 53
13.3 Compressors . 54

13.3.1 Bzip2 . 54
13.3.2 Zlib . 54

14 BigInt 55
14.1 Efficiency Hints . 55
14.2 A Warning . 56

15 Removing Algorithms 57

16 Writing Modules 58

17 Compliance with Standards 60

18 Recommended Algorithms 61

19 Algorithms Listing 62

20 More Information 63
20.1 Support . 63
20.2 Compatibility . 63
20.3 Patents . 63
20.4 Further Reading and Information . 63
20.5 Contact Information . 64

3

1 Introduction

Botan is a C++ library which attempts to provide the most common cryptographic algorithms and operations
in an easy to use and portable package. Currently it runs on a wide variety of systems, using numerous
different compilers and on many different CPU architectures.

The base library is written in ISO C++, so it can be ported with minimal fuss, but Botan also supports
a modules system, which allows system dependent code to be compiled into the library for use by application
code.

While you are reading this, you may want to refer to the header files base.h and pipe.h. These files
contain the classes that form the basic interface for the library.

1.1 Basic Conventions

With a few exceptions declarations in the library are contained within the namespace Botan. Botan declares
several typedef’ed types to help buffer it against changes in machine architecture. These types are used
extensively in the interface, and thus it would be often be convenient to use them without the Botan prefix.
You can, by using the namespace Botan types (this way you can use the type names without the namespace
prefix, but the remainder of the library stays out of the global namespace). The included types are byte
and u32bit, which are unsigned integer types.

The headers for Botan are usually available in the form botan/headername.h. For brevity in this docu-
mentation, headers are always just called headername.h, but they should be used as botan/headername.h
in your actual code.

1.2 Targets

Botan’s primary targets (system-wise) are 32 and 64-bit systems with at least a few megabytes of memory.
Generally, given the choice between optimizing for 32-bit systems and 64-bit systems, Botan chooses 64-bits,
simply on the theory that where performance really matters (servers), people are using 64-bit machines. But
performance on 32 bit systems is also quite good.

Today smaller systems, such as handhelds, set-top boxes, and the bigger smart phones and smart
cards, are also capable of using Botan. However, Botan uses a fairly large amount of code space (mul-
tiple megabytes), which could be prohibitive in some systems. Actual RAM usage is quite small, usually
under 64K, though C++ runtime overheads might cause more to be used.

Botan’s design makes it quite easy to remove unused algorithms in such a way that applications do not
need to be recompiled to work, even applications that use the algorithms in question. They can simply ask
Botan if the algorithm exists, and if Botan says yes, ask the library to give them such an object for that
algorithm.

4

1.3 Why Botan?

Botan may be the perfect choice for your application. Or it might be a terribly bad idea. This section is
basically to make it clear what Botan is and is not.

First, let’s cover the major strengths. Botan:

· Is written in a (fairly) clean object-oriented style, and the usual API works in terms of reasonably
high-level abstractions.

·· Supports a huge variety of algorithms, including most of the major public key algorithms and standards
(such as IEEE 1363, PKCS, and X.509v3).

· Supports a name-based lookup scheme, so you can get ahold of any algorithm on the fly.

· You can easily extend much of the system at application compile time or at run time.

· Works well with a wide variety of compilers, operating systems, and CPUs, and more all the time.

· Is the only open source crypto library (that I know of) that has support for memory allocation tech-
niques that prevent an attacker from reading swap in an attempt to gain access to keys or other secrets.
In fact several different such methods are supported, depending on the system (two methods for Unix,
another for Windows).

· Has (optional) support for Zlib and Bzip2 compression/decompression integrated completely into the
system – it only takes a line or two of code to add compression to your application.

And the major downsides and deficiencies are:

· It’s written in C++. If your application isn’t, Botan is probably going to be more pain than it’s worth.

·· While efficiency is a major goal, Botan is not currently as fast as say, OpenSSL. This is mostly due to
using non-optimal algorithms in some places. By using one of the built-in ’engines’ (currently engines for
AEP crypto cards, GNU MP, and OpenSSL’s BN library are available), performance can be increased
by a factor of 5 or more over the base implementation, providing very competitive performance even
when compared to the fastest available libraries.

· Botan doesn’t support higher-level protocols and formats like SSL or OpenPGP. These will eventually
be available as separate packages. Of course you can write it yourself (and I would be happy to help
with that in any way I can). Some work is beginning on TLS and CMS (S/MIME) support, but it is
a ways away still.

· Doesn’t support elliptic curve algorithms (yet)

· Doesn’t currently support any very high level ’envelope’ style processing - support for this will probably
be added once support for CMS is available, so code using the high level interface will produce data
readable by many other libraries.

5

2 Initializing the Library

The library needs to have various things done to it in order for it to work correctly. To make sure this is
done properly, you should create a LibraryInitializer object at the start of your main() function, before
you start using any part of Botan. The initializer does things like initializing the memory allocation system,
setting up the algorithm lookup tables, finding out if there is a high resolution timer available to use, and
similar such matters.

The constructor of this object takes a string which specifies any options. If more than one is used, they
should be separated by a space. The options are listed here by order of danger (i.e.the caution you should
have about using the option), with safest first.

Option “secure memory”: Try to create a more secure allocator type – one that either locks allocated
memory into RAM, or that memory maps a disk file that it erases after use. If both are available, it will
prefer the memory mapping mechanism, because locking memory requires privileges on many systems.

On systems that don’t (currently) have any specialized allocators, like MS Windows, this option is
ignored.

Option “config=/path/to/configfile”: Process the specified configuration file. Configuration files can
specify things like the various options, new aliases, and new OIDs for algorithms. An example can be found
in doc/botan.rc. Currently only one config= argument will be processed, the rest will be ignored.

Option “thread safe”: The library should use mutexes for guarding access to shared resources, such as
the memory allocation system. If you pass the “thread safe” option, and the initializer can’t find a useful
mutex module, it will throw an exception. Botan seems to work in threaded programs, but it hasn’t been
tested thoroughly, and problems may remain. Note that Botan is not thread safe at the object level; any
objects shared between threads need explicit locking.

Option “use engines”: Use any available “engine” modules to speed up processing. Currently Botan has
support for engines based on the AEP1000/AEP2000 crypto hardware cards, GNU MP, and OpenSSL’s BN
library. Further support for crypto acceleration hardware will be added in future releases.

Option “no oids”: Do not load the default list of OIDs; presumably a configuration file contains the list
of OIDs the application requires. This is useful to override the settings of the default list (for example, to
give RSA a new primary OID).

Option “no aliases”: Do not load the default list of algorithm aliases. Be warned that the library internally
makes use of some aliases (especially “SHA-1” → “SHA-160”), and may fail if it can’t find them – thus, make
sure to include them in the config file you distribute; or set them by hand (with look add.h’s add alias
function) before initializing the library.

Option “no rng seed”: Don’t attempt to seed the global PRNGs at startup. This is primarily useful when
you know that the built-in library entropy sources will not work, and you are providing you own entropy
source(s) with Global RNG::add es. By default Botan will attempt to seed the PRNGs, and will throw
an exception if it fails. This options disables both of these actions; call Global RNG::add entropy or
Global RNG::add es to add entropy and/or an entropy source, then call Global RNG::seed to actually
seed the RNG.

If you do not create a LibraryInitializer object, pretty much any Botan operation will fail, because
it will be unable to do basic things like allocate memory or get random bits. Note too, that you should be
careful to only create one such object.

If you wish, you can use a function-based interface to initialize Botan. The functions are called initial-
ize and deinitialize, and are in the Init namespace. In fact, the LibraryInitializer implementation
simply calls these functions. The initialize function takes a std::string, just like LibraryInitializer’s
constructor. If you choose to use this interface, you should be very careful to make sure that deinitialize
is always called, even in the case of exceptions, premature exit or abort, and so on. For this reason using
LibraryInitializer is preferred, but there are cases where using it is impossible and an interface using
plain functions is the only option.

6

3 Gotchas

There are a few things to watch out for to prevent problems when using Botan.

First and primary of these is to never allocate any kind of Botan object globally. The problem is that the
constructor for such an object will be called before the LibraryInitializer is created, and the constructor
will undoubtedly try to call an object which has not been initialized. If you’re lucky your program will die
with an uncaught exception. If you’re less lucky, it will crash from a memory access error. And if you’re
really unlucky it won’t crash, and your program will be in an unknown (but very bad) state. Generally,
global variables are bad news anyway, and I can’t think of many cases where this will cause problems for
application code. The library does have some global objects in it, and a great deal of hackery is involved
making sure everything is created and destroyed at the right time (and in the right order).

The same rule applies for making sure the destructors of all your Botan objects are called before the
LibraryInitializer is destroyed. This implies you can’t have static variables that are Botan objects inside
functions or classes. This is kind of inelegant, but rarely a real problem in practice.

Never create a SecureVector or SecureBuffer with a type that is not a basic integer (byte, u16bit,
u32bit, u64bit). More strongly, if you, as a user of the library, are creating any memory buffer object that’s
not a SecureVector<byte>, you’re probably doing something wrong (I suppose there may be exceptions to
this rule, but not many). This is mostly a stylistic point, with an eye toward compatibility with future
versions.

Don’t include headers you don’t have to. Past experience with Botan has shown that headers get renamed
fairly regularly as internal design changes are made, but this need not affect you, if you follow the “proper
procedures”. Using the lookup interface defined in lookup.h and look pk.h will save you a great deal of
pain in this regard, as it insulates you against many such changes.

Use a try/catch block inside your main function, and catch any std::exception throws. This is not
strictly required, but if you don’t, and Botan throws an exception, your application will die mysteriously
and (probably) without any error message.

7

4 The Basic Interface

Botan has two different interfaces. The one documented in this section is meant more for implementing
higher-level types (see the section on filters, later in this manual) than for use by applications. Using
it safely requires a solid knowledge of encryption techniques and best practices, so unless you know, for
example, what CBC mode and nonces are, and why PKCS #1 padding is important, you should avoid this
interface in favor of something working at a higher level (such as the CMS interface).

4.1 Basic Algorithm Abilities

There are a small handful of functions implemented by most of Botan’s algorithm objects. Among these are:

std::string name():

Returns a human-readable string of the name of this algorithm. Examples of names returned are “Blow-
fish” and “HMAC(MD5)”. You can turn names back into algorithm objects using the functions in lookup.h.

void clear():

Clear out the algorithm’s internal state. A block cipher object will “forget” its key, a hash function will
“forget” any data put into it, etc. Basically, the object will look exactly as it did when you initially allocated
it.

clone():

This function is central to Botan’s name-based interface. The clone has many different return types,
such as BlockCipher* and HashFunction*, depending on what kind of object it is called on. Note that
unlike Java’s clone, this returns a new object in a “pristine” state; that is, operations done on the initial
object before calling clone do not affect the initial state of the new clone.

Cloned objects can (and should) be deallocated with the C++ delete operator.

4.2 Keys and IVs

Both symmetric keys and initialization values can simply be considered byte (or octet) strings. These are
represented by the classes SymmetricKey and InitializationVector, which are subclasses of OctetString.

Since often it’s hard to distinguish between a key and IV, many things (such as key derivation mechanisms)
return OctetString instead of SymmetricKey to allow its use as a key or an IV.

OctetString(u32bit length):

This constructor takes creates a new random key of size length. This function is actually the main dif-
ference between SymmetricKey and InitializationVector. Botan maintains two different random number
generators: one for generating secret values (like keys) and a second one for generating salts, nonces, IVs, and
the like (which don’t need to be secret; just unpredictable). This is to prevent an attacker from examining
such (publicly visible) PRNG output and using it to predict other things created by the PRNG (such as a
secret key). Botan’s PRNGs are probably good enough that such an attack is not practical, but the extra
safety is nice.

A SymmetricKey will ask the “real” PRNG for random bits, whereas a InitializationVector will ask
the nonce PRNG.

OctetString(std::string str):

The argument str is assumed to be a hex string; it is converted to binary and stored. Whitespace is
ignored.

OctetString(const byte input[], u32bit length):

This constructor simply copies its input.

8

4.3 Symmetrically Keyed Algorithms

Block ciphers, stream ciphers, and MACs all handle keys in pretty much the same way. To make this
similarity explicit, all algorithms of those types are derived from the SymmetricAlgorithm base class. This
type has three functions:

void set key(const byte key [], u32bit length):

Most algorithms only accept keys of certain lengths. If you attempt to call set key with a key length
that is not supported, the exception Invalid Key Length will be thrown. There is also another version of
set key that takes a SymmetricKey as an argument.

bool valid keylength(u32bit length) const:

This function returns true if a key of the given length will be accepted by the cipher.

There are also three constant data members of every SymmetricAlgorithm object, which specify exactly
what limits there are on keys which that object can accept:

MAXIMUM KEYLENGTH: The maximum length of a key. Usually, this is at most 32 (256 bits), even
if the algorithm actually supports more. In a few rare cases larger keys will be supported.

MINIMUM KEYLENGTH: The minimum length of a key. This is at least 1.

KEYLENGTH MULTIPLE: The length of the key must be a multiple of this value.

In all cases, set key must be called on an object before any data processing (encryption, decryption, etc)
is done by that object. If this is not done, the results are undefined – that is to say, Botan reserves the right
in this situation to do anything from printing a nasty, insulting message on the screen to dumping core.

4.4 Block Ciphers

Block ciphers implement the interface BlockCipher, found in base.h.

void encrypt(const byte in[BLOCK SIZE], byte out[BLOCK SIZE]) const

void encrypt(byte block[BLOCK SIZE]) const

These functions apply the block cipher transformation to in and place the result in out, or encrypts block
in place (in may be the same as out). BLOCK SIZE is a constant member of each class, which specifies how
much data a block cipher can process at one time. Note that BLOCK SIZE is not a static class member,
like the old BLOCKSIZE was.

BlockCiphers have similar functions decrypt, which perform the inverse operation.

Block ciphers implement the SymmetricAlgorithm interface.

4.5 Stream Ciphers

Stream ciphers are somewhat different from block ciphers, in that encrypting data results in changing the
internal state of the cipher. Also, you may encrypt any length of data in one go (in byte amounts).

void encrypt(const byte in[], byte out[], u32bit length)

void encrypt(byte data[], u32bit length):

These functions encrypt the arbitrary length (well, less than 4 gigabyte long) string in and place it into
out, or encrypts it in place in data. The decrypt functions look just like encrypt.

Stream ciphers implement the SymmetricAlgorithm interface.

Some stream ciphers support random access to any point in their cipher stream (currently, the only cipher
like this in in Botan is SEAL). For such ciphers, calling void seek(u32bit byte) will change the cipher’s
state so that it as if the cipher had been keyed as normal, then encrypted byte – 1 bytes of data (so the next

9

byte in the cipher stream is byte number byte).

4.6 Hash Functions / Message Authentication Codes

Hash functions take their input without producing any output, only producing anything when all input has
already taken place. MACs are very similar, but are additionally keyed. Both of these are derived from the
base class BufferedComputation, which has the following functions.

void update(const byte input[], u32bit length)

void update(byte input)

void update(const std::string & input)

Updates the hash/mac calculation with input.

void final(byte out[OUTPUT LENGTH])

SecureVector<byte> final():

Complete the hash/MAC calculation and place the result into out. OUTPUT LENGTH is a public
constant in each object that gives the length of the hash in bytes. After you call final, the hash function is
reset to its initial state, so it may be reused immediately.

The second method of using final is to call it with no arguments at all, as shown in the second prototype.
It will return the hash/mac value in a memory buffer, which will have size OUTPUT LENGTH.

There are also a pair of functions called process. They are essentially a combination of a single update,
and final. Both versions return the final value, rather than placing it an array. Calling process with a
single byte value isn’t available, mostly because it would rarely be useful.

A MAC can be viewed (in most cases) as simply a keyed hash function, so classes which are derived
from MessageAuthenticationCode have update and final classes just like a HashFunction (and like a
HashFunction, after final is called, it can be used to make a new MAC right away; the key is kept around).

A MAC has the SymmetricAlgorithm interface in addition to the BufferedComputation interface.

10

5 Public Key Cryptography

Public key algorithms were added in Botan 0.8.0. The major base classes can be found in pubkey.h.

5.1 Creating PK Algorithm Key Objects

The library has interfaces for encryption, signatures, etc that do not require knowing the exact algorithm in
use (for example RSA and Rabin-Williams signatures are handled by the exact same code path).

One place where we do need to know exactly what kind of algorithm is in use is when we are creating a
key (But : read the section “Importing and Exporting PK Keys”, later in this manual).

There are (currently) two kinds of public key algorithms in Botan: ones based on integer factorization
(RSA and Rabin-Williams), and ones based on the discrete logarithm problem (DSA, Diffie-Hellman, Nyberg-
Rueppel, and ElGamal). Since discrete logarithm parameters (primes and generators) can be shared among
many keys, there is the notion of these being a combined type (called DL Group).

There are two ways to create a DL private key (such as DSA PrivateKey). One is to pass in just a
DL Group object – a new key will automatically be generated. The other involves passing in a group to use,
along with both the public and private values (private value first).

Since in integer factorization algorithms, the modulus used isn’t shared by other keys, we don’t use this
notion. You can create a new key by passing in a u32bit telling how long (in bits) the key should be, or
you can copy an pre-existing key by passing in the appropriate parameters (primes, exponents, etc). For
RSA and Rabin-Williams (the two IF schemes in Botan), the parameters are all BigInts: prime 1, prime
2, encryption exponent, decryption exponent, modulus. The last two are optional, since they can easily be
derived from the first three.

5.1.1 Creating a DL Group

There are quite a few ways to get a DL Group object. The best is to use the function get dl group, which
takes a string naming a group; it will either return that group, if it knows about it, or throw an exception.
Names it knows about include “IETF-n” where n is 768, 1024, 1536, 2048, 3072, or 4096, and “DSA-n”,
where n is 512, 768, or 1024. The IETF groups are the ones specified for use with IPSec, and the DSA ones
are the default DSA parameters specified by Java’s JCE. For DSA and Nyberg-Rueppel, you should only
use the “DSA-n” groups, while Diffie-Hellman and ElGamal can use either type (keep in mind that some
applications/standards require DH/ELG to use DSA-style primes, while others require strong prime groups).

You can also generate a new random group. This is not recommend, because it is quite slow, especially
for safe primes.

You can register a new DL group with add dl group with a string naming the group and the DL Group.
Future lookups on that name will return the group. There is no reason to register the group if you do decide
to use a distinct DL group for each key.

5.2 Key Checking

Most public key algorithms have limitations or restrictions on their parameters. For example RSA requires
an odd exponent, and algorithms based on the discrete logarithm problem need a generator > 1.

Each low-level public key type has a function named check key which takes a bool. This function
returns a boolean value that declares whether or not the key is valid (from an algorithmic standpoint). For
example, it will check to make sure that the prime parameters of a DSA key are, in fact, prime. It does
not have anything to do with the validity of the key for any particular use, nor does it have anything to
do with certificates which link a key (which, after all, is just some numbers) with a user or other entity. If

11

check key’s argument is true, then it does “strong” checking, which includes fairly expensive operations
like primality checking.

Keys are always checked when they are loaded or generated, so typically there is no reason to use this
function directly. However, you can disable or reduce the checks for particular cases (public keys, loaded
private keys, generated private keys) by setting the right config toggle (see the section on the configuration
subsystem for details).

5.3 Getting a PK algorithm object

The key types, like RSA PrivateKey, do not implement any kind of padding or encoding (which is generally
necessary for security). To get an object like this, the easiest thing to do is call the functions found in
look pk.h. Generally these take a key, followed by a string that specified what hashing and encoding
method(s) to use. Examples of such strings are “EME1(SHA-1)” for OAEP encryption and “EMSA4(SHA-
1)” for PSS signatures (where the message is hashed using SHA-1).

Here are some basic examples (using an RSA key) to give you a feel for the possibilities. These examples
assume rsakey is an RSA PrivateKey, since otherwise we would not be able to create a decryption or signa-
ture object with it (you can create encryption or signature verification objects with public keys, naturally).
Remember to delete these objects when you’re done with them.

// PKCS #1 v2.0 / IEEE 1363 compatible encryption
PK_Encryptor* rsa_enc1 = get_pk_encryptor(rsakey, "EME1(RIPEMD-160)");
// PKCS #1 v1.5 compatible encryption
PK_Encryptor* rsa_enc2 = get_pk_encryptor(rsakey, "PKCS1v15");

// Raw encryption: no padding, input is directly encrypted by the key
// Don’t use this unless you know what you’re doing
PK_Encryptor* rsa_enc3 = get_pk_encryptor(rsakey, "Raw");

// This object can decrypt things encrypted by rsa_enc1
PK_Decryptor* rsa_dec1 = get_pk_decryptor(rsakey, "EME1(RIPEMD-160)");

// PKCS #1 v1.5 compatible signatures
PK_Signer* rsa_sig = get_pk_signer(rsakey, "EMSA3(MD5)");
PK_Verifier* rsa_verify = get_pk_verifier(rsakey, "EMSA3(MD5)");

// PKCS #1 v2.1 compatible signatures
PK_Signer* rsa_sig2 = get_pk_signer(rsakey, "EMSA4(SHA-1)");
PK_Verifier* rsa_verify2 = get_pk_verifier(rsakey, "EMSA4(SHA-1)");

// Hash input with SHA-1, but don’t pad the input in any way; usually
// used with DSA/NR, not RSA
PK_Signer* rsa_sig = get_pk_signer(rsakey, "EMSA1(SHA-1)");

5.4 Encryption

The PK Encryptor and PK Decryptor classes are the interface for encryption and decryption, respectively.

Calling encrypt with a byte array and a length parameter will return the input encrypted with whatever
scheme is being used. Calling the similar decrypt will perform the inverse operation. You can also do these
operations with SecureVector<byte>s. In all cases, the output is returned via a SecureVector<byte>.

If you attempt an operation with a larger size than the key can support (this limit varies based on the
algorithm, the key size, and the padding method used (if any)), an exception will be thrown. Alternately,

12

you can call maximum input size, which will return the maximum size you can safely encrypt. In fact,
you can often encrypt an object that is one byte longer, but only if enough of the high bits of the leading
byte are set to zero. Since this is pretty dicey, it’s best to stick with the advertised maximum.

Available public key encryption algorithms in Botan are RSA and ElGamal. The encoding methods are
EME1, denoted by “EME1(HASHNAME)”, PKCS #1 v1.5, called “PKCS1v15” or “EME-PKCS1-v1 5”,
and raw encoding (“Raw”).

For compatibility reasons, PKCS #1 v1.5 is recommend for use with ElGamal (most other implemen-
tations of ElGamal do not support any other encoding format). RSA can also be used with PKCS # 1
encoding, but because of various possible attacks, EME1 is the preferred encoding. EME1 requires the use
of a hash function: unless a competent applied cryptographer tells you otherwise, you should use SHA-1.

Don’t use “Raw” encoding unless you need it for backward compatibility with old protocols. There are
many possible attacks against both ElGamal and RSA when they are used this way.

5.5 Signatures

The signature algorithms look quite a bit like the hash functions. You can repeatedly call update, giving
more and more of a message you wish to sign, and then call signature, which will return a signature for
that message. If you want to do it all in one shot, call sign message, which will just call update with its
argument and then return whatever signature returns.

You can validate a signature by updating the verifier class, and finally seeing the if the value returned
from check signature is true (you pass the supposed signature to the check signature function as a byte
array and a length or as a MemoryRegion<byte>). There is another function, verify message, which takes a
pair of byte array/length pairs (or a pair of MemoryRegion<byte> objects), the first of which is the message,
the second being the (supposed) signature. It returns true if the signature is valid and false otherwise.

Available public key signature algorithms in Botan are RSA, DSA, Nyberg-Rueppel, and Rabin-Williams.
Signature encoding methods include EMSA1, EMSA2, EMSA3, EMSA4, and Raw. All of them, except Raw,
take a parameter naming a message digest function to hash the message with. Raw actually signs the input
directly; if the message is too big, the signing operation will fail. Raw is not useful except in very specialized
applications.

There are various interactions which make certain encoding schemes and signing algorithms more or less
useful.

EMSA2 is the usual method for encoding Rabin-William signatures, so for compatibility with other
implementations you may have to use that. EMSA4 (also called PSS), also works with Rabin-Williams.
EMSA1 and EMSA3 do not work with Rabin-Williams.

RSA can be used with any of the available encoding methods. EMSA4 is by far the most secure, but is not
(as of now) widely implemented. EMSA3 (also called “EMSA-PKCS1-v1 5”) is commonly used with RSA
(for example in SSL). EMSA1 signs the message digest directly, without any extra padding or encoding.
This may be useful, but is not as secure as either EMSA3 or EMSA4. EMSA2 may be used but is not
recommended.

For DSA and Nyberg-Rueppel, you should use EMSA1. None of the other encoding methods are partic-
ularly useful for these algorithms.

5.6 Key Agreement

You can get ahold of a PK Key Agreement Scheme object by calling get pk kas with a key that is of a type
that supports key agreement (such as a Diffie-Hellman key stored in a DH PrivateKey object), and the name
of a key derivation function. This can be “Raw”, meaning the output of the primitive itself is returned as
the key, or “KDF1(hash)” or “KDF2(hash)” where “hash” is any string you happen to like (hopefully you
like strings like “SHA-1” or “RIPEMD-160”), or “X9.42-PRF(keywrap)”, which uses the PRF specified in

13

ANSI X9.42. It takes the name or OID of the key wrap algorithm which will be used to encrypt a content
encryption key.

How key agreement generally works is that you trade public values with some other party, and then each
of you runs a computation with the other’s value and your key (this should return the same result to both
parties). This computation can be called by using derive key with either a byte array/length pair, or a
SecureVector<byte> than holds the public value of the other party. The last argument to either call is a
number that specifies how long a key you want.

Depending on the key derivation function you’re using, you many not actually get back a key of that size.
In particular, “Raw” will return a number about the size of the Diffie-Hellman modulus, and KDF1 can only
return a key which is the same size as the output of the hash. KDF2, on the other hand, will always give
you a key exactly as long as you request, regardless of the underlying hash used with it. The key returned
is a SymmetricKey, ready to pass to a block cipher, MAC, or other symmetric algorithm.

The public value which should be used can be obtained by calling public data, which exists for any key
that is associated with a key agreement algorithm. It returns a SecureVector<byte>.

“KDF2(SHA-1)” is by far the preferred algorithm for key derivation in new applications. The X9.42
algorithm may be useful in some circumstances, but unless you need X9.42 compatibility, KDF2 is easier to
use.

There is a Diffie-Hellman example included in the distribution, which you may want to examine.

5.7 Importing and Exporting PK Keys

[This section mentions Pipe and DataSource, which is not covered until later in the manual. Please read
those sections for more about Pipe and DataSource and their uses.]

There are many, many different (often conflicting) standards surrounding public key cryptography. There
is, thankfully, only two major standards surrounding the representation of a public or private key: X.509
(for public keys), and PKCS #8 (for private keys). Other crypto libraries, like OpenSSL and B-SAFE, also
support these formats, so you can easily exchange keys with software that doesn’t use Botan.

In addition to “plain” public keys, Botan also supports X.509 certificates. These are documented in the
section “Certificate Handling”, later in this manual.

5.7.1 Public Keys

The interfaces for doing either of these is quite similar. Let’s look at the X.509 stuff first:

namespace X509 {
void encode(const X509_PublicKey& key, Pipe& out, X509_Encoding enc = PEM);
std::string PEM_encode(const X509_PublicKey& out);

X509_PublicKey* load_key(DataSource& in);
X509_PublicKey* load_key(const std::string& file);
X509_PublicKey* load_key(const SecureVector<byte>& buffer);

}

Basically, X509::encode will take an X509 PublicKey (as of now, that’s any RSA, DSA, or Diffie-
Hellman key) and encodes it using enc, which can be either PEM or RAW BER. Using PEM is highly recommended
for many reasons, including compatibility with other software, for transmission over 8-bit unclean channels,
because it can be identified by a human without special tools, and because it sometimes allows more sane
behavior of tools that process the data. It will place the encoding into out. Remember that if you have
just created the Pipe that you are passing to X509::encode, you need to call start msg first. Particularly
with public keys, about 99% of the time you just want to PEM encode the key and then write it to a file or

14

something. In this case, it’s probably easier to use X509::PEM encode. This function will simply return
the PEM encoding of the key as a std::string.

For loading a public key, the preferred method is one of the variants of load key. This function will
return a newly allocated key based on the data from whatever source it is using (assuming, of course, the
source is in fact storing a representation of a public key). The encoding used (PEM or BER) need not be
specified; the format will be detected automatically. The key is allocated with new, and should be released
with delete when you are done with it. The first takes a generic DataSource which you have to allocate – the
others are simple wrapper functions that take either a filename or a memory buffer.

So what can you do with the return value of load key? On its own, a X509 PublicKey isn’t particularly
useful; you can’t encrypt messages or verify signatures, or much else. But, using dynamic cast, you can
figure out what kind of operations the key supports. Then, you can cast the key to the appropriate type
and pass it to a higher-level class. For example:

/* Might be RSA, might be ElGamal, might be ... */
X509_PublicKey* key = X509::load_key("pubkey.asc");

/* You MUST use dynamic_cast to convert, because of virtual bases */
PK_Encrypting_Key* enc_key = dynamic_cast<PK_Encrypting_Key*>(key);
if(!enc_key)

throw Some_Exception();
PK_Encryptor* enc = get_pk_encryptor(*enc_key, "EME1(SHA-1)");
SecureVector<byte> cipher = enc->encrypt(some_message, size_of_message);

15

5.7.2 Private Keys

There are two different options for private key import/export. The first is a plaintext version of the private
key. This is supported by the following functions:

namespace PKCS8 {
void encode(const PKCS8_PrivateKey& key, Pipe& to, X509_Encoding enc = PEM);

std::string PEM_encode(const PKCS8_PrivateKey& key);
}

These functions are basically the same as the X.509 functions described previously. The only difference is
that they take a PKCS8 PrivateKey type (which, again, can be either RSA, DSA, or Diffie-Hellman, but this
time the key must be a private key). In most situations, using these is a bad idea, because anyone can come
along and grab the private key without having to know any passwords or other secrets. Unless you have
very particular security requirements, always use the versions that encrypt the key based on a passphrase.
For importing, the same functions can be used for encrypted and unencrypted keys.

The other way to export a PKCS #8 key is to first encode it in the same manner as done above, then
encrypt it (using a passphrase and the techniques of PKCS #5), and store the whole thing into another
structure. This method is definitely preferred, since otherwise the private key is unprotected. The following
functions support this technique:

namespace PKCS8 {
void encrypt_key(const PKCS8_PrivateKey& key, Pipe& out,

std::string passphrase, std::string pbe = "",
X509_Encoding enc = PEM);

std::string PEM_encode(const PKCS8_PrivateKey& key, std::string passphrase,
std::string pbe = "");

}

To export an encrypted private key, call PKCS8::encrypt key. The key, out, and enc arguments are
similar in usage to the ones for PKCS8::encode. As you might notice, there are two new arguments for
PKCS8::encrypt key, however. The first is a passphrase (which you presumably got from a user somehow).
This will be used to encrypt the key. The second new argument is pbe; this specifies a particular password
based encryption (or PBE) algorithm.

The PEM encode version shown here is similar to the one that doesn’t take a passphrase. Essentially it
encrypts the key (using the default PBE algorithm), and then returns a C++ string with the PEM encoding
of the key.

If pbe is blank, then the default algorithm (controlled by the “base/default pbe” option) will be used. As
shipped, this default is “PBE-PKCS5v20(SHA-1,TripleDES/CBC)”. This is among the more secure options
of PKCS #5, and is widely supported among implementations of PKCS #5 v2.0. It offers 168 bits of
security against attacks, which should be more that sufficient. If you need compatibility with systems that
only support PKCS #5 v1.5, pass “PBE-PKCS5v15(MD5,DES/CBC)” as pbe. However, be warned that
this PBE algorithm only has 56 bits of security against brute force attacks.

There may be some strange programs out there that support the v2.0 extensions to PBES1 but not
PBES2; if you need to inter-operate with a program like that, use “PBE-PKCS5v15(MD5,RC2/CBC)”. For
example, OpenSSL supports this format (though since it also supports the v2.0 schemes, there is no reason
not to just use TripleDES). This scheme uses a 64 bit key, which, while significantly better than a 56 bit
key, is a bit too small for comfort.

Last but not least, there are some functions which is basically identical to X509::load key, which will
load, and possibly decrypt, a PKCS #8 private key:

16

namespace PKCS8 {
PKCS8_PrivateKey* load_key(DataSource& in, const User_Interface& ui);
PKCS8_PrivateKey* load_key(DataSource& in, std::string passphrase = "");

PKCS8_PrivateKey* load_key(const std::string& filename,
const User_Interface& ui);

PKCS8_PrivateKey* load_key(const std::string& filename,
const std::string& passphrase = "");

}

The versions that take std::string passphrases are primarily for compatibility, but they are useful
in limited circumstances. The User Interface versions are how load key is actually implemented, and
provides for much more flexibility. Essentially, if the passphrase given to the function is not correct, then an
exception is thrown and that is that. However, if you pass in an UI object instead, then the UI object can
keep asking the user for the passphrase until they get it right (or until they cancel the action, though the
UI interface). A User Interface has very little to do with talking to users; it’s just a way to glue together
Botan and whatever user interface you happen to be using. You can think of it as a user interface interface.
The default User Interface is actually very dumb, and effectively acts just like the versions taking the
std::string.

After loading a key, you can use dynamic cast to find out what operations it supports, and use it
appropriately. Remember to delete it once you are done with it.

5.7.3 Limitations

As of now Nyberg-Rueppel and Rabin-Williams keys cannot be imported or exported, because they have no
official ASN.1 OID or definition. ElGamal keys can (as of Botan 1.3.8) be imported and exported, but the
only other implementation which supports the format is Peter Gutmann’s Cryptlib. If you can help it, stick
to RSA and DSA.

Note: Currently NR and RW are given basic ASN.1 key formats (which mirror DSA and RSA, respec-
tively), which means that, if they are assigned an OID, they can be imported and exported just as easily
as RSA and DSA. You can assign them an OID by putting a line in a Botan configuration file, calling
OIDS::add oid, or editing src/policy.cpp. Be warned that it is possible that a future version will use a
format which is different from the current one (i.e., a newly standardized format).

17

6 Filters and Pipes

6.1 Basic Filter Usage

Up until this point, using Botan would be very tedious; to do anything you would have to bother with
putting data into arrays, doing whatever you want with it, and then sending it someplace. The filter
metaphor (defining a series of operations which take some amount of input, process it, then send it along
to the next filter) works very well in this situation. If you’ve ever used a Unix system, the usage of filters
in Botan should be very intuitive (and even if you haven’t, don’t worry, it’s pretty easy). For instance, here
is how you encrypt a file with AES in CBC mode with PKCS#7 padding, then encode it with Base64 and
send it to standard output (we assume that file is an open istream):

SymmetricKey key(32);
InitializationVector iv(16); // or use: block_size_of("AES")
Pipe encryptor(get_cipher("AES/CBC/PKCS7", key, iv, ENCRYPTION),

new Base64_Encoder);
encryptor.start_msg();
file >> encryptor;
encryptor.end_msg(); // flush buffers, complete computations
std::cout << encryptor;

Pipe works in conjunction with the Filter class (for example, the CBC Encryption and Base64 Encoder
types used above are Filters), but you never have to deal with them directly; Pipe handles all the required
housekeeping. Pipe is fully documented in the section titled “The Pipe API”, which appears later in this
section.

A useful ability of Pipe is to split up the work up into what are called “messages”. Messages are blocks
of data that are processed in an identical fashion (i.e., with the same sequence of Filters). Messages
are delimited by the start msg and end msg functions, as shown above. There are two different ways
to make use of messages. One is to send several messages through a Pipe without changing the Pipe’s
configuration, so you end up with a sequence of messages; one use of this would be to send a sequence of
identically encrypted UDP packets, for example (note that the data need not be identical; it is just that
each is encrypted, encoded, signed, etc in an identical fashion). Another is to change the filters that are
used in the Pipe between each message, by adding or removing Filters; functions that let you do this are
documented in the Pipe API section. Pipe’s full interface definition can be found in pipe.h

6.1.1 Fork

It’s fairly common that you might receive some data and want to perform more than one operation on it
(i.e., encrypt it with DES and calculate the MD5 hash of the plaintext at the same time). That’s where
Fork comes in. Fork is a filter that takes input and passes it on to one or more Filters which are attached
to it. Fork changes the nature of the pipe system completely. Instead of being a linked list, it becomes a
tree.

Before messages were added to Botan, using Fork was significantly more complicated, requiring you to
keep pointers to Fork objects you allocated and sending control information to them when you wanted to
read your output. Now, however, things are much simpler. Each Filter in the fork is given its own output
buffer, and thus its own message. For example, if you have previously written two messages into a Pipe, then
you start a new one with a Fork which has three paths of Filter’s inside it, you add three new messages to
the Pipe. The data you put into the Pipe is duplicated and sent into each set of Filters, and the eventual
output is placed into a dedicated message slot in the Pipe.

Messages in the Pipe are allocated in a depth-first manner. This is only interesting if you are using more
than one Fork in a single Pipe. As an example, consider the following:

18

Pipe pipe(new Fork(
new Fork(

new Base64_Encoder,
new Fork(

NULL,
new Base64_Encoder
)

),
new Hex_Encoder
)

);

In this case, message 0 will be the output of the first Base64 Encoder, message 1 will be a copy of
the input (see below for how Fork interprets NULL pointers), message 2 will be the output of the second
Base64 Encoder, and message 3 will be the output of the Hex Encoder. As you can see, this results in
message numbers being allocated in a top to bottom fashion, when looked at on the screen. However, note
that there could be potential for bugs if this is not anticipated. For example, if your code is passed a Filter,
and you assume it is a “normal” one which only uses one message, your message offsets would be wrong,
leading to some confusion during output.

An alternate method (which is not used) would be to give the first message to the first Base64 Encoder,
the second to the Hex Encoder, and then the last two messages to the two Filters in the innermost Fork.

The hasher and hasher2 examples show two different ways of using Pipe and Fork.

There is a very useful trick that you can do with Fork. Let’s say you had some data that had been
encrypted with a block cipher, and then hex encoded. In addition, a hex encoded MAC of the plaintext had
been calculated and included with the message. You not only want to decrypt the data, you want to verify
the MAC. So the first two filters in the pipe will decode the hex, and decrypt the raw ciphertext. But now,
how are you going to both a) get the plaintext, and b) calculate the MAC of the plaintext? This is actually
very simple, if a bit obscure.

What you have to do is, after the filters that do the initial decoding, create a Fork. For the first argument,
pass a null pointer. The fork object will understand that this means that you don’t want to do any more
processing on that line of the fork; you just want the data that was placed in. And then in the second
argument you would pass in a MAC Filter so you could compute a MAC of the plaintext. An alternative is
to define a simple passthrough/null Filter, which just calls send whenever write is called. This is (in the
author’s opinion) pointless, but there is nothing stopping you from doing so if desired.

For an example of this technique, look at the rsa dec example in doc/examples/.

Any Filters which are attached to the Pipe after the Fork are implicitly attached onto the first branch
created by the fork. For example, let’s say you created this Pipe:

Pipe pipe(new Fork(new Hash_Filter("MD5"), new Hash_Filter("SHA-1")),
new Hex_Encoder);

And then called start msg, inserted some data, then end msg. Then pipe would contain two messages.
The first one (message number 0) would contain the MD5 sum of the input in hex encoded form, and the
other would contain the SHA-1 sum of the input in raw binary.

6.1.2 Chain

Chain is about as simple as it gets. Chain creates a chain of Filters and encapsulates them inside a single
filter (itself). This is primarily useful for passing a sequence of filters into something which is expecting only
a single Filter (most notably, Fork). You can call Chain’s constructor with up to 4 Filter*s (they will
be added in order), or with an array of Filter*s and a u32bit which tells Chain how many Filter*s are

19

in the array (again, they will be attached in order). See the section “A Filter Example” for an example of
using Chain.

6.1.3 Data Sources

A DataSource is a simple abstraction for a thing that stores bytes. This type is used fairly heavily in
the areas of the API related to ASN.1 encoding/decoding. The following types are DataSources: Pipe,
SecureQueue, and a couple of special purpose ones: DataSource Memory and DataSource Stream.

You can create a DataSource Memory with an array of bytes and a length field. The object will make
a copy of the data, so you don’t have to worry about keeping that memory allocated. This is mostly for
internal use, but if it comes in handy, feel free to use it.

A DataSource Stream is probably more useful than the memory based one. It’s constructors take either
a std::istream or a std::string. If it’s a stream, the data source will use the istream to satisfy read
requests (this is particularly useful to use with std::cin). If the string version is used, it will attempt to
open up a file with that name and read from it.

6.1.4 Data Sinks

A DataSink (in data snk.h) is a Filter which takes arbitrary amounts of input, and produces no output.
Generally, this means it’s doing something with the data outside the realm of what Filter/Pipe can handle,
for example, writing it to a file (which is what the DataSink Stream does). There is no need for DataSinks
which write to a std::string or memory buffer, because Pipe can handle that by itself.

Here’s a quick example of using a DataSink, which encrypts in.txt and sends the output to out.txt.
There is no explicit output operation; the writing of out.txt is implicit.

DataSource_Stream in("in.txt");
Pipe pipe(new CBC_Encryption("Blowfish", "PKCS7", key, iv),

new DataSink_Stream("out.txt"));
pipe.process_msg(in);

A real advantage of this is that even if “in.txt” is large (say, 1 gigabyte), only as much memory is needed
for internal I/O buffers will actually be used. A naive use of Pipe would, in that case, use up about 1
gigabyte of memory, by storing the full encrypted version of the file in memory, and then writing it all out
at once.

6.2 The Pipe API

Using Pipe is supposed to be pretty easy (especially in the common, simple cases). The usage is generally
as follows: Initialize a Pipe with the filters you want to use, write some data into it, and then read some
processed data out.

6.2.1 Initializing Pipe

By default, Pipe will do nothing at all; any input placed into the Pipe will be read back unchanged.
Obviously, this has limited utility, and presumably you want to use one or more Filters to somehow process
the data. First, you can choose a set of Filters to initialize the Pipe with via the constructor. Namely,
you can pass it either a set of up to 4 Filter*s, or a pre-defined array and a length:

Pipe pipe1(new Filter1(/*args*/), new Filter2(/*args*/),
new Filter3(/*args*/), new Filter4(/*args*/));

20

Pipe pipe2(new Filter1(/*args*/), new Filter2(/*args*/));

Filter* filters[5] = {
new Filter1(/*args*/), new Filter2(/*args*/), new Filter3(/*args*/),
new Filter4(/*args*/), new Filter5(/*args*/) /* more if desired... */

};
Pipe pipe3(filters, 5);

This is by far the most common way to initialize a Pipe. However, occasionally a more flexible initializa-
tion strategy is necessary; this is supported by 4 member functions: prepend(Filter*), append(Filter*),
pop(), and reset(). These functions may only be used while the Pipe in question is not in use; that is,
either before calling start msg, or after end msg has been called (and no new calls to start msg have
been made yet).

The function reset() simply removes all the Filters which the Pipe is currently using – it is reset to
an initialize, “empty” state. Any data which is being retained by the Pipe is retained after a reset(), and
reset() does not affect the message numbers (discussed later).

Calling prepend and append will either prepend or append the passed Filter object to the list of
transformations. For example, if you prepend a Filter implementing encryption, and the Pipe already
had a Filter which hex encoded the input, then the next set of input would be first encrypted, then
hex encoded. Alternately, if you called append, then the input would be first be hex encoded, and then
encrypted (which is not terribly useful in this particular example).

Finally, calling pop() will remove the first transformation of the Pipe. Say we had called prepend to
put an encryption Filter into a Pipe; calling pop() would remove this Filter and return the Pipe to it’s
state before we called prepend.

6.2.2 Giving Data to a Pipe

Input to a Pipe is delimited into messages, which can be read from independently (i.e., you can read 5 bytes
from one message, and then all of another message, without either read affecting any other messages). The
messages are delimited by calls to start msg and end msg. In between these two calls, you can write data
into a Pipe, and it will be processed by the Filter(s) that it contains. Writes at any other time are invalid,
and will result in an exception.

As to writing, you can call any of the functions called write(), which can take any of: a byte[]/u32bit
pair, a SecureVector<byte>, a std::string, a DataSource&, or a single byte.

Sometimes, you may want to do only a single write per message. In this case, you can use the pro-
cess msg series of functions, which start a message, write their argument into the Pipe, and then end the
message. In this case you would not make any explicit calls to start msg/end msg. The version of write
which takes a single byte is not supported by process msg, but all the other variants are.

Pipe can also be used with the >> operator, and will accept a std::istream, (or on Unix systems with
the fd_unix module), a Unix file descriptor. In either case, the entire contents of the file will be read into
the Pipe.

6.2.3 Getting Output from a Pipe

Retrieving the processed data from a Pipe is a bit more complicated, for various reasons. In particular,
because Pipe will separate each message into a separate buffer, you have to be able to retrieve data from
each message independently. Each of Pipe’s read functions has a final parameter which specifies what
message to read from (as a 32-bit integer). If this parameter is set to Pipe::DEFAULT MESSAGE, it will read
the current default message (DEFAULT MESSAGE is also the default value of this parameter). The parameter
will not be mentioned in further discussion of the reading API, but it is always there (unless otherwise
noted).

21

Reading is done with a variety of functions. The most basic are u32bit read(byte out[], u32bit len)
and u32bit read(byte& out). Each reads into out (either up to len bytes, or a single byte for the one
taking a byte&), and returns the total number of bytes read. There is a variant of these functions, all named
peek, which performs the same operations, but does not remove the bytes from the message (reading is a
destructive operation with a Pipe).

There are also the functions SecureVector<byte> read all(), and std::string read all as string(),
which return the entire contents of the message, either as a memory buffer, or a std::string (which is
generally only useful is the Pipe has encoded the message into a text string, such as when a Base64 Encoder
is used).

To determine how many bytes are left in a message, call u32bit remaining() (which can also take an
optional message number). Finally, there are some functions for managing the default message number:
u32bit default msg() will return the current default message, u32bit message count() will return the
total number of messages (0...message count()-1), and set default msg(u32bit msgno) will set a new
default message number (which must be a valid message number for that Pipe). The ability to set the
default message number is particularly important in the case of using the file output operations (<< with a
std::ostream or Unix file descriptor), because there is no way to specify it explicitly when using the output
operator.

22

6.3 A Filter Example

Here is some code which takes one or more filenames in argv and calculates the result of several hash
functions for each file. The complete program can be found as hasher.cpp in the Botan distribution. For
brevity, most error checking has been removed.

string name[3] = { "MD5", "SHA-1", "RIPEMD-160" };
Botan::Filter* hash[3] = {

new Botan::Chain(new Botan::Hash_Filter(name[0]),
new Botan::Hex_Encoder),

new Botan::Chain(new Botan::Hash_Filter(name[1]),
new Botan::Hex_Encoder),

new Botan::Chain(new Botan::Hash_Filter(name[2]),
new Botan::Hex_Encoder) };

Botan::Pipe pipe(new Botan::Fork(hash, COUNT));

for(u32bit j = 1; argv[j] != 0; j++)
{
ifstream file(argv[j]);
pipe.start_msg();
file >> pipe;
pipe.end_msg();
file.close();
for(u32bit k = 0; k != 3; k++)

{
pipe.set_default_msg(k);
cout << name[k] << "(" << argv[j] << ") = " << pipe << endl;
}

}

23

6.4 Rolling Your Own

Well, now that you know how filters work in Botan, you might want to write your own. Lucky for you,
all of the hard work is done by the Filter base class, leaving you to handle the details of what your
filter is supposed to do. Remember that if you get confused about any of this, you can always look at the
implementation of Botan’s filters to see exactly how everything works.

There are basically only four functions that a filter need worry about:

void write(byte input[], u32bit length):

The write function is what is called when a filter receives input for it to process. The filter is not required
to process it right away; many filters buffer their input before producing any output. A filter will usually
have write called many times during it’s lifetime.

void send(byte output[], u32bit length):

Eventually, a filter will want to produce some output to send along to the next filter in the pipeline. It
does so by calling send with whatever it wants to send along to the next filter. There is also a version of
send taking a single byte argument, as a convenience.

void start msg():

This function is optional. Implement it if your Filter would like to do some processing or setup at the
start of each message (for an example, see the Zlib compression module).

void end msg():

Implementing the end msg function is optional. It is called when it has been requested that filters
finish up their computations. Note that they must not deallocate their resources; this should be done by
their destructor. They should simply finish up with whatever computation they have been working on (for
example, a compressing filter would flush the compressor and send the final block), and empty any buffers
in preparation for processing a fresh new set of input. It is essentially the inverse of start msg.

Additionally, if necessary, filters can define a constructor that takes any needed arguments, and a de-
structor to deal with deallocating memory, closing files, etc.

There is also a BufferingFilter class (in buf filt.h) which will take a message and split it up into an
initial block which can be of any size (including zero), a sequence of fixed sized blocks of any non-zero size,
and last (possibly zero-sized) final block. This might make a useful base class for your filters, depending on
what you have in mind.

24

6.5 Filter Catalog

This section contains descriptions of every Filter included in Botan. Note that modules which provide
Filters are documented elsewhere – these Filters are available on any installation of Botan.

6.5.1 Keyed Filters

A few sections ago, it was mentioned that Pipe can process multiple messages, treating each of them exactly
the same. Well, that was a bit of a lie. There are some algorithms (in particular, block ciphers not in ECB
mode, and all stream ciphers) that change their state as data is put through them.

Naturally, you might well want to reset the keys or (in the case of block cipher modes) IVs used by such
filters, so multiple messages can be processed using completely different keys, or new IVs, or new keys and
IVs, or whatever. And in fact, even for a MAC or an ECB block cipher, you might well want to change the
key used from message to message.

Enter Keyed Filter. It’s a base class of any filter that is keyed: block cipher modes, stream ciphers,
MACs, whatever. It has two functions, set key and set iv. Calling set key will, naturally, set (or reset)
the key used by the algorithm. Setting the IV only makes sense in certain algorithms – a call to set iv on an
object that doesn’t support IVs will be ignored. You must call set key before calling set iv: while not all
Keyed Filter objects require this, you should assume it is required anytime you are using a Keyed Filter.

Here’s a example:

Keyed_Filter *cast, *hmac;
Pipe pipe(new Base64_Decoder,

// Note the assignments to the cast and hmac variables
cast = new CBC_Decryption("CAST-128", "PKCS7", cast_key, iv),
new Fork(

0, // Read the section ’Fork’ to understand this
new Chain(

hmac = new MAC_Filter("HMAC(SHA-1)", mac_key, 12),
new Base64_Encoder
)

)
);

pipe.start_msg();
[use pipe for a while, decrypt some stuff, derive new keys and IVs]
pipe.end_msg();

cast->set_key(cast_key2);
cast->set_iv(iv2);
hmac->set_key(mac_key2);

pipe.start_msg();
[use pipe for some other things]
pipe.end_msg();

There are some requirements to using Keyed Filter which you must follow. If you call set key or
set iv on a filter which is owned by a Pipe, you must do so while the Pipe is “unlocked”. This refers to
the times when no messages are being processed by Pipe – either before Pipe’s start msg is called, or
after end msg is called (and no new call to start msg has happened yet). Doing otherwise will result in
undefined behavior, probably silently getting invalid output.

And remember: if you’re resetting both values, reset the key first.

25

6.5.2 Cipher Filters

Getting ahold of a Filter implementing a cipher is very easy. Simply make sure you’re including the header
lookup.h, and call get cipher. Generally you will pass the return value directly into a Pipe. There are
actually a couple different functions, which do pretty much the same thing:

get cipher(std::string cipher spec, SymmetricKey key, InitializationVector iv, Cipher Dir dir);

get cipher(std::string cipher spec, SymmetricKey key, Cipher Dir dir);

The version that doesn’t take an IV is useful for things that don’t use them, like block ciphers in ECB
mode, or most stream ciphers. If you specify a cipher spec that does want a IV, and you use the version that
doesn’t take one, an exception will be thrown. The dir argument can be either ENCRYPTION or DECRYPTION.
In a few cases, like most (but not all) stream ciphers, these are equivalent, but even then it provides a way
of showing the “intent” of the operation to readers of your code.

The cipher spec is a string that specifies what cipher is to be used. The general syntax for cipher spec
is “STREAM CIPHER”, “BLOCK CIPHER/MODE”, or “BLOCK CIPHER/MODE/PADDING”. In the
case of stream ciphers, no mode is necessary, so just the name is sufficient. A block cipher requires a mode
of some sort, which can be “ECB”, “CBC”, “CFB(n)”, “OFB”, “CTR-BE”, or “EAX(n)”. The argument
to CFB mode is how many bits of feedback should be used. If you just use “CFB” with no argument, it
will default to using a feedback equal to the block size of the cipher. EAX mode also takes an optional bit
argument, which tells EAX how large a tag size to use – generally this is the size of the block size of the
cipher, which is the default if you don’t specify any argument.

In the case of the ECB and CBC modes, a padding method can also be specified. If it is not supplied,
ECB defaults to not padding, and CBC defaults to using PKCS #5/#7 compatible padding. The padding
methods currently available are “NoPadding”, “PKCS7”, “OneAndZeros”, and “CTS”. CTS padding is
currently only available for CBC mode, but the others can also be used in ECB mode.

Some example cipher spec arguments are: “DES/CFB(32)”, “TripleDES/OFB”, “Blowfish/CBC/CTS”,
“SAFER-SK(10)/CBC/OneAndZeros”, “AES/EAX”, “ARC4”

“CTR-BE” refers to counter mode where the counter is incremented as if it were a big-endian encoded
integer. This is compatible with most other implementations, but it is possible some will use the incompatible
little endian convention. This version would be denoted as “CTR-LE” if it were supported.

“EAX” is a new cipher mode designed by Wagner, Rogaway, and Bellare. It is an authenticated cipher
mode (that is, no separate authentication is needed), has provable security, and is free from patent entan-
glements. It runs about half as fast as most of the other cipher modes (like CBC, OFB, or CTR), which is
not bad considering you don’t need to use an authentication code.

6.5.3 Hashes and MACs

Hash functions and MACs don’t need anything special when it comes to filters. Both just take their input
and produce no output until end msg() is called, at which time they complete the hash or MAC and send
that as output.

These Filters take a string naming the type to be used. If for some reason you name something that
doesn’t exist, an exception will be thrown.

Hash Filter(std::string hash, u32bit outlength):

This type hashes it’s input with hash. When end msg is called on the owning Pipe, the hash is completed
and the digest is sent on to the next thing in the pipe. The argument outlength specifies how much of the
output of the hash will be passed along to the next filter when end msg is called. By default, it will pass
the entire hash.

Examples of names for Hash Filter are “SHA-1” and “Whirlpool”.

MAC Filter(std::string mac, const SymmetricKey& key, u32bit outlength):

26

The constructor for a MAC Filter takes a key, used in calculating the MAC, and a length parameter,
which has semantics exactly the same as the one passed to Hash Filters constructor.

Examples for mac are “HMAC(SHA-1)”, “MD5-MAC”, and the exceptionally long, strange, and probably
useless name “OMAC(Lion(Tiger(20,3),SEAL(8192),1024))”.

6.5.4 PK Filters

There are four classes in this category, PK Encryptor Filter, PK Decryptor Filter, PK Signer Filter,
and PK Verifier Filter. Each takes a pointer to an object of the appropriate type (PK Encryptor,
PK Decryptor, etc) which is deleted by the destructor. These classes are found in pk filts.h.

Three of these, for encryption, decryption, and signing are pretty much identical conceptually. Each
of them buffers it’s input until the end of the message is marked with a call to the end msg function.
Then they encrypt, decrypt, or sign their input and send the output (the ciphertext, the plaintext, or the
signature) into the next filter.

Signature verification works a little differently, because it needs to know what the signature is in order
to check it. You can either pass this in along with the constructor, or call the function set signature –
with this second method, you need to keep a pointer to the filter around so you can send it this command.
In either case, after end msg is called, it will try to verify the signature (if the signature has not been set
by either method, an exception will be thrown here). It will then send a single byte onto the next filter – a
1 or a 0, which specifies whether the signature verified or not (respectively).

For more information about PK algorithms (including creating the appropriate objects to pass to the
constructors), read the section “Public Key Cryptography” in this manual.

6.5.5 Encoders

Often you want your data to be in some form of text (for sending over channels which aren’t 8-bit clean,
printing it, etc). The filters Hex Encoder and Base64 Encoder will convert arbitrary binary data into hex
or base64 formats. Not surprisingly, you can use Hex Decoder and Base64 Decoder to convert it back into
it’s original form.

Both of the encoders can take a few options about how the data should be formatted (all of which have
defaults). The first is a bool which simply says if the encoder should insert line breaks. This defaults to
false. Line breaks don’t matter either way to the decoder, but it makes the output a bit more appealing
to the human eye, and a few transport mechanisms (notably some email systems) limit the maximum line
length.

The second encoder option is an integer specifying how long such lines will be (obviously this will be
ignored if line-breaking isn’t being used). The default tends to be in the range of 60-80 characters, but is
not specified exactly. If you want a specific value, set it. Otherwise the default should be fine.

Lastly, Hex Encoder takes an argument of type Case, which can be Uppercase or Lowercase (default is
Uppercase). This specifies what case the characters A-F should be output as. The base64 encoder has no
such option, because it uses both upper and lower case letters for it’s output.

The decoders both take a single option, which tells it how the object should behave in the case of
invalid input. The enum (called Decoder Checking) can take on any of three values: NONE, IGNORE WS, and
FULL CHECK. With NONE (the default, for compatibility with previous releases), invalid input (for example, a
“z” character in supposedly hex input) will simply be ignored. With IGNORE WS, whitespace will be ignored
by the decoder, but receiving other non-valid data will raise an exception. Finally, FULL CHECK will raise an
exception for any characters not in the encoded character set, including whitespace.

You can find the declarations for these types in hex.h and base64.h.

27

7 Certificate Handling

A certificate is essentially a binding between some identifying information of a person or other entity (called
a subject) and a public key. This binding is asserted by a signature on the certificate, which is placed there
by some authority (the issuer) which at least claims that it knows the subject that is named in the certificate
really “owns” the private key corresponding to the public key in the certificate.

The major certificate format in use today is X.509v3, designed by ISO and further hacked on by dozens
(hundreds?) of other organizations.

When working with certificates, the main class to remember is X509 Certificate. You can read an
object of this type, but you can’t create one on the fly; a CA object is necessary for actually making a new
certificate. So for the most part, you only have to worry about reading them in, verifying the signatures, and
getting the bits of data in them (most commonly the public key, and the information about the user of that
key). An X.509v3 certificate can contain a literally infinite number of items related to all kinds of things.
Botan doesn’t support a lot of them, simply because nobody uses them and they’re an impossible mess to
work with. This section only documents the most commonly used ones of the ones that are supported; for
the rest, read x509cert.h and asn1 obj.h (which has the definitions of various common ASN.1 constructs
used in X.509).

7.1 So what’s in an X.509 certificate?

Obviously, you want to be able to get the public key. This is achieved by calling the member function sub-
ject public key, which will return a X509 PublicKey*. As to what to do with this, read about load key
in the section “Importing and Exporting PK Keys”. In the general case, this could be any kind of public key,
though 99% of the time it will be an RSA key. However, Diffie-Hellman and DSA keys are also supported,
so be careful about how you treat this. It is also a wise idea to examine the value returned by constraints,
to see what uses the public key is approved for.

The second major piece of information you’ll want is the name/email/etc of the person to whom this
certificate is assigned. Here is where things get a little nasty. X.509v3 has two (well, mostly just two . . .)
different places where you can stick information about the user: the subject field, and in an extension called
subjectAlternativeName. The subject field is supposed to only included the following information: country,
organization (possibly), an organizational sub-unit name (possibly), and a so-called common name. The
common name is usually the name of the person, or it could be a title associated with a position of some
sort in the organization. It may also include fields for state/province and locality. What exactly a locality
is, nobody knows, but it’s usually given as a city name.

Botan doesn’t currently support any of the Unicode variants used in ASN.1 (UTF-8, UCS-2, and UCS-4),
any of which could be used for the fields in the DN. This could be problematic, particularly in Asia and
other areas where non-ASCII characters are needed for most names. The UTF-8 and UCS-2 string types
are accepted (in fact, UTF-8 is used when encoding much of the time), but if any of the characters included
in the string are not in ISO 8859-1 (i.e.0 . . . 255), an exception will get thrown. Currently the ASN1 String
type holds it’s data as ISO 8859-1 internally (regardless of local character set); this would have to be changed
to hold UCS-2 or UCS-4 in order to support Unicode (also, many interfaces in the X.509 code would have
to accept or return a std::wstring instead of a std::string).

Like the distinguished names, subject alternative names can contain a lot of things that Botan will flat
out ignore (most of which you would never actually want to use). However, there are three very useful
pieces of information which this extension might hold: an email address (“person@site1.com”), a DNS name
(“somehost.site2.com”), or a URI (“http://www.site3.com”).

So, how to get the information? Simply call subject info with the name of the piece of information you
want, and it will return a std::string which is either empty (signifying that the certificate doesn’t have
this information), or has the information requested. There are several names for each possible item, but
the most easily readable ones are: “Name”, “Country”, “Organization”, “Organizational Unit”, “Locality”,

28

“State”, “RFC822”, “URI”, and “DNS”. These values are returned as a std::string.

You can also get information about the issuer of the certificate in the same way, using issuer info.

7.1.1 X.509v3 Extensions

X.509v3 specifies a large number of possible extensions. Botan supports some, but by no means all of them.
This section lists which ones are supported, and notes areas where there may be problems with the handling.
You have to be pretty familiar with X.509 in order to understand what this is talking about.

· Key Usage and Extended Key Usage: No problems known.

·· Basic Constraints: No problems known. The default for a v1/v2 certificate is assume it’s a CA if and
only if the option “x509/default to ca” is set. A v3 certificate is marked as a CA if (and only if) the
basic constraints extension is present and set for a CA cert.

· Subject Alternative Names: Only the “rfc822Name”, “dNSName”, and “uniformResourceIdentifier”
fields will be stored; all others are ignored.

· Issuer Alternative Names: Same restrictions as the Subject Alternative Names extension. New certifi-
cates generated by Botan never include the issuer alternative name.

· Authority Key Identifier: Only the version using KeyIdentifier is supported. If the GeneralNames
version is used and the extension is critical, an exception is thrown. If both the KeyIdentifier and
GeneralNames versions are present, then the KeyIdentifier will be used, and the GeneralNames ignored.

· Subject Key Identifier: No problems known.

7.1.2 Revocation Lists

It will occasionally happen that a certificate must be revoked before it’s expiration date. Examples of this
happening include the private key being compromised, or the user to which it has been assigned leaving an
organization. Certificate revocation lists are an answer to this problem (though online certificate validation
techniques are starting to become somewhat more popular). Essentially, every once in a while the CA will
release a CRL, listing all certificates which have been revoked. Also included is various pieces of information
like what time a particular certificate was revoked, and for what reason. In most systems, it is wise to
support some form of certificate revocation, and CRLs handle this fairly easily.

For most users, processing a CRL is quite easy. All you have to do is call the constructor, which will
take a filename (or a DataSource&). The CRLs can either be in raw BER/DER, or in PEM format; the
constructor will figure out which format without any extra information. For example:

X509_CRL crl1("crl1.der");

DataSource_Stream in("crl2.pem");
X509_CRL crl2(in);

After that, pass the X509 CRL object to a X509 Store object with X509 Code add crl(X509 CRL), and
all future verifications will take into account the certificates listed, assuming add crl returns VERIFIED. If
it doesn’t return VERIFIED, then the return value is an error code signifying that the CRL could not be
processed due to some problem (which could range from the issuing certificate not being found, to the CRL
having some format problem). For more about the X509 Store API, read the section later in this chapter.

29

7.2 Reading Certificates

X509 Certificate has two constructors, each of which takes a source of data; a filename to read, and a
DataSource&.

7.3 Storing and Using Certificates

If you read a certificate, you probably want to verify the signature on it. However, consider that to do so,
we may have to verify the signature on the certificate that we used to verify the first certificate, and on and
on until we hit the top of the certificate tree somewhere. It would be a might huge pain to have to handle
all of that manually in every application, so there is something that does it for you: X509 Store.

This is a pretty easy thing to use. The basic operations are: put certificates and CRLs into it, search for
certificates, and attempt to verify certificates. That’s about it. In the future, there will be support for online
retrieval of certificates and CRLs (e.g.with the HTTP cert-store interface currently under consideration by
PKIX).

7.3.1 Adding Certificates

You can add new certificates to a certificate store using any of these functions:

add cert(const X509 Certificate& cert, bool trusted = false)

add certs(DataSource& source)

add trusted certs(DataSource& source)

The versions that take a DataSource& will add all of the certificates that it can find in that source.

All of them add the cert(s) to the store. The ’trusted’ certificates are the ones which you have some
reason to trust are genuine. For example, say your application is working with certificates which are owned by
employees of some company, and all of their certificates are signed by the company CA, whose certificate is in
turned signed by a commercial root CA. What you would then do is include the certificate of the commercial
CA with your application, and read it in as a trusted certificate. From there, you could verify the company
CA’s certificate, and then use that to verify the end user’s certificates. Only self-signed certificates may be
considered trusted.

7.3.2 Adding CRLs

X509 Code add crl(const X509 CRL& crl);

This will process the CRL and mark the revoked certificates. This will also work if a revoked certificate
is added to the store sometime after the CRL is processed. The function can return an error code (listed
later), or will return VERIFIED if everything completed successfully.

7.3.3 Storing Certificates

You can output a set of certificates by calling PEM encode, which will return a std::string containing
each of the certificates in the store, PEM encoded and concatenated. This simple format can easily be read
by both Botan and other libraries/applications.

30

7.3.4 Searching for Certificates

You can find certificates in the store with a series of functions contained in the X509 Store Search names-
pace:

namespace X509_Store_Search {
std::vector<X509_Certificate> by_email(const X509_Store& store,

const std::string& email_addr);
std::vector<X509_Certificate> by_name(const X509_Store& store,

const std::string& name);
std::vector<X509_Certificate> by_dns(const X509_Store&,

const std::string& dns_name);
}

These functions will return a (possibly empty) vector of certificates from store matching your search
criteria. The email address and DNS name searches are case-insensitive but are sensitive to extra whites-
pace and so on. The name search will do case-insensitive substring matching, so, for example, calling
X509 Store Search::by name(your store, “dob”) will return certificates for “J.R. ’Bob’ Dobbs” and “H.
Dobbertin”, assuming both of those certificates are in your store.

You could then display the results to a user, and allow them to select the appropriate one. Searching
using an email address as the key is usually more effective than the name, since email addresses are rarely
shared.

7.3.5 Certificate Stores

An object of type Certificate Store is a generalized interface to an external source for certificates (and
CRLs). Examples of such a store would be one that looked up the certificates in a SQL database, or by
contacting a CGI script running on a HTTP server. There are currently three mechanisms for looking up
a certificate, and one for retrieving CRLs. By default, most of these mechanisms will simply return an
empty std::vector of X509 Certificate. This storage mechanism is only queried when doing certificate
validation: it allows you to distribute only the root key with an application, and let some online method
handle getting all the other certificates that are needed to validate an end entity certificate. In particular,
the search routines will not attempt to access the external database.

The three certificate lookup methods are by SKID (Subject Key Identifier), by name (the Common-
Name DN entry), and by email (stored in either the distinguished name, or in a subjectAlternative-
Name extension). The name and email versions take a std::string, while the SKID version takes a
SecureVector<byte> containing the subject key identifier in raw binary. You can choose not to implement
by name or by email, but by SKID is mandatory to implement, and, currently, is the only version which
is used by X509 Store.

Finally, there is a method for finding CRLs, called get crls for, which takes an X509 Certificate
object, and returns a std::vector of X509 CRL. While generally there will be only one CRL, the use of
the vector makes it easy to return no CRLs (e.g., if the certificate store doesn’t support retrieving them),
or return multiple ones (for example, if the certificate store can’t determine precisely which key was used
to sign the certificate). Implementing the function is optional, and by default will return no CRLs. If it is
available, it will be used by X509 CRL.

As for actually using such a store, you have to tell X509 Store about it, by calling the X509 Store
member function

add new certstore(Certificate Store* new store)

The argument, new store, will be deleted by X509 Store’s destructor, so make sure to allocate it with
new.

31

7.3.6 Verifying Certificates

There is a single function in X509 Store related to verifying a certificate:

X509 Code validate cert(const X509 Certificate& cert, Cert Usage usage = ANY)

To sum things up simply, it returns VERIFIED if the certificate can safely be considered valid for the
usage(s) described by usage, and an error code if it is not. Naturally, things are a bit more complicated than
that. The enum Cert Usage is defined inside the X509 Store class, it (currently) can take on any of the
values ANY (any usage is OK), TLS SERVER (for SSL/TLS server authentication), TLS CLIENT (for SSL/TLS
client authentication), CODE SIGNING, EMAIL PROTECTION (email encryption, usually this means S/MIME),
TIME STAMPING (in theory any time stamp application, usually IETF PKIX’s Time Stamp Protocol), or
CRL SIGNING. Note that Microsoft’s code signing system, certainly the most widely used, uses a completely
different (and basically undocumented) method for marking certificates for code signing.

First, how does it know if a certificate is valid? Basically, a certificate is valid if both of the following
hold: a) the signature in the certificate can be verified using the public key in the issuer’s certificate, and
b) the issuer’s certificate is a valid CA certificate. Note that this definition is recursive. We get out of this
by “bottoming out” when we reach a certificate that we consider trusted. In general this will either be a
commercial root CA, or an organization or application specific CA.

There are actually a few other restrictions (validity periods, key usage restrictions, etc), but the above
summarizes the major points of the validation algorithm. In theory, Botan implements the certificate path
validation algorithm given in RFC 2459, but in practice it does not (yet), because we don’t support the
X.509v3 policy or name constraint extensions.

Possible values for usage are TLS SERVER, TLS CLIENT, CODE SIGNING, EMAIL PROTECTION, CRL SIGNING,
and TIME STAMPING, and ANY. The default ANY does not mean valid for any use, it means “is valid for some
usage”. This is generally fine, and in fact requiring that a random certificate support a particular usage will
likely result in a lot of failures, unless your application is very careful to always issue certificates with the
proper extensions, and you never use certificates generated by other apps.

Return values for validate cert (and add crl) include:

· VERIFIED: The certificate is valid for the specified use.

·· INVALID USAGE: The certificate cannot be used for the specified use.

· CANNOT ESTABLISH TRUST: The root certificate was not marked as trusted.

· CERT CHAIN TOO LONG: The certificate chain exceeded the length allowed by a basicConstraints
extension.

· SIGNATURE ERROR: An invalid signature was found

· POLICY ERROR: Some problem with the certificate policies was found.

· CERT FORMAT ERROR: Some format problem was found in a certificate.

· CERT ISSUER NOT FOUND: The issuer of a certificate could not be found.

· CERT NOT YET VALID: The certificate is not yet valid.

· CERT HAS EXPIRED: The certificate has expired.

· CERT IS REVOKED: The certificate has been revoked.

· CRL FORMAT ERROR: Some format problem was found in a CRL.

· CRL ISSUER NOT FOUND: The issuer of a CRL could not be found.

· CRL NOT YET VALID: The CRL is not yet valid.

32

· CRL HAS EXPIRED: The CRL has expired.

· CA CERT CANNOT SIGN: The CA certificate found does not have an contain a public key that
allows signature verification.

· CA CERT NOT FOR CERT ISSUER: The CA cert found is not allowed to issue certificates.

· CA CERT NOT FOR CRL ISSUER: The CA cert found is not allowed to issue CRLs.

· UNKNOWN X509 ERROR: Some other error occurred.

7.4 Certificate Authorities

Setting up a CA for X.509 certificates is actually probably the easiest thing to do related to X.509. A CA is
represented by the type X509 CA, which can be found in x509 ca.h. A CA always needs it’s own certificate,
which can either be a self-signed certificate (see below on how to create one) or one issued by another CA
(see the section on PKCS #10 requests). Creating a CA object is done by the following constructor:

X509_CA(const X509_Certificate& cert, const PKCS8_PrivateKey& key);

The private key is the private key corresponding to the public key in the the CA’s certificate.

Generally, requests for new certificates are supplied to a CA in the form on PKCS #10 certificate requests
(called a PKCS10 Request object in Botan). These are decoded in a similar manner to certificates/CRLs/etc.
Generally, a request is vetted by humans (who somehow verify that the name in the request corresponds to
the name of the person who requested it), and then signed by a CA key, generating a new certificate.

X509_Certificate sign_request(const PKCS10_Request&) const;

7.4.1 Generating CRLs

As mentioned previously, the ability to process CRLs is highly important in many PKI systems. In fact,
according to strict X.509 rules, you must not validate any certificate if the appropriate CRLs are not available
(though hardly any systems are that strict). In any case, a CA should have a valid CRL available at all
times.

Of course, you might be wondering what to do if no certificates have been revoked. In fact, CRLs can
be issued without any actually revoked certificates - the list of certs will simply be empty. To generate
a new, empty CRL, just call X509 CRL X509 CA::new crl(u32bit seconds = 0) – it will create a new,
empty, CRL. If seconds is the default 0, then the normal default CRL next update time (the value of the
“x509/crl/next update”) will be used. If not, then seconds specifies how long (in seconds) it will be until
the CRL’s next update time (after this time, most clients will reject the CRL as too old).

On the other hand, you may have issued a CRL before. In which case, you will want to issue a new
CRL which contains both all previously revoked certificates, along with any new ones. This is done by
calling the X509 CA member function update crl(X509 CRL old crl, std::vector<CRL Entry> new revoked,
u32bit seconds = 0), where X509 CRL is the last CRL this CA issued, and new revoked is a list of any newly
revoked certificates. The function returns a new X509 CRL to make available for clients. The semantics for
the seconds argument is the same as new crl.

The CRL Entry type is a structure which contains, at a minimum, the serial number of the revoked
certificate. As serial numbers are never repeated, the pairing of an issuer and a serial number (should)
distinctly identify any certificate. In this case, we represent the serial number as a SecureVector<byte>
called serial. There are two additional (optional) values, an enumeration called CRL Code which specifies the
reason for revocation (reason), and an object which represents the time that the certificate became invalid
(if this information is known).

33

If you wish to remove an old entry from the CRL, insert a new entry for the same cert, with a reason
code of DELETE CRL ENTRY. For example, if a revoked certificate has expired ’normally’, there is no reason
to continue to explicitly revoke it, since clients will reject the cert as expired in any case.

34

7.4.2 Self-Signed Certificates

Generating a new self-signed certificate can often be useful, for example when setting up a new root CA, or
for use in email applications. In this case, the solution is summed up simply as:

namespace X509 {
X509_Certificate create_self_signed_cert(const X509_Cert_Options& opts,

const PKCS8_PrivateKey& key);
}

Where key is obviously the private key you wish to use (the public key, used in the certificate itself, is
extracted from the private key), and opts is an structure which has various bits of information which will
be used in creating the certificate (this structure, and its use, is discussed below). This function is found in
the header x509self.h. There is an example of using this function in the self sig example.

7.4.3 Creating PKCS #10 Requests

Also in x509self.h, there is a function for generating new PKCS #10 certificate requests.

namespace X509 {
PKCS10_Request create_cert_req(const X509_Cert_Options&,

const PKCS8_PrivateKey&);
}

This function acts quite similarly to create self signed cert, except it instead returns a PKCS #10
certificate request. After creating it, one would typically transmit it to a CA, who signs it and returns a
freshly minted X.509 certificate. There is an example of using this function in the pkcs10 example.

7.4.4 Certificate Options

So what is this X509 Cert Options thing we’ve been passing around? Basically, it’s a bunch of information
which will end up being stored into the certificate. This information comes in 3 major flavors: information
about the subject (CA or end-user), the validity period of the certificate, and restrictions on the usage of
the certificate.

First and foremost is a number of std::string members, which contains various bits of information about
the user: common name, serial number, country, organization, org unit, locality, state, email, dns name, and
uri. As many of these as possible should be filled it (especially an email address), though the only required
ones are common name and country.

There is another value which is only useful when creating a PKCS #10 request, which is called challenge.
This is a challenge password, which you can later use to request certificate revocation (if the CA supports
doing revocations in this manner).

Then there is the validity period; these are set with not before and not after. Both of these functions
also take a std::string, which specifies when the certificate should start being valid, and when it should
stop being valid. If you don’t set the starting validity period, it will automatically choose the current time.
If you don’t set the ending time, it will choose the starting time plus a default time period. The arguments
to these functions specify the time in the following format: “2002/11/27 1:50:14”. The time is in 24 hour
format, and the date is encoded as year/month/day. The date must be specified, but you can omit the time
or trailing parts of it, for example “2002/11/27 1:50” or “2002/11/27”.

Lastly, you can set constraints on a key. The one you’re mostly likely to want to use is to create (or
request) a CA certificate, which can be done by calling the member function CA key. This should only be
used when needed.

35

Other constraints can be set by calling the member functions add constraints and add ex constraints.
The first takes a Key Constraints value, and replaces any previously set value. If no value is set, then the cer-
tificate key is marked as being valid for any usage. You can set it to any of the following (for more than one us-
age, OR them together): DIGITAL SIGNATURE, NON REPUDIATION, KEY ENCIPHERMENT, DATA ENCIPHERMENT,
KEY AGREEMENT, KEY CERT SIGN, CRL SIGN, ENCIPHER ONLY, DECIPHER ONLY. Many of these have quite spe-
cial semantics, so you should either consult the appropriate standards document (such as RFC 3280), or
simply not call add constraints, in which case the appropriate values will be chosen for you.

The second function, add ex constraints, allows you to specify an OID which has some meaning with
regards to restricting the key to particular usages. You can, if you wish, specify any OID you like, but
there are a set of standard ones which other applications will be able to understand. These are the
ones specified by the PKIX standard, and are named “PKIX.ServerAuth” (for TLS server authentica-
tion), “PKIX.ClientAuth” (for TLS client authentication), “PKIX.CodeSigning”, “PKIX.EmailProtection”
(most likely for use with S/MIME), “PKIX.IPsecUser”, “PKIX.IPsecTunnel”, “PKIX.IPsecEndSystem”,
and “PKIX.TimeStamping”. You can call add ex constraints any number of times – each new OID will
be added to the list to include in the certificate.

36

8 CMS

The Cryptographic Message Syntax (CMS) is an IETF standardized format for message encryption and
signatures. It is based on PKCS #7, but has been extended to allow compression, authentication, and
password based encryption. Some simple uses of CMS will inter-operate with PKCS #7 implementations,
but most uses will cause incompatibilities.

CMS is based on the idea of layering. At the lowest level is a data type (the actual message), which is
encapsulated in another layer, for example one that provides encryption or adds a signature. This layer can
in turn be encapsulated in another layer, and so on as often as you like.

Note that CMS is not available in the current distribution. You can download an alpha version separately
from the website.

8.1 Encoding

The CMS encoder included in Botan does not allow you to use the full range of options available; for
example, when signing, you can only sign with one key at a time (this particular restriction may be changed
in later versions). However, you can do repeated signature operations, signing the previously signed data.
Semantically, this is not quite the same (since the second and later signatures sign the signatures that came
before it, as well as the data), but practically speaking it’s the same thing.

WRITEME

8.2 Decoding

WRITEME

37

9 Random Number Generators

The random number generators provided in Botan are meant for creating keys, IVs, padding, nonces, and
anything else which requires ’random’ data. It is important to remember that the output of these classes
will vary, even if they are supplied with exactly the same seed (i.e., two Randpool objects with similar initial
states will not produce the same output, because the value of high resolution timers is added to the state at
various points).

To ensure good quality output, a PRNG needs to be seeded with truly random data (such as that produced
by a hardware RNG). Typically, you will use an EntropySource (see below). To add entropy to a PRNG,
you can use void add entropy(const byte data[], u32bit length) or (better), use the EntropySource
interface.

One a PRNG has been initialized, you can get a single byte of random data by calling byte random(),
or get a large block by calling void randomize(byte data[], u32bit length), which will put random bytes
into each member of the array from indexes 0 . . . length – 1.

You can avoid all the problem inherent to seeding the PRNG by using the globally shared PRNG,
described later in this section.

9.1 Entropy Estimation

The PRNG algorithms included in Botan have various sanity checks included. In particular, they try to make
sure that a reasonable amount of entropy has been input into them before they will output any randomness.
If this condition is not met, they will throw a PRNG Unseeded exception. While generally a library shouldn’t
be making policy decisions for applications, it seems generally preferable for the application to fail than for
it to generate insecure keys.

On Windows and Unix systems, the available entropy source modules can provide more than enough
entropy to seed the PRNGs sufficiently. However, if these entropy sources aren’t compiled into the library,
the application will have to handle seeding on its own.

38

9.2 The Global PRNG

Botan maintains a global PRNG (actually, a pair of them) that is used internally for things like generating
secret keys and salts. These PRNGs are automatically seeded by the LibraryInitializer. Most of the
time, you won’t need to access it directly because the library handles the common cases where randomness
is needed for you, but you might want to for a complicated application (or when implementing things at a
low level).

To use it, include rng.h. You can’t get a pointer to the actual global PRNG object, because it is guarded
with a mutex for thread safety, so the interface basically defines a set of entry points into the object. All of
them are in the namespace Global RNG, which is inside the Botan namespace. So you might call them as
Botan::Global RNG::function, or if you have a using declaration to include Botan objects into the global
namespace, just Global RNG::function.

There are six functions, four for adding entropy and two for getting randomness out.

void Global RNG::randomize(byte buf[], u32bit size, RNG Quality level):

Get size bytes of random bytes from the global PRNG and put it into buf. The level can be Nonce,
PublicValue, SessionKey, or LongTermKey (Nonce and PublicValue are the same thing). It defaults to
SessionKey.

By generating things that need to be random, but might be seen by an attacker, (such as challenges,
nonces, IVs, and cookies), with a separate PRNG than the regular PRNG, Botan prevents attacks which
use public portions of PRNG output to guess secret portions.

byte Global RNG::random(RNG Quality level):

Return a single random byte of the specified level, which defaults to SessionKey.

void Global RNG::add entropy(const byte buf [], u32bit size):

Add the contents of buf, which is of size size, into the global PRNG’s internal state. The contents of
the buffer cannot be recovered from the PRNG output or internal state, and the PRNGs included in Botan
are specifically designed to be safe even if fed large amounts of data chosen by an attacker trying to weaken
the PRNG. So feel free to include things like data you received over a socket (if you’re writing a network
application), passwords, log data, etc.

void Global RNG::add entropy(EntropySource& es, bool slow poll):

Poll es for entropy. If slow poll is true, then do a slow poll, otherwise do a fast poll.

u32bit Global RNG::seed (bool slow poll = true, u32bit bits to get = 256)

Seed the global PRNG, either a fast or slow poll (default a slow), until it gets at least bits to get bits of
entropy. However, if little entropy is available on the system, it’s entirely possible it will retrieve less than
that (particularly if a fast poll is being done). This function will return an estimate for how many bits were
gathered by the seeding process.

If you pass 0 for bits to get, then a poll will be run from all available entropy sources. Usually if enough
entropy is collected after a few sources, the function will exit early. This is especially useful if you don’t
trust /dev/urandom to be safe for some reason.

If you’ve got a long running server process, it’s a good idea to create a thread that just calls this function
every once in a while, sleeping the rest of the time. Make sure to cancel it before you shutdown the library,
though; otherwise it will try to get memory from the now-nonexist allocators, fail, and throw an exception
(or crash). An alternate method might be to call it after servicing a particular number of clients.

u32bit Global RNG::add es (EntropySource* source, bool last = true)

Normally the library generates a list of entropy sources for Global RNG::seed to call at initialization

39

time. With this function you can add new entropy sources which will be queried. If last is true, the the
entropy source is put at the end of the list of currently used entropy sources. If you’d like to be sure that
your source is always called, set last to false, in which case it will placed at the start of the list.

9.3 Randpool

Randpool is based around a large (1 Kb) pool of data, a hash function (as of now, SHA-1), and a block cipher
(AES). It is slower than ANSI X917 RNG but can easily satisfy any reasonable demand. Because the internal
state of Randpool is much larger than ANSI X917 RNG, it is more likely to be secure, and it is recommended
that Randpool be used over ANSI X917 RNG in most cases.

Randpool works by hashing the current entropy pool with a counter and a timestamp. The hash of the
current pool is XOR-ed into a smaller buffer which is then encrypted with the block cipher (this is used as
the output). Every few iterations, a new key is chosen for the block cipher, and the entire pool is encrypted
in CBC mode.

9.4 ANSI X9.17

ANSI X917 RNG is based on the algorithm given in Annex C of the ANSI X9.17 standard, which makes use
of a block cipher (in this case, AES rather than the usual TripleDES). ANSI X917 RNG can produce bits a bit
over twice as fast as Randpool.

The version used is a variant of the normal X9.17; most importantly, only a portion of the output of the
block cipher is actually given to the caller (then a new block is computed), the timestamp is encrypted in
CBC mode instead of ECB mode, and that after a ANSI X917 RNG object has generated a certain number
of bytes (currently 384), it will automatically rekey itself using bits taken from the internal state (this state
is not directly observable by an attacker). These alterations make any attack much harder, at the cost of
reducing speed.

The block cipher used for internal operation is AES. Formerly the block cipher could be chosen by the
user, but it was felt that AES provides a sufficient security/speed balance for most applications.

9.5 Entropy Sources

An EntropySource is an abstract representation of some method of gather “real” entropy. This tends to be
very system dependent. The only way you should use an EntropySource is to pass it to a PRNG that will
extract entropy from it – never use the output directly for any kind of key or nonce generation!

EntropySource has a pair of functions for getting entropy from some external source, called fast poll
and slow poll. These pass a buffer of bytes to be written; the functions then return how many bytes
of entropy were actually gathered. EntropySources are usually used to seed the global PRNG using the
functions found in the Global RNG namespace.

Note for writers of EntropySources: it isn’t necessary to use any kind of cryptographic hash on your
output. The data produced by an EntropySource is only used by an application after it has been hashed by
the RandomNumberGenerator which asked for the entropy, and thus any hashing you do will be wasteful of
both CPU cycles and possibly entropy.

40

10 User Interfaces

Botan has recently changed some infrastructure to better accommodate more complex user interfaces, in
particular ones which are based on event loops. Primary among these was the fact that when doing something
like loading a PKCS #8 encoded private key, a passphrase might be needed, but then again it might not
(a PKCS #8 key doesn’t have to be encrypted). Asking for a passphrase to decrypt an unencrypted key is
rather pointless. Not only that, but the way to handle the user typing the wrong passphrase was complicated,
undocumented, and inefficient.

So now Botan has an object called UI, which provides a simple interface for the aspects of user interaction
the library has to be concerned with. Currently, this means getting a passphrase from the user, and that’s
it (UI will probably be extended in the future to support other operations as they are needed). The base
UI class is very stupid, because the library can’t directly assume anything about the environment that it’s
running under (for example, if there will be someone sitting at the terminal, if the application is even attached
to a terminal, and so on). But since you can subclass UI to use whatever method happens to be appropriate
for your application, this isn’t a big deal.

There is (currently) a single function that can be overridden by subclasses of UI (the std::string
arguments are actually const std::string&, but shown as simply std::string to keep the line from
wrapping):

std::string get passphrase(std::string what, std::string source, UI Result& result) const;

The what argument specifies what the passphrase is needed for (for example, PKCS #8 key loading
passes what as “PKCS #8 private key”). This lets you provide the user with some indication of why your
application is asking for a passphrase; feel free to pass the string through gettext(3) or moral equivalent for
i18n purposes. Similarly, source specifies where the data in question came from, if available (for example, a
file name). If the source is not available for whatever reason, then source will be an empty string; be sure
to account for this possibility when writing a UI subclass.

The function returns the passphrase as the return value, and a status code in result (either OK or
CANCEL ACTION). If CANCEL ACTION is returned in result, then the return value will be ignored, and the
caller will take whatever action is necessary (typically, throwing an exception stating that the passphrase
couldn’t be determined). In the specific case of PKCS #8 key decryption, a Decoding Error exception will
be thrown; your UI should assume this can happen, and provide appropriate error handling (such as putting
up a dialog box informing the user of the situation, and canceling the operation in progress).

There is an example UI which uses GTK+ available on the web site. The GTK UI code is cleanly separated
from the rest of the example, so if you happen to be using GTK+, you can copy (and/or adapt) that code
for your application. If you write a UI object for another windowing system (Win32, Qt, wxWindows, FOX,
etc), and would like to make it available to users in general (ideally under a permissive license such as public
domain or MIT/BSD), feel free to send in a copy.

10.1 Pulses

If you call a function in the library that turns out to take a long time (such as generating a 4096-bit prime),
your pretty GUI will block up while the library does something, because the event loop is not being run.
Not only does this look bad, it prevents the user from doing something else while the library works. The way
around this is to register a pulse function, using UI::set pulse(pulse func f, void* opaque = 0). During
long running operations, the library will call f (Pulse Type type, opaque), where the enum type provides
mildly useful information about the operation in progress (for a full list of the defined Pulse Type values,
see ui.h). The type code allows you do simple feedback such as that GnuPG does during key generation
(printing various characters as the prime generation process proceeds, such as ’-’ for prime test failed, ’+’
for prime test worked, and so on). The optional opaque value allows you to pass data back to your pulse
function without making it a global variable.

Generally the thing to do inside the pulse function is to run the GUI’s event loop, for example with

41

GTK+:

while(gtk_events_pending())
gtk_main_iteration();

which will flush out the event queue and make your GUI seem nice and responsive. For a particularly
long-running operation (one that takes more than a second or two), you will probably want to put up a
progress bar. While you can update it directly from the pulse function, be warned that the pulse function
is called at irregular intervals, so your progress bar’s movement might seem choppy if you update it directly
from the pulse. It may be a better move to instead set up a timer (preferably through the GUI framework)
that runs every fixed timeslice, and updates the bar when the timer goes off. As long as the pulse function
is called often enough (which is should), simply running the event loop and letting the timer function do the
updates will work fine.

42

11 Policy Configuration

While Botan is performing operations on behalf on an application, there are times where there needs to be
a policy decision. For example, when generating an X.509v3 certificate, should we include the key usage
extension? Should it be marked as a critical extension, or is non-critical OK? And so on and so forth. It is
not proper for a library to make these kinds of decisions for an application; after all, different applications
might have different needs (not to mention the same application running at different sites). So, whenever
it is sane to do so, the library will read from an internal table to find out what it should do when a policy
decision is needed.

Right now, the option table is populated by some fixed, reasonable values at startup. These options
can then be changed by the application, either hard-coded into the source code as an application policy,
or reading them from a file (or options screen or whatever) and setting them as the user desires (possibly
placing application-policy limits on the range they can take).

The library natively supports a simple format which is easy to parse and easy for humans to read and
write. If you’re at all familiar with Windows .INI files or OpenSSL’s configs, it should be pretty easy to use.
It’s entirely possible that you want to instead use an XML config (or whatever), but you’ll have to write you
own parser for this (src/inifile.cpp will provide some ideas on what it is supposed to do).

There are basically four different things stored in the options table: strings, numbers, booleans, and times
(not dates; times are things like “1 hour”, “15 minutes”, etc), though they are all represented by strings
when they are provided to the library.

11.1 Option Types

Strings are simply strings – no strings attached (sorry). A list is a collection of strings, separated by a ’:’
character (no escaping is available, so you can’t actually have a ’:’ character in a list item).

A number (more precisely, a non-negative integer less than 232) is specified as a string of decimal digits –
no special formatters (such as a “0x” prefix) are supported. However, you can do simply arithmetic (’+’ and
’*’), and they do commute correctly. There is no explicit grouping (i.e., with parenthesis), but generally a
simple expression is all thats needed for this sort of thing.

A boolean can take on the values true and false, which can be represented by “true” (and “1”) or “false”
(and “0”) respectively. Unlike C, a value of (say) “7” is not a boolean; it will be flagged as an error at
runtime when the library attempts to read it. Finally, a time is essentially “<integer>[s|m|h|d|y]”, where
integer is the magnitude and the suffix (if present) provides a scaling value. For example “5d” represents
5 days, and “60”, “60s”, and “1m” all represent 60 seconds. If no suffix is provided, the scale defaults to
seconds.

11.2 Setting and Getting Options

The header botan/conf.h has the interface for setting policy options. All of the functions are declared
inside of the Config namespace; there is 1 for setting options, and 4 for getting the values of them.

To add (or set) an option, call add(std::string option, std::string value), which sets the value of
option to value.

There are 5 functions to retrieve the values of options, one for each of the types:

std::string get string(std::string option)

std::vector<std::string> get list(std::string option)

u32bit get u32bit(std::string option)

u32bit get time(std::string option)

43

bool get bool(std::string option)

The only one that might be confusing is get time, which returns the time in seconds.

As to defaults: strings default to the empty string, lists to an empty list, integers default to 0, times
default to no time (0 seconds), and booleans will throw an exception if no value has been set.

11.3 Available Options

Generally, the defaults are chosen to provide a good level of security and sense for typical applications.
Currently, most of the options are for the X.509 handling, since that’s the place where most freedom is given
to implementations. Options are organized in a hierarchal fashion, with a separating character of ’/’. All
options beginning with “app/” are reserved for use by applications.

· “base/memory chunk”, (integer, default “64*1024”): how large a block of memory to allocate
at once.

“base/default pbe”, (string, default “PBE-PKCS5v20(SHA-1,TripleDES/CBC)”): The de-
fault algorithm for encrypting PKCS #8 private keys.

·· “base/pkcs8 tries”, (integer, default 3): how many times PKCS8::load key will ask a UI object
for a passphrase to decrypt the key before it gives up.

· “pk/blinder size”, (integer, default 64): how long (in bits) the blinding factor will be when doing
private-key PK operations; if set to zero then blinding is not performed.

· “pk/test/public”, (string, default “basic”): How much testing to perform on imported public keys;
can be “basic” or “all”.

· “pk/test/private”, (string, default “basic”): How much testing to perform on imported private
keys; can be “basic” or “all”.

· “pk/test/private gen”, (string, default “all”): How much testing to perform on generated private
keys; can be “basic” or “all”.

· “pem/search”, (integer, default “4*1024”): how large an area (in bytes) to search for PEM sig-
natures in the heuristic that decides if data is PEM encoded, or raw BER data.

· “pem/forgive”, (integer, default “8”): how many characters that ’look like’ a PEM header will be
forgiven, i.e.how characters match before we decide it really is the PEM header, and any bad characters
imply a malformed header.

· “pem/width”, (integer, default “64”): how long each PEM line will be encoded as; it should not
be smaller than 50 or greater than 80.

· “rng/min entropy”, (integer, default 384): how many bits of entropy must be collected before the
PRNG is considered seeded.

· “rng/es files”, (list, default “/dev/urandom:/dev/random”): what paths to attempt reads from
for entropy, typically in-kernel devices.

· “rng/egd path”, (list, default “/var/run/egd-pool:/dev/egd-pool”): what paths to attempt
to use as an EGD socket.

· “rng/ms capi prov type”, (list, default “INTEL SEC:RSA FULL”): what providers the CAPI
entropy source should attempt to use, in order.

· “rng/unix path”, (list, default “/usr/ucb:/usr/etc:/etc”): extra path fields to use when execut-
ing programs to gather entropy.

44

· “x509/validity slack”, (time, default “24h”): how much slack to allow when checking time validity
on X.509 certificates.

· “x509/v1 assume ca”, (boolean, default false): if true, then v1/v2 X.509 certificates are considered
CA certificates by default. If not true, then no v1/v2 certificate is considered valid for CA use.

· “x509/cache verify results”, (time, default “30m”): how long to cache certificate verification
results in a X509 Store. Set it to 0 if you don’t want to cache the results, though this will cause a lot
of unnecessary overhead.

· “x509/ca/allow ca”, (boolean, default “false”): whether a CA will allow new certificates to be
marked for CA usage.

· “x509/ca/basic constraints”, (string, default “always”): can be either “always” or “ca only”; if
“always” then the basic constraints extension is included in new user certs as well as new CA certs.

· “x509/ca/default expire”, (time, default “1y”): how long, by default, a newly generated certifi-
cate is valid for.

· “x509/ca/signing offset”, (time, default “30s”): when generating a PKCS #10 certificate request,
it will be marked as becoming valid this much time before the current time; helps protect against slightly
off clocks.

· “x509/ca/rsa hash”, (string, default “SHA-1”): what hash to use with an RSA key (SHA-1 is
always used with DSA).

· “x509/ca/str type”, (string, default “latin1”): what encoding to use by default (can be “latin1”
or “utf8”).

· “x509/crl/unknown critical”, (string, default “ignore”): what to do when a CRL with an un-
known critical extension is processed. Options are “ignore” and “throw”. For X.509v4 compliance, use
“ignore”, for PKIX compliance, use “throw”.

· “x509/crl/next update”, (time, default “7d”): new CRLs are marked as expiring in this much
time.

Here, in a separate list, are the options which control which extension are included in a newly generated
X.509v3 certificate, and if they should be marked as critical extensions or not. Each one begins with
“x509/exts/” (i.e., what is referred to as “basic constraints” below is actually “x509/exts/basic constraints”),
and can take on a value of “yes”, “no”, “noncritical”, or “critical”. A value of “no” means the extension
is not included under any circumstances. A value of “yes” or “noncritical” (they have the same meaning),
means that the extension is included in the certificate if there is some data to populate it with, and that the
extension should be marked as non-critical. Finally, “critical” means that the extension should be marked
as a critical extension. Unless otherwise noted, the option will default to “yes”: including the extension if
data is available to fill it in, and mark it as a non-critical extension.

A word about X.509v3 extensions: each extension can be marked either critical or non-critical. A non-
critical extension may be ignored by a compliant X.509v3 implementation (though for the common extensions,
it is fairly rare for an implementation to actually do so). On the other hand, a critical extension forces an
all-or-nothing situation: if an implementation can’t handle an extension marked critical, it is required to
reject the certificate outright.

For the full meaning of the extensions, it will probably be helpful to read an authoritative X.509 reference,
such as RFC 2459 or ISO’s X.509 v3/v4 documents. The default options here were chosen to comply with
the IETF PKIX X.509v3 profile, which is probably the most commonly supported X.509 profile, at least in
the United States.

· “basic constraints” (default “critical”): Control the use of the Basic Constraints extension, which
marks if a certificate is a CA or not. Changing this is not recommended, as this should always be a
critical extension (doing otherwise violates most if not all X.509v3 profiles).

45

·· “subject key id”: Controls the use of the subject key identifier. Not many implementations make use
of this extension, but it is not harmful, and it is recommended it be included in all new certificates.

· “authority key id”: See comments on “subject key id”

· “subject alternative name”: Contains various pieces of information that don’t fit into the standard
certificate name, like email addresses and URIs. Very commonly used.

· “issuer alternative name”: Like “subject alternative name”, but not used nearly as often.

· “key usage” (default “critical”): Marks what uses this certificate is valid for.

· “extended key usage”: Similar to “key usage”, but more general and much less commonly used.

46

11.4 Configuration Files

Botan has a number of options, which can be configured by calling the appropriate functions, documented
earlier in this section. But this is somewhat inconvenient for the users of applications which use Botan. So
Botan also supports reading options from a file which looks rather like Windows .INI files or OpenSSL config-
urations. You can find an example config (which simply matches the compiled-in defaults) in doc/botan.rc

Each set of options is part of a ’section’, for example, “base”, “rng”, or “x509”. These names are
essentially arbitrary, and are (in theory) chosen on the basis of what the options pertain to. To set the
option “x509/ca/default expire” (which tells X509 CA how long newly minted X.509 certificates should be
valid for), you could use either of the following methods:

[x509/ca] # section is x509/ca
default_expire = 1y # x509/ca + default_expire -> x509/ca/default_expire

same as above
[x509] # section is x509
other x509/ options in here...
ca/default_expire = 1y # x509 + ca/default_expire -> x509/ca/default_expire

There are also two special sections, “oids” and “aliases”. The aliases section is easier to understand, and
probably more useful for the average user. By adding a new line in an alias section, alias = officialname,
you can create a new way to reference a particular algorithm (in those cases when you ask for an algorithm
object with a string specifying its type). For example, if the line MyAlgo = Blowfish was included in an
aliases section, then one could do this:

Pipe pipe(get_cipher(‘‘MyAlgo/CBC/PKCS7’’, key, iv, ENCRYPTION));

and get a Blowfish CBC encryptor. Initially this was implemented due to the number of algorithms
with multiple names (such as “SHA1”, “SHA-1”, and “SHA-160”), but might also be useful in other, more
interesting, contexts.

The OIDs section gives a mapping between ASN.1 OIDs and the algorithm or object it represents, in the
form name = oid, where oid is the usual decimal-dotted representation. For readability and easy of extension
in configuration files, a simple variable interpolation scheme is also available. Consider the following:

[oids]
ISO_MEMBER = 1.2
US_BODY = ISO_MEMBER.840 # US_BODY = 1.2.840
RSA_DSI = US_BODY.113549 # RSA_DSI = 1.2.840.113549

This only works when the variable name is at the start of the string; since the primary reason for its
inclusion is for with OIDs, this is acceptable. In some cases, adding a new OID in is sufficient for code to
work with new algorithms (though not always). For example, by setting the proper OIDs, you can make it
possible to import, export, create, and process X.509 certificates that use Rabin-Williams.

11.4.1 Syntax

Each line is either a comment, blank, a section name, or a name/value pair separated by a ’=’. Comments
start with the ’#’ character and continue to the end of line. The reader allows escaping, so if you wanted to
include an actual # sign you could use \#, or include it in a string (’#’ or “#”). A section name is specified
by [somename]; a section name must have at least one character, and a section must appear before any
name/value pairs. A name must be alphanumeric, but a value can contain spaces or other strange things
(you must either enclose the argument in quotes or escape each space with a backslash). An example showing

47

some of the trickier parts of how input is interpreted follows (but the reader is cautioned that relying on this
behavior is not a good idea):

[examples]
foo1 = a b c # stored as abc (not quoted, ws removed)
foo2 = ’a b c’ # stored as a b c (quoted, keep ws)
foo3 = "a b c" # stored as a b c (quoted, keep ws)
tricky = "Jack \"I like pie\" Lloyd" # stored as Jack "I like pie" Lloyd
simpler = "Jack ’I like pie’ Lloyd" # no escapes needed

hashmark = "#" # set to a hash
hashmark2 = \# # also set to a hash

[oids]
RW = 1.2.3.4.5.6 # Now RW keys can be imported/exported!
NR = 1.2.3.4.5.7 # Now NR can be imported/exported too.
Note these OIDs are *not* allocated for RW/NR, in fact I have no idea who
owns that section of the OID space, but it’s certainly not me. Someone will
have to allocate OIDs for RW/NR before this is ’legal’

some_thing = 1.2.3 # some OID
another_thing = some_thing.4.5 # another_thing = 1.2.3.4.5

48

12 Miscellaneous

This section has documentation for anything that just didn’t fit into any of the major categories. Many of
them (Timers, Allocators) will rarely be used in actual application code, but others, like the S2K algorithms,
have a wide degree of applicability.

12.1 S2K Algorithms

There are various procedures (usually fairly ad-hoc) for turning a passphrase into a (mostly) arbitrary length
key for a symmetric cipher. A general interface for such algorithms is presented in s2k.h. The main function
is derive key, which takes a passphrase, and the desired length of the output key, and returns a key of that
length, deterministically produced from the passphrase. If an algorithm can’t produce a key of that size,
it will throw an exception (most notably, PKCS #5’s PBKDF1 can only produce strings between 1 and n
bytes, where n is the output size of the underlying hash function).

Most such algorithms allow the use of a “salt”, which provides some extra randomness and helps against
dictionary attacks on the passphrase. Simply call change salt (there are variations of it for most of the
ways you might wish to specify a salt, check the header for details) with a block of random data. You can
also have the class generate a new salt for you with new random salt; the salt that was generated can be
retrieved with current salt.

Additionally some algorithms allow you to set some sort of iteration count, which will make the algorithm
take longer to compute the final key (reducing the speed of brute-force attacks of various kinds). This can be
changed with the set iterations function. Most standards recommend an iteration count of at least 1000.

You can get ahold of an S2K algorithm using get s2k, found in lookup.h. Currently defined S2K
algorithms are “PBKDF1(digest)”, “PBKDF2(digest)”, and “OpenPGP-S2K(digest)”. “PBKDF2(SHA-1)”,
with an 8-byte salt and an iteration count of 2048, is recommend for new applications.

12.1.1 OpenPGP S2K

There are some oddities about OpenPGP’s S2K algorithms which are documented here. For one thing, it
uses the iteration count in a strange manner; instead of specifying how many times to iterate the hash, it
tells how many bytes should be hashed in total (including the salt). So the exact iteration count will depend
on the size of the salt (which is fixed at 8 bytes by the OpenPGP standard, though the implementation will
allow any salt size) and the size of the passphrase.

To get what OpenPGP calls “Simple S2K”, set iterations to 0 (the default for OpenPGP S2K), and
do not specify a salt. To get “Salted S2K”, again leave the iteration count at 0, but give an 8-byte salt.
“Salted and Iterated S2K” requires an 8-byte salt and some iteration count (this should be significantly
larger than the size of the longest passphrase that might reasonably be used; somewhere from 1024 to 65536
would probably be about right). Using both a reasonably sized salt and a large iteration count is highly
recommended to prevent password guessing attempts.

12.2 Checksums

Checksums are very similar to hash functions, and in fact share the same interface. But there are some
significant differences, the major ones being that the output size is very small (usually in the range of 2 to
4 bytes), and is not cryptographically secure. But for their intended purpose (error checking), they perform
very well. Some examples of checksums included in Botan are the Adler32 and CRC32 checksums.

49

12.3 Exceptions

Sooner or later, something is going to go wrong. Botan’s behavior when something unusual occurs, like most
C++ software, is to throw an exception. Exceptions in Botan are derived from the Exception class. You
can see most of the major varieties of exceptions used in Botan by looking at exceptn.h. The only function
you really need to concern yourself with is const char* what(). This will return an error message relevant
to the error that occurred. For example:

try {
// various Botan operations
}

catch(Botan::Exception& e)
{
cout << "Botan exception caught: " << e.what() << endl;
// error handling, or just abort
}

Botan’s exceptions are derived from std::exception, so you don’t need to explicitly check for Botan
exceptions if you’re already catching the ISO standard ones.

12.4 Threads and Mutexes

Botan includes a mutex system, which is used internally to lock some shared data structures which must be
kept shared for efficiency reasons (mostly, these are in the allocation systems – handing out 1000 separate
allocators hurts performance and makes caching memory blocks useless). This system is supported by the
mutex pthread module, implementing the Mutex interface for systems that have POSIX threads.

If your application is using threads, you must add the option “thread safe” to the options string when
you create the LibraryInitializer object. If you specify this option and no mutex type is available, an
exception is thrown, since otherwise you would probably be facing a nasty crash.

There are a few functions that shouldn’t be called from threads. If you want to use them, you’ll have
to either do locking in your own code, or only call them from a single thread (presumably the main thread,
which initialized the library, but that isn’t required). It is assumed that most of them are called at most
once, and then the application runs. Thread-unsafe functions in Botan include:

add_engine(Engine*)
startup_engines()
shutdown_engines()
set_mutex_type(Mutex*)
set_timer_type(Timer*)
setup_global_rng(RandomNumberGenerator*, RandomNumberGenerator*)
destroy_global_rng()

This list is not complete. As you can see, most of them are used only at startup/shutdown; the func-
tions/objects you would tend to use regularly in an application should be thread safe at the object level.

12.5 Secure Memory

A major concern with mixing modern multiuser OSes and cryptographic code is that at any time the code
(including secret keys) could be swapped to disk, where it can later be read by an attacker. Botan stores
almost everything (and especially anything sensitive) in memory buffers which a) clear out their contents
when their destructors are called, and b) have easy plugins for various memory locking functions, such as
the mlock(2) call on many Unix systems.

50

Two of the allocation method used (“malloc” and “mmap”) don’t require any extra privileges on Unix, but
locking memory does. At startup, each allocator type will attempt to allocate a few blocks (typically totaling
128k), so if you want, you can run your application setuid root, and then drop privileges immediately
after creating your LibraryInitializer. If you end up using more than what’s been allocated, some of
your sensitive data might end up being swappable, but that beats running as root all the time. BTW, I
would note that, at least on Linux, you can use a kernel module to give your process extra privileges (such
as the ability to call mlock) without being root. For example, check out my Capability Override LSM
(http://www.randombit.net/projects/cap over/), which makes this pretty easy to do.

These classes should also be used within your own code for storing sensitive data. They are only meant
for primitive data types (int, long, etc): if you want a container of higher level Botan objects, you can
just use a std::vector, since these objects know how to clear themselves when they are destroyed. You
cannot, however, have a std::vector (or any other container) of Pipes or Filters, because these types
have pointers to other Filters, and implementing copy constructors for these types would be both hard and
quite expensive (vectors of pointers to such objects is fine, though).

These types are not described in any great detail: for more information, consult the definitive sources – the
header files secmem.h and allocate.h.

SecureBuffer is a simple array type, whose size is specified at compile time. It will automatically convert
to a pointer of the appropriate type, and has a number of useful functions, including clear(), and u32bit
size(), which returns the length of the array. It is a template that takes as parameters a type, and a constant
integer which is how long the array is (for example: SecureBuffer<byte, 8> key;).

SecureVector is a variable length array. Its size can be increased or decreased as need be, and it has a
wide variety of functions useful for copying data into it’s buffer. Like SecureBuffer, it implements clear
and size.

12.6 Allocators

The containers described above get their memory from allocators. As a user of the library, you can add
new allocator methods at run time for containers, including the ones used internally by the library, to
use. The interface to this is in allocate.h. Basically how it works is that code needing an allocator uses
get allocator, which returns a pointer to an allocator. This pointer should not be freed: the caller does
not own the allocator (it is shared among multiple users, and locks itself as needed). It is possible to call
get allocator with a specific name to request a particular type of allocator, otherwise, a default allocator
type is returned.

At start time, the only allocator known is a Default Allocator, which just allocates memory using
malloc, and memsets it to 0 when the memory is released. It is known by the name “malloc”. If you ask
for another type of allocator (“locking” and “mmap” are currently used), and it is not available, some other
allocator will be returned.

You can add in a new allocator type using add allocator type. This function takes a string and a
pointer to an allocator. The string gives this allocator type a name to which it can be referred when one
is requesting it with get allocator. If an error occurs (such as the name being already registered), this
function returns false. It will return true if the allocator was successfully registered. If you ask it to,
LibraryInitializer will do this for you.

Finally, you can set the default allocator type that will be returned by calling set default allocator.
If you call this with the name of any previously registered allocator, that allocator type will be returned by
get allocator. Actually, get allocator will walk down a list of possibilities, starting with its argument,
then the default that was set with set default allocator, then a hardcoded “default” to help ensure that
an allocator is always available.

51

12.7 Timers

Botan includes a pair of functions, system time and system clock, which are used extensively in some
areas of the code (especially in the random number generators). These functions by default use std::time
and std::clock, but often you can do better with system-dependent functions, especially for the system
clock (for example, returning the microseconds value from gettimeofday, or the nanoseconds value from
the POSIX.1b clock gettime, is far superior). Modules for this exist for several systems.

You can register a new timer method with set timer type. For example, if the timer unix module is
available, one could call set timer type(new Unix Timer), in which case system clock will return a more
“interesting” value based on the return of the gettimeofday function call. This is done automatically by
the LibraryInitializer object.

52

13 Botan’s Modules

Botan comes with a variety of modules which can be compiled into the system. These will not be available
on all installations of the library, but you can check for their availability based on whether or not certain
macros are defined.

13.1 Pipe I/O for Unix File Descriptors

This is a fairly minor feature, but it comes in handy sometimes. In all installations of the library, Botan’s
Pipe object overloads the << and >> operators for C++ iostream objects, which is usually more than sufficient
for doing I/O.

However, there are cases where the iostream hierarchy does not map well to local ’file types’, so there is
also the ability to do I/O directly with Unix file descriptors. This is most useful when you want to read from
or write to something like a TCP or Unix-domain socket, or a pipe, since for simple file access it’s usually
easier to just use C++’s file streams.

If BOTAN EXT PIPE UNIXFD IO is defined, then you can use the overloaded I/O operators with Unix file
descriptors. For an example of this, check out the hash fd example, included in the Botan distribution.

13.2 Entropy Sources

All of these are used by the Global RNG::seed function if they are available. Since this function is called
by the LibraryInitializer class when it is created, it is fairly rare that you will need to deal with any of
these classes directly. Even in the case of a long-running server that needs to renew its entropy poll, it is
easier to simply call Global RNG::seed (see the section entitled “The Global PRNG” for more details).

EGD EntropySource: Query an EGD socket. If the macro BOTAN EXT ENTROPY SRC EGD is defined, it can be
found in es egd.h. The constructor takes a std::vector<std::string> that specifies the paths to look for
an EGD socket.

Unix EntropySource: This entropy source executes programs common on Unix systems (such as uptime,
vmstat, and df) and adds it to a buffer. It’s quite slow due to process overhead, and (roughly) 1 bit of
real entropy is in each byte that is output. It is declared in es unix.h, if BOTAN EXT ENTROPY SRC UNIX is
defined. If you don’t have /dev/urandom or EGD, this is probably the thing to use. For a long-running
process on Unix, keep on object of this type around and run fast polls ever few minutes.

FTW EntropySource: Walk through a filesystem (the root to start searching is passed as a string to the
constructor), reading files. This tends to only be useful on things like /proc which have a great deal of
variability over time, and even then there is only a small amount of entropy gathered: about 1 bit of entropy
for every 16 bits of output (and many hundreds of bits are read in order to get that 16 bits). It is declared
in es ftw.h, if BOTAN EXT ENTROPY SRC FTW is defined. Only use this as a last resort. I don’t really trust it,
and neither should you.

Win32 CAPI EntropySource: This routines gathers entropy from a Win32 CAPI module. It takes an optional
std::string which will specify what type of CAPI provider to use. Generally the CAPI RNG is always the
same software-based PRNG, but there are a few which may use a hardware RNG. By default it will use the
first provider listed in the option “rng/ms capi prov type” which is available on the machine (currently the
providers “RSA FULL”, “INTEL SEC”, “FORTEZZA”, and “RNG” are recognized).

BeOS EntropySource: Query system statistics using various BeOS-specific APIs.

Pthread EntropySource: Attempt to gather entropy based on jitter between a number of threads competing
for a single mutex. This entropy source is very slow, and highly questionable in terms of security. However,
it provides a worst-case fallback on systems which don’t have Unix-like features, but do support POSIX
threads. This module is currently unavailable due to problems on some systems.

53

13.3 Compressors

There are two compression algorithms supported by Botan, Zlib and Bzip2 (Gzip and Zip encoding will
be supported in future releases). Only lossless compression algorithms are currently supported by Botan,
because they tend to be the most useful for cryptography. However, it is very reasonable to consider
supporting something like GSM speech encoding (which is lossy), for use in encrypted voice applications.

You should always compress before you encrypt, because encryption seeks to hide the redundancy that
compression is supposed to try to find and remove.

13.3.1 Bzip2

To test for Bzip2, check to see if BOTAN EXT COMPRESSOR BZIP2 is defined. If so, you can include bzip2.h,
which will declare a pair of Filter objects: Bzip2 Compression and Bzip2 Decompression.

You should be prepared to take an exception when using the decompressing filter, for if the input is
not valid Bzip2 data, that is what you will receive. You can specify the desired level of compression to
Bzip2 Compression’s constructor as an integer between 1 and 9, 1 meaning worst compression, and 9
meaning the best. The default is to use 9, since small values take the same amount of time, just use a little
less memory.

The Bzip2 module was contributed by Peter J. Jones.

13.3.2 Zlib

Zlib compression works pretty much like Bzip2 compression. The only differences in this case are that
the macro is BOTAN EXT COMPRESSOR ZLIB, the header you need to include is called botan/zlib.h (re-
member that you shouldn’t just #include <zlib.h>, or you’ll get the regular zlib API, which is not
what you want). The Botan classes for Zlib compression/decompression are called Zlib Compression and
Zlib Decompression.

Like Bzip2, a Zlib Decompression object will throw an exception if invalid (in the sense of not being in
the Zlib format) data is passed into it.

In the case of zlib’s algorithm, a worse compression level will be faster than a very high compression
ratio. For this reason, the Zlib compressor will default to using a compression level of 6. This tends to give a
good trade off in terms of time spent to compression achieved. There are several factors you need to consider
in order to decide if you should use a higher compression level:

· Better security: the less redundancy in the source text, the harder it is to attack your ciphertext. This
is not too much of a concern, because with decent algorithms using sufficiently long keys, it doesn’t
really matter that much (but it certainly can’t hurt).

·· Decreasing returns. Some simple experiments by the author showed minimal decreases in the size
between level 6 and level 9 compression with large (1 to 3 megabyte) files. There was some difference,
but it wasn’t that much.

· CPU time. Level 9 zlib compression is often two to four times as slow as level 6 compression. This can
make a substantial difference in the overall runtime of a program.

While the zlib compression library uses the same compression algorithm as the gzip and zip programs,
the format is different. The zlib format is defined in RFC 1950.

54

14 BigInt

BigInt is Botan’s implementation of a multiple-precision integer. Thanks to C++’s operator overloading
features, using BigInt is often quite similar to using a native integer type. The number of functions related
to BigInt is quite large. You can find most of them in bigint.h and numthry.h.

Due to the sheer number of functions involved, only a few, which a regular user of the library might have
to deal with, are mentioned here. Fully documenting the MPI library would take a significant while, so if
you need to use it now, the best way to learn is to look at the headers.

Probably the most important are the encoding/decoding functions, which transform the normal repre-
sentation of a BigInt into some other form, such as a decimal string. The most useful of these functions
are

SecureVector<byte> BigInt::encode(BigInt, Encoding)

and

BigInt BigInt::decode(SecureVector<byte>, Encoding)

Encoding is an enum which has values Binary, Octal, Decimal, and Hexadecimal. The parameter will
default to Binary. These functions are static member functions, so they would be called like this:

BigInt n1; // some number
SecureVector<byte> n1_encoded = BigInt::encode(n1);
BigInt n2 = BigInt::decode(n1_encoded);
// now n1 == n2

There are also C++-style I/O operators defined for use with BigInt. The input operator understands
negative numbers, hexadecimal numbers (marked with a leading “0x”), and octal numbers (marked with a
leading ’0’). The ’-’ must come before the “0x” or ’0’ marker. The output operator will never adorn the
output; for example, when printing a hexadecimal number, there will not be a leading “0x” (though a leading
’-’ will be printed if the number is negative). If you want such things, you’ll have to do them yourself.

BigInt has constructors that can create a BigInt from an unsigned integer or a string. You can also
decode a byte[] / length pair into a BigInt. There are several other BigInt constructors, which I would
seriously recommend you avoid, as they are only intended for use internally by the library, and may arbitrarily
change, or be removed, in a future release.

An essentially random sampling of BigInt related functions:

u32bit BigInt::bytes(): Return the size of this BigInt in bytes.

BigInt random prime(u32bit b): Return a prime number b bits long.

BigInt gcd(BigInt x, BigInt y): Returns the greatest common divisor of x and y. Uses the binary
GCD algorithm.

bool is prime(BigInt x): Returns true if x is a (possible) prime number. Uses the Miller-Rabin
probabilistic primality test with fixed bases. For higher assurance, use verify prime, which uses more
rounds and randomized 48-bit bases.

14.1 Efficiency Hints

If you can, always use expressions of the form a += b over a = a + b. The difference can be very substantial,
because the first form prevents at least one needless memory allocation, and possibly as many as three.

If you’re doing repeated modular exponentiations with the same modulus, create a BarrettReducer
ahead of time. If the exponent or base is a constant, use the classes in mod exp.h. This stuff is all handled
for you by the normal high-level interfaces, of course.

55

14.2 A Warning

Don’t ever even consider using the low-level MPI functions (those that begin with bigint). These are
completely internal to the library, and make arbitrarily strange and undocumented assumptions about their
inputs, and don’t check to see if they are actually true, on the assumption that only the library itself calls
them, and that the library knows what the assumptions are. The interfaces for these functions can change
completely without notice. These functions aren’t visible without effort on your part specifically to that end,
so you will get no sympathy if you decide to use any of them.

56

15 Removing Algorithms

You may well want to remove some of Botan’s algorithms in order to fit it into a memory-constrained system,
where you’re counting the kilobytes. For the most part, this is trivial to do, and Botan’s interface makes it
easy for applications to test for the presence of an algorithm at runtime, so a well-behaved application can
work without any need for porting on such an version of Botan.

In some versions of 1.3.x, you can use the ’minimal’ module, which removes large amount of Botan, in-
cluding most ciphers and hashes (except AES, DES/3DES, SHA-1, HMAC, RSA, DSA, and Diffie-Hellman),
DLIES, EAX and CTS modes, and a few other odds and ends. You can check for this being the case by
seeing if BOTAN EXT MINIMAL is defined, though for the most part it’s better to use the lookup interface (since
you have no way of knowing what exactly the minimal module might remove from release to release, and
certainly not if the shared object you’re linking to has a particular algorithm). This module was removed
just before 1.4.0, as there is a better way to handle all of this in the new engine code, which is aware of
things outside public key algorithms.

Removing things like the PK signature encoding schemes (EMSA2, EMSA3...) is somewhat more com-
plicated and not documented here (thought it is actually quite simple if you know how to do it – the minimal
module shows how). This tutorial (of sorts) will go through the steps required to compile a version of Botan
without the Blowfish block cipher (which has been included since the first release of Botan, in the spring of
2001).

The first step is to remove the files include/blowfish.h, src/blowfish.cpp, and src/blfs tab.cpp,
which actually implement the algorithm. Then minor editing of src/algolist.cpp is required. First,
remove the line that includes the Blowfish header botan/blowfish.h. Then look in get block cipher for
the code that adds a Blowfish block cipher object to the internal lookup table, and remove it. Run the
configure script, and then make the library. Tada! Done.

So how does an application test for such a situation? The first is to simply try to pass the name
“Blowfish” to constructor of CBC Encryption or other Botan Filter, and catch the resulting exception.
This is not particularly flexible, though. If an application wants to check on the status of Botan’s support
for a particular algorithm, it can call some status functions found in lookup.h, called have block cipher,
have stream cipher, have hash, and have mac, passing in the name of the desired algorithm. If Botan
knows about it, the function will return true.

There are a handful of algorithms which are considered “sacred”, in that an application can always expect
that they exist, and a distributor or other end-user should not remove them without considering the possibly
serious consequences. At this time, these are: AES, DES, TripleDES, SHA-1, and HMAC. This allows a
workable fallback strategy for applications.

One other useful application of this is to remove patented algorithms, for example if Botan were to be
included as part of a commercial Linux distribution.

For the most part, applications don’t have to really worry about this, simply because the cases this will
be required are fairly rare. Checking for the availability of patented algorithms like RC5, RC6, and SEAL
before using them might be a good idea, though.

Another advantage of this is that an application can be written to take advantage of an algorithm which
is not yet part of Botan, like the MARS block cipher or the Panama stream cipher. If it’s not available, one
can simply fall back on another algorithm, and when/if it is added to Botan, the application will start using
it automagically.

57

16 Writing Modules

It’s a lot simpler to write modules for Botan that it is to write code in the core library, for several reasons.
First, a module can rely on external libraries and services beyond the base ISO C++ libraries, and also
machine dependent features (assembler, anyone?). Also, the code can be added at configuration time on
the user’s end with very little effort (i.e.the code can be distributed separately and without depending on
patching anything).

Creating a module is quite simple. First, there must be a subdirectory in the modules directory for it.
The name of the module is the same as the name of this directory. Inside this directory, there needs to be
a file, with exactly the same name as the directory (that’s so the configuration script knows where to look).
This file contains directives it uses to specify what this module does, what systems it runs on, and so on.
Comments start with a # character and continue to end of line.

Recognized directives include:

realname <name>: Specify that the ’real world’ name of this module is <name>.

note <note>: Add a note that will be seen by the end-user at configure time.

require version <version>: Require at configure time that the version of Botan in use be at least
<version>. If not, the module will be ignored. Note that this directive is ignored prior to 1.4.3.

define <macro>: Define BOTAN EXT <macro> in config.h. This may only be used if the module creates
user-visible changes. There is a set of conventions that should be followed in deciding what to call this
macro (where xxx denotes some descriptive and distinguishing characteristic of the thing implemented, such
as ALLOC MLOCK or MUTEX PTHREAD):

• Allocator: ALLOC xxx

• Compressors: COMPRESSOR xxx

• EntropySource: ENTROPY SRC xxx

• Engines: ENGINE xxx

• Mutex: MUTEX xxx

• Timer: TIMER xxx

<lib> / </lib>: This specifies any extra libraries to be linked in. It is a mapping from OS to library name,
for example linux -> rt, which means that on Linux librt should be linked in. You can also use “all” to
force the library to be linked in on all systems.

add file <file>: Tell the configuration script to add the file given into the source tree. This file must exist
in the module directory.

ignore file <file>: Tell the configuration script to ignore the file given in the main source tree.

replace file <file>: Tell the configuration script to ignore the file given in the main source tree, and
instead use the one in the module’s directory.

local only <file>: Mark this header file as being for the build only; it will not be installed. This is useful
for headers used internally that are not exposed to the client.

Additionally, the module file can contain blocks, delimited by the following pairs:

<os> / </os>, <arch> / </arch>, <cc> / </cc>

58

For example, putting “alpha” and “ia64” in a <arch> block will make the configuration script only allow the
module to be compiled on those architectures. Not having a block means any value is acceptable.

59

17 Compliance with Standards

Botan is/should be compatible with many cryptographic standards, including the following:

* RSA: PKCS #1 v2.1, ANSI X9.31

* DSA: ANSI X9.30, FIPS 186-2

* Diffie-Hellman: ANSI X9.42, PKCS #3

* Certificates: ITU X.509, RFC 3280/3281 (PKIX), PKCS #9 v2.0, PKCS #10

* Private Key Formats: PKCS #5 v2.0, PKCS #8

* DES/DES-EDE: FIPS 46-3, ANSI X3.92, ANSI X3.106

* SHA-1: FIPS 180-2

* HMAC: ANSI X9.71, FIPS 198

* ANSI X9.19 MAC: ANSI X9.9, ANSI X9.19

There is also support for the very general standards of IEEE 1363-2000 and 1363a. Most of the contents
of such are included in the standards mentioned above, in various forms (usually with extra restrictions
which 1363 does not impose).

60

18 Recommended Algorithms

This section is by no means the last word on selecting which algorithms to use. However, Botan includes
a sometimes bewildering array of possible algorithms, and unless you’re familiar with the latest develop-
ments in the field, it can be hard to know what is secure and what is not. The following attributes of the
algorithms were evaluated when making this list: security, standardization, patent status, support by other
implementations, and efficiency (in roughly that order).

It is intended as a set of simple guidelines for developers, and nothing more. It’s entirely possible that
there are algorithms in Botan that will turn out to be more secure than the ones listed, but the algorithms
listed here are (currently) thought to be safe.

· Block ciphers: TripleDES or AES in CBC mode with “PKCS7” padding.

·· Stream Ciphers: Use any of the recommended block ciphers in CTR mode.

· Hash functions: SHA-1, SHA-256, SHA-512

· MACs: HMAC with any recommended hash function

· Public Key Encryption: RSA with “EME1(SHA-1)”

· Public Key Signatures: RSA with EMSA4 and any recommended hash, or DSA with “EMSA1(SHA-1)”

· Key Agreement: Diffie-Hellman, with “KDF2(SHA-1)”

61

19 Algorithms Listing

Botan includes a very sizable number of cryptographic algorithms. In nearly all cases, you never need to know
the header file or type name to use them. However, you do need to know what string (or strings) are used to
identify that algorithm. Generally, these names conform to those set out by SCAN (Standard Cryptographic
Algorithm Naming), which is a document which specifies how strings are mapped onto algorithm objects,
which is useful for a wide variety of crypto APIs (SCAN is oriented towards Java, but Botan and several
other non-Java libraries also make at least some use of it). For full details, read the SCAN document, which
can be found at http://www.users.zetnet.co.uk/hopwood/crypto/scan/

Many of these algorithms can take options (such as the number of rounds in a block cipher, the output
size of a hash function, etc). These are shown in the following list; all of them default to reasonable values
(unless otherwise marked). There are algorithm-specific limits on most of them. When you see something
like “HASH” or “BLOCK”, that means you should insert the name of some algorithm of that type. There
are no defaults for those options.

A few very obscure algorithms are skipped; if you need one of them, you’ll know it, and you can look in
the appropriate header to see what that classes’ name function returns (the names tend to match that in
SCAN, if it’s defined there).

· ROUNDS: The number of rounds in a block cipher.

·· OUTSZ: The output size of a hash function or MAC

· PASS: The number of passes in a hash function (more passes generally means more security).

Block Ciphers: “AES”, “Blowfish”, “CAST-128”, “CAST-256”, “DES”, “DESX”, “TripleDES”, “GOST”,
“IDEA”, “MISTY1(ROUNDS)”, “SAFER-SK(ROUNDS)”, “RC2”, “RC5(ROUNDS)”, “RC6”, “Serpent”,
“Skipjack”, “SQUARE”, “TEA”, “Twofish”, “XTEA”

Stream Ciphers: “ARC4”, “MARK4”, “ISAAC”, “SEAL”, “WiderWake4+1-BE”

Hash Functions: “HAS-160”, “HAVAL(OUTSZ, PASS)”, “MD2”, “MD4”, “MD5”, “RIPEMD-128”,
“RIPEMD-160”, “SHA-160”, “SHA-256”, “SHA-384”, “SHA-512”, “Tiger(OUTSZ,PASS)”, “Whirlpool”

MACs: “HMAC(HASH)”, “OMAC(BLOCK)”, “SSL3-MAC(HASH)”, “X9.19-MAC”

62

20 More Information

20.1 Support

Questions or problems you have with Botan can be directed to the development mailing list (currently
called opencl-devel). Joining this list is highly recommended if you’re going to be using Botan, since often
advance notice of upcoming changes is sent there. “Philosophical” bug reports, announcements of programs
using Botan, and basically anything else having to do with Botan are also welcome.

20.2 Compatibility

Generally, cryptographic algorithms are well standardized, and thus compatibility between implementations
is relatively simple (of course, not all algorithms are supported by all implementations). But there are a few
algorithms which are poorly specified, and these should be avoided if you wish your data to be processed in
the same way by another implementation (including future versions of Botan).

The block cipher GOST has a particularly poor specification: there are no standard Sboxes, and the
specification does not give test vectors even for sample boxes, which leads to issues of endian conventions,
etc. Other algorithms including in Botan suffering from these problems (though to a less serious degree)
include HAVAL and ISAAC.

If you wish maximum portability between different implementations of an algorithm, it’s best to stick
to strongly defined and well standardized algorithms, TripleDES, AES, HMAC, and SHA-1 all being good
examples.

20.3 Patents

Some of the algorithms implemented by Botan may be covered by patents in some locations. Algorithms
known to have patent claims on them in the United States and which are not available in a license-
free/royalty-free manner include: IDEA, MISTY1, RC5, RC6, SEAL, and Nyberg-Rueppel.

You must not assume that, just because an algorithm is not listed here, it is not encumbered by patents.
If you have any concerns about the patent status of any algorithm you are considering using in an application,
please discuss it with your attorney.

20.4 Further Reading and Information

It’s a very good idea if you have some knowledge of cryptography prior to trying to use this stuff. You
really should read one or more of these books before seriously using the library (note that the Handbook of
Applied Cryptography is available online, and I highly recommend you read it):

Handbook of Applied Cryptography, Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone; CRC
Press

Security Engineering – A Guide to Building Dependable Distributed Systems, Ross Anderson; Wiley

Cryptography: Theory and Practice, Douglas R. Stinson; CRC Press

Applied Cryptography, 2nd Ed., Bruce Schneier; Wiley

Once you’ve got the basics down, these are good things to at least take a look at: IEEE 1363 and 1363a,
SCAN, NESSIE, PKCS #1 v2.1, the security related FIPS documents, and the CFRG RFCs.

63

20.5 Contact Information

A PGP key with a fingerprint of 621D AF64 11E1 851C 4CF9 A2E1 6211 EBF1 EFBA DFBC is used to sign
all Botan releases. This key can be found in the file doc/pgpkeys.asc; PGP keys for the developers are also
stored there.

Another key, with fingerprint 33E3 9768 1D13 E7B4 1A01 BBCE A63F 2CBD FA02 FBCC, was used for
signing releases up until 1.4.2. This key has been retired.

Main email contact: lloyd@randombit.net

Web Site: http://botan.randombit.net

64

