Botan Reference Guide
Release 3.9.0

The Botan Authors

2025-08-05

CONTENTS

Getting Started 1
1.1 Examples oo e e e e e e e e e e 1
1.2 Booksandotherreferences L L 2
Project Goals 3
2.1 Non-Goals L e 4
Support Information 5
3.1 Supported Platforms e 5
3.2 Branch Support Status 6
33 GettingHelp o L e 6
Building The Library 7
4.1 Configuring the Build e 7
4.2 Common Build Targets e e e 8
43 Cross Compiling o e e e e e e e e 9
44 OnUnixo e e e 9
45 0OnmacOS L e e 10
4.6 OnWiIndows L e e e e e e e e e 11
477 Ninja Support o e e e e e e e e e e e e e e 11
4.8 ForiOSusing XCode e e 11
4.9 For Android e 12
4.10 Emscripten (WebAssembly) o o L e e e e e e e e e 12
4.11 Supporting Older Distros L 13
4.12 Other Build-Related Tasks o . . e 13
4.13 Building Applications e e e 15
4.14 Language WIapPersS . . . v v v v v v e 16
4.15 Minimized Builds 16
4.16 Configure Script Options L e e e e 16
Semantic Versioning 25
5.1 Exception #1: Deriving from Library Classes 25
5.2 Exception #2: BOTAN_UNSTABLE_APT it i ittt e e et e e e e e e e e 25
5.3 Exception #3: Experimental modules Lo oL L 26
5.4 Exception #4: Any function starting with _ oL oL 26
Botan 2.x to 3.x Migration 27
6.1 Headers o L e e e 27
6.2 Build Artifacts e e 27
6.3 TLS . . 27
6.4 Algorithms Removed e e e 30

6.5 Certificate APIshared_ptr e 30
6.6 All Or Nothing Package Transform 30
6.7 Exception Changes e e e e e e 30
6.8 X.509 Certificate Info Access o e e e 30
6.9 OCSP Response Validation L e 30
6.10 Useof enum €lass i i e e e e e e e 30
6.11 ASN.Ienums v i it e e e e e e e e e e e e 31
6.12 Cipher Mode Granularity 0 0 e e e e e e e e e e 31
6.13 “SHA-160” and “SHA1” L e e e e e 31
6.14 PointGFp e 31
6.15 X509:load_Key e e 31
6.16 PKCS11_Request::subject_public_key and X509_Certificate::subject_public_key 31
6.17 choose_sig_formatremoved L L e e e e e e 31
6.18 DLIES CONSIUCIOTS . . .« v v v vt e 32
6.19 Credentials_Manager::private_key_for e 32
6.20 OID Operator+ v v ot i e e e e e e e e e 32
6.21 RSA with “EMSA1” padding e 32
6.22 ECDSA/DSA with “EMSA1” padding e 32
6.23 Signature Algorithm OIDs o e e e e e e 32
6.24 Public Key Signature Padding 32
6.25 Discrete Logarithm Key Changes L o 33
6.26 XMSS Signature Changes e e e 33
6.27 Random Number Generator v v v v v v vt e e e e e e e e e e e e e 33
OpenSSL 1.1 to Botan 3.x Migration 35
7.1 General Remarks L e e e e e e e 35
T.2 0 X500 o e e e e e e e 35
7.3 Random Number Generation v i v vt i e e e e e e e e e e e e 37
7.4 HashFunctions e e e e e e 38
7.5 Symmetric Encryptiono 40
7.6 Asymmetric Encryption e e 42
7.7 Asymmetric Signatures o e e e e e e e e e e e e e e e e e e 44
API Reference 47
8.1 Footguns e e e e e 47
8.2 Versioning e e e e e e e e e e e e 48
8.3 Memory CONtaiNer v v it et e 49
8.4 Random Number Generators o v v it it i e e e e e e e e e 50
8.5 Hash Functions and Checksums e e 54
8.6 Block Ciphers L . e e 60
8.7 Stream Ciphers L. e e e e 66
8.8 Message Authentication Codes (MAC) i i i i e e e 70
8.9 CipherModes e e e e e e 75
8.10 Public Key Cryptography e 82
8.11 X.509 Certificatesand CRLs e e e e e 108
8.12 Transport Layer Security (TLS) o e 121
8.13 Credentials Manager i e e e e e e e e e e e e e e 153
.14 Biglnt o e e e e e e e e 155
8.15 Key Derivation Functions (KDF) 158
8.16 Password Based Key Derivation L e 162
8.17 AES Key Wrapping i e e e 169
8.18 Password Hashing e e e e e e e e 170
8.19 CryptoboX o e e e e e e e e e 173
8.20 Secure Remote Password L e e e 173

8.21 PSKDatabase e e e e 174
8.22 Pipe/Filter Message Processing i e e e e e e e e e 175
8.23 Format Preserving Encryption oL e 185
8.24 Threshold Secret Sharing L e 191
825 EC_Group i i e e e e e 192
8.26 Elliptic Curve Operations it it e e e e e e e e e 194
8.27 Lossless Data Compression o v v i i i e e e e e e e e e e e e e e e e 197
8.28 External Providers L e 199
829 PKCSHIL e 201
8.30 Trusted Platform Module (TPM) e e 230
831 OneTimePasswords o e e 238
8.32 Roughtime e e e e e e e e e e e e 239
8.33 libsodium Compatible Interfaces e e 239
8.34 ZFEC Forward Error Correction v i v i i it e et et e e e e e 239
835 FFI(CBInding) e e 240
8.36 Environment Variables oL L 262
837 PythonBinding e 262
9 Command Line Interface 275
0.1 Outline e 275
9.2 HashFunction e 275
9.3 PasswordHash e 275
9.4 HMAC e 276
0.5 Encryption e 276
9.6 Public Key Cryptography e 276
0.7 X509 . . o 277
0.8 TLS Server/Client o i i e e e e e e 278
9.9 Number Theory e e e e e e e 279
9.10 PSKDatabase e e e e e e e 279
O.11 SecretSharing e 280
9.12 Data Encoding/Decoding e e 280
9.13 Forward Error Correction o i e e e e e 280
9.14 Miscellaneous Commands ot e e e e e e e e e e e e 281
10 Hardware Acceleration 283
0.1 X80 . . o o e 283
102 ARM . . . e 284
103 PowerPC L e e 285
10.4 Loongarch64 e 285
10.5 Configuring Accelerationl e e 286
11 Deprecated Features 287
11.1 Platform Support Deprecations i e e e 287
11.2 TLS Protocol Deprecations oo v v v it ittt e e e e e e 287
11.3 Elliptic Curve Deprecations o 0 v i i e e e e e e e e e e e e e e 288
11.4 Deprecated Modules i i i e e e e e e e e e e 288
11.5 Other Deprecated Functionality 289
11.6 Deprecated Headers e 290
12 Development Roadmap 291
12.1 Near Term Plans o L . e e e e e 291
12.2 Botan2 L e e e 291
123 Botan3 e e e e e e 291
124 Botand e e e e 291

13

14

15

16

17

18

Credits
ABI Stability

Notes for Distributors

15.1 Recommended Options. e
15.2 SetPathtothe System CAbundle
15.3 SetDistribution Info L e e e e e e
15.4 CMake Integration o 0 v i i e e e e e e e e e e e e e e e e e e
15.5 Minimize Distribution Patches

Security Advisories

16.1 2024 . . e e e
16.2 2022 . . e e e e
163 2020 . . . e e e e
16.4 2018 . . . e
16.5 2017 . o o e e e e
16.6 2016 e e e
16.7 2015 . . e e e e
16.8 2014 . . o o e e e e

Threat Model
I7.1 OutOf Scope o o v e e e e e e

Side Channels

18.1 Modular Exponentiation e e e e e e e e e e
18.2 BarrettReduction. L e e
183 RSA . o e
18.4 Decryption of PKCS #1 v1.5 Ciphertexts ittt it
18.5 Verification of PKCS #1 v1.5 Signatures o
18.6 OAEP e
18.7 ECCpointdecoding i i i i e e e e e e e
18.8 ECC scalar multiplication
189 ECDH e
18.10 ECDSA . . . e e e
I8.11 X25519 . . o o e
18.12 TLS CBC Ciphersuites o v i v e
18.13 CBCmode padding o e e e e e e e e
18.14 base64 decoding L L. e e e e e e e e e
18.15 AES . . o o e
18.16 GCM o e e e
I8.17 OCB e e
18.18 Polyl1305 e e e
18.19 DES/3DES e e
18.20 Twofish o e e e e
18.21 ChaCha20, Serpent, Threefish,
1822 IDEA e e
18.23 Hash Functions e e e
18.24 Memory COMPAariSONS o v v v v vttt e e e e e e e e e e e e e e e e e e
18.25 Memory Zeroizing i i e e e e e e e e e e e e e e e e e e e
18.26 Stack Scrubbing L e e
18.27 Memory allocation e e e e e e e e e e e e e e
18.28 Side Channel Analysis Tools o 0 o o o e e e
1820 References i e e e e

293

297

299
299
299
299
299
299

301
301
302
302
303
303
304
305
307

19 Developer Reference 319

19.1 Notes for New Contributors e e e 319
19.2 Understanding configure.py« o o i e e e e e e e e e e e 324
19.3 Test Framework o L e e e e e 332
19.4 Continuous Integration and Automated Testing 0oL 336
19.5 Fuzzing The Library o o e 337
19.6 Release Process and Checklist e 338
19.7 Todo List o o o o e e e e e e 340
19.8 OSFeatures. o o o e e e 343
19.9 Private OID Assignments e 344
19.10 Custom Elliptic Curve oo e e e e e e 347
19.11 Checklist For Next Major Version ittt et 348
19.12 Reading LiSt o o e e e e e e e e e e e 348
19.13 Mistakes Were Made L e e 350

vi

CHAPTER
ONE

GETTING STARTED

If you need to build the library first, start with Building The Library. Some Linux distributions include packages for
Botan, so building from source may not be required on your system.

1.1 Examples

Examples of usage are included in this documentation, some of which are listed below:
* Block Ciphers
* Cipher Modes
* Hash Functions
* KDFs
* MACs
* PBKDFs s
* Key Agreement
* ECDSA
e ML-KEM
* RSA
o XMSS
o Stream Ciphers
e TLS Client
* TLS Client (PQC/hybrid)
e HTTPS Client
e TLS Server
* X.509

You’ll find additional examples of usage in the src/examples (https://github.com/randombit/botan/tree/master/src/examples)
directory.

An additional source for example code is in the implementation of the command line interface
(https://github.com/randombit/botan/tree/master/src/cli), which was intentionally written to act as practical ex-
amples of usage.

https://github.com/randombit/botan/tree/master/src/examples
https://github.com/randombit/botan/tree/master/src/cli

Botan Reference Guide, Release 3.9.0

1.2 Books and other references

You should have some knowledge of cryptography before trying to use the library. This is an area where it is very
easy to make mistakes, and where things are often subtle and/or counterintuitive. Obviously the library tries to provide
things at a high level precisely to minimize the number of ways things can go wrong, but naive use will almost certainly
not result in a secure system.

Especially recommended are:
* Cryptography Engineering by Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno

* Security Engineering — A Guide to Building Dependable Distributed Systems
(https://www.cl.cam.ac.uk/~rjal4/book.html) by Ross Anderson

* Handbook of Applied Cryptography (http://www.cacr.math.uwaterloo.ca/hac/) by Alfred J. Menezes, Paul C.
Van Oorschot, and Scott A. Vanstone

If you’re doing something non-trivial or unique, you might want to at the very least ask for review/input at a place
such as the cryptography stack exchange (https://crypto.stackexchange.com/). And (if possible) pay a professional
cryptographer or security company to review your design and code.

2 Chapter 1. Getting Started

https://www.cl.cam.ac.uk/~rja14/book.html
http://www.cacr.math.uwaterloo.ca/hac/
https://crypto.stackexchange.com/

CHAPTER
TWO

PROJECT GOALS

Botan seeks to be a broadly applicable library that can be used to implement a range of secure distributed systems.

The library has the following project goals guiding changes. It does not succeed in all of these areas in every way just
yet, but it describes the system that is the desired end result. Over time further progress is made in each.

Secure and reliable. The implementations must of course be correct and well tested, and attacks such as side
channels and fault attacks should be accounted for where necessary. The library should never crash, or invoke
undefined behavior, regardless of circumstances.

Implement schemes important in practice. It should be practical to implement any real-world crypto protocol
using just what the library provides. It is worth some (limited) additional complexity in the library, in order to
expand the set of applications which can easily adopt Botan.

Ease of use. It should be straightforward for an application programmer to do whatever it is they need to do. There
should be one obvious way to perform any operation. The API should be predicable, and follow the “principle
of least astonishment” in its design. This is not just a nicety; confusing APIs often result in errors that end up
compromising security.

Simplicity of design, clarity of code, ease of review. The code should be easy to read and understand by other
library developers, users seeking to better understand the behavior of the code, and by professional reviewers
looking for bugs. This is important because bugs in convoluted code can easily escape multiple expert reviews,
and end up living on for years.

Well tested. The code should be correct against the spec, with as close to 100% test coverage as possible. All
available static and dynamic analysis tools at our disposal should be used, including fuzzers, symbolic execution,
and protocol specific tools. Within reason, all warnings from compilers and static analyzers should be addressed,
even if they seem like false positives, because that maximizes the signal value of new warnings from the tool.

Safe defaults. Policies should aim to be highly restrictive by default, and if they must be made less restrictive by
certain applications, it should be obvious to the developer that they are doing something unsafe.

Post quantum security. Possibly a practical quantum computer that can break RSA and ECC will never be built,
but the future is notoriously hard to predict. It seems prudent to begin designing and deploying systems now
which have at least the option of using a post-quantum scheme. Botan provides a conservative selection of
algorithms thought to be post-quantum secure.

Performance. Botan does not in every case strive to be faster than every other software implementation, but
performance should be competitive and over time new optimizations are identified and applied.

Support whatever I/O mechanism the application wants. Allow the application to control all aspects of how the
network is contacted, and ensure the API makes asynchronous operations easy to handle. This both insulates
Botan from system-specific details and allows the application to use whatever networking style they please.

Portability to modern systems. Botan does not run everywhere, and we actually do not want it to (see non-goals
below). But we do want it to run on anything that someone is deploying new applications on. That includes both
major platforms like Windows, Linux, Android and iOS, and also promising new systems such as Fuchsia.

Botan Reference Guide, Release 3.9.0

2.1

Well documented. Ideally every public API would have some place in the manual describing its usage.

Useful command line utility. The botan command line tool should be flexible and featured enough to replace
similar tools such as openss1 for everyday users.

Non-Goals

There are goals some crypto libraries have, but which Botan actively does not seek to address.

Deep embedded support. Botan requires a heap, C++ exceptions, and RTTI, and at least in terms of performance
optimizations effectively assumes a 32 or 64 bit processor. It is not suitable for deploying on, say FreeRTOS
running on a MSP430, or smartcard with an 8 bit CPU and 256 bytes RAM. A larger SoC, such as a Cortex-A7
running Linux, is entirely within scope.

Implementing every crypto scheme in existence. The focus is on algorithms which are in practical use in systems
deployed now, as well as promising algorithms for future deployment. Many algorithms which were of interest
in the past but never saw widespread deployment and have no compelling benefit over other designs have been
removed to simplify the codebase.

Portable to obsolete systems. There is no reason for crypto software to support ancient OS platforms like SunOS
or Windows 2000, since these unpatched systems are completely unsafe anyway. The additional complexity
supporting such platforms just creates more room for bugs.

Portable to every C++ compiler ever made. Over time Botan moves forward to both take advantage of new
language/compiler features, and to shed workarounds for dealing with bugs in ancient compilers, allowing further
simplifications in the codebase. The set of supported compilers is fixed for each new release branch, for example
Botan 2.x will always support GCC 4.8. But a future 3.x release version will likely increase the required versions
for all compilers.

Educational purposes. The library code is intended to be easy to read and review, and so might be useful in an
educational context. However it does not contain any toy ciphers (unless you count DES and RC4) nor any tools
for simple cryptanalysis. Generally the manual and source comments assume previous knowledge on the basic
concepts involved.

User proof. Some libraries provide a very high level API in an attempt to save the user from themselves. Occa-
sionally they succeed. It would be appropriate and useful to build such an API on top of Botan, but Botan itself
wants to cover a broad set of uses cases and some of these involve having pointy things within reach.

Chapter 2. Project Goals

CHAPTER
THREE

SUPPORT INFORMATION

3.1 Supported Platforms

For Botan 3, the tier-1 supported platforms are
e Linux x86-64, GCC 11.2 or later
* Linux x86-64, Clang 14 or later
¢ Linux aarch64, GCC 11.2 or later
* Linux ppc64le, GCC 11.2 or later
¢ Windows x86-64, Visual C++ 2022 or later

These platforms are all tested by continuous integration, and the developers have access to hardware in order to test
patches. Problems affecting these platforms are considered release blockers.

For Botan 3, the tier-2 supported platforms are
* macOS aarch64, latest XCode Clang
* macOS x86-64, latest XCode Clang
¢ iOS aarch64, latest XCode Clang
¢ Windows x86-64, latest MinGW GCC
* Android aarch64, latest NDK Clang
e Linux arm32, GCC 11.2 or later
¢ Linux x86-32, GCC 11.2 or later
* FreeBSD x86-64, Clang 14 or later

Note

Notice that the minimum version requirements for XCode and NDK is different from other compilers. With GCC
or Clang, we fix the minimum required compiler version and aim to maintain that support for the entire lifecycle of
Botan 3. In contrast, for XCode and NDK the minimum version is floating; namely, we will only support the very
latest version. It’s possible earlier versions will work, but this is not guaranteed.

Botan Reference Guide, Release 3.9.0

Note

As of May 2024, it is known that at least XCode 15.0 is required, since earlier versions did not support certain
C++20 language features that the library uses.

Note

For Android, NDK 26 is required

Some (but not all) of the tier-2 platforms are tested by CI. Everything should work, and if problems are encountered,
the developers will probably be able to help. But they are not as carefully tested as tier-1.

Of course most other modern OSes such as QNX, AIX, OpenBSD, NetBSD, and Solaris also work just fine. Some are
tested occasionally, usually just before a new release. But very little code specific to these platforms is written by the
primary developers. For example, any functionality in the library which utilizes OpenBSD specific APIs was likely
contributed by someone interested in that platform.

In theory any working C++20 compiler is fine but in practice, we only regularly test with GCC, Clang, and Visual C++.
Several other compilers (such as IBM XLC, Intel C++, and Sun Studio) are supported by the build system but are not
tested by the developers and may have build or codegen problems. Patches to improve support for these compilers is
welcome.

3.2 Branch Support Status

Following table provides the support status for Botan branches, as of August 2025.

“Active development” refers to adding new features and optimizations. At the conclusion of the active development
phase, only bugfixes are applied.

End of life dates may be extended as circumstances warrant.

Branch First Release End of Active Development End of Life

Botan2 2017-01-06 2020-11-05 2024-12-31
Botan3 2023-04-11 20277 2028-12-31 or later
Botand 2027? ? ?

3.3 Getting Help

To get help with Botan, open an issue on GitHub (https://github.com/randombit/botan/issues)

6 Chapter 3. Support Information

https://github.com/randombit/botan/issues

CHAPTER
FOUR

BUILDING THE LIBRARY

This document describes how to build Botan on Unix/POSIX and Windows systems. The POSIX oriented descriptions
should apply to most common Unix systems (including Apple macOS/Darwin), along with POSIX-ish systems like
QNX.

Note

Botan is available already in nearly all packaging systems (https://repology.org/project/botan/versions) so you prob-
ably only need to build from source if you need unusual options or are building for an old system which has out of
date packages.

Currently systems such as VMS, 0S/390, and OS/400 are not supported by the build system, primarily due to lack of
access and interest. Please contact the maintainer if you would like to build Botan on such a system.

Botan is a C++20 code base, make sure to use an appropriate compiler and settings. See also Support Information.

Botan’s build is controlled by configure.py, which is a Python (https://www.python.org) script. Python 3.x or later is
required.

For the impatient, this works for most systems:

$./configure.py [--prefix=/some/directory]
$ make
$ make install

Or using nmake, if you're compiling on Windows with Visual C++. On platforms that do not understand the ‘#!’
convention for beginning script files, or that have Python installed in an unusual spot, you might need to prefix the
configure.py command with python3 or /path/to/python3:

[$ python3 ./configure.py [arguments]

4.1 Configuring the Build

The first step is to run configure.py, which is a Python script that creates various directories, config files, and a
Makefile for building everything. This script should run under a vanilla install of Python 3.x.

The script will attempt to guess what kind of system you are trying to compile for (and will print messages telling you
what it guessed). You can override this process by passing the options --cc, --0s, and --cpu.

You can pass basically anything reasonable with --cpu: the script knows about a large number of different architectures,
their sub-models, and common aliases for them. You should only select the 64-bit version of a CPU (such as “sparc64”
or “mips64”) if your operating system knows how to handle 64-bit object code - a 32-bit kernel on a 64-bit CPU will
generally not like 64-bit code.

https://repology.org/project/botan/versions
https://www.python.org

Botan Reference Guide, Release 3.9.0

By default the script tries to figure out what will work on your system, and use that. It will print a display at the end
showing which modules have and have not been enabled. For instance on one system we might see lines like:

INFO: Skipping (dependency failure): certstor_sqlite3 sessions_sqlite3

INFO: Skipping (incompatible CPU): aes_power8

INFO: Skipping (incompatible 0S): darwin_secrandom getentropy win32_stats

INFO: Skipping (incompatible compiler): aes_armv8 pmull shal_armv8 sha2_32_armv8
INFO: Skipping (no enabled compression schemes): compression

INFO: Skipping (requires external dependency): boost bzip2 lzma sqlite3 tpm zlib

The ones that are skipped because they are require an external dependency have to be explicitly asked for, because
they rely on third party libraries which your system might not have or that you might not want the resulting binary to
depend on. For instance to enable zlib support, add --with-z1ib to your invocation of configure.py. All available
modules can be listed with --1ist-modules.

Some modules may be marked as ‘deprecated’ or ‘experimental’. Deprecated modules are available and built by default,
but they will be removed in a future release of the library. Use --disable-deprecated-features to disable all
of these modules or --disable-modules=MODS for finer grained control. Experimental modules are under active
development and not built by default. Their API may change in future minor releases. Applications may still enable
and use such modules using --enable-modules=MODS or using --enable-experimental-features to enable all
experimental features.

You can control which algorithms and modules are built using the options --enable-modules=MODS and
--disable-modules=MODS, for instance --enable-modules=z1lib and --disable-modules=xtea,idea. Mod-
ules not listed on the command line will simply be loaded if needed or if configured to load by default. If you use
--minimized-build, only the most core modules will be included; you can then explicitly enable things that you
want to use with --enable-modules. This is useful for creating a minimal build targeting to a specific application,
especially in conjunction with the amalgamation option; see 7The Amalgamation Build and Minimized Builds.

For instance:

[$./configure.py --minimized-build --enable-modules=rsa,eme_oaep,emsa_pssr J

will set up a build that only includes RSA, OAEP, PSS along with any required dependencies. Note that a minimized
build does not by default include any random number generator, which is needed for example to generate keys, nonces
and IVs. See Random Number Generators on which random number generators are available.

4.2 Common Build Targets

Build everthing that is configured:

[$ make all]

Build the unit test binary (. /botan-test to run):

[$ make tests]

Build and run the tests:

[$ make check J

Build the documentation (Doxygen API reference and Sphinx handbook):

[$ make docs J

Install the library:

8 Chapter 4. Building The Library

Botan Reference Guide, Release 3.9.0

[$ make install J

Remove all generated artefacts:

[$ make clean }

4.3 Cross Compiling

Cross compiling refers to building software on one type of host (say Linux x86-64) but creating a binary for some other
type (say MinGW x86-32). This is completely supported by the build system. To extend the example, we must tell
configure.py to use the MinGW tools:

$./configure.py --os=mingw --cpu=x86_32 --cc-bin=i686-w64-mingw32-g++ --ar-command=i686-
—w64-mingw32-ar

$ make
$§ file botan.exe
botan.exe: PE32 executable (console) Intel 80386, for MS Windows

Note

For whatever reason, some distributions of MinGW lack support for threading or mutexes in the C++ standard
library. You can work around this by disabling thread support using --without-os-feature=threads

Warning

Using --without-os-feature=threads disables all support for threads, including any locking of internal data
structures. In this configuration, calling into the library from multiple threads will cause data races.

You can also specify the alternate tools by setting the CXX and AR environment variables (instead of the —cc-bin and
—ar-command options), as is commonly done with autoconf builds.

4.4 On Unix

The basic build procedure on Unix and Unix-like systems is:

$./configure.py [various options]
$ make
$ make check

If the tests look OK, install:

[$ make install J

On Unix systems the script will default to using GCC; use --cc if you want something else. For instance use
--cc=clang for Clang.

The make install target has a default directory in which it will install Botan (typically /usr/local). You can
override this by using the --prefix argument to configure.py, like so:

4.3. Cross Compiling 9

Botan Reference Guide, Release 3.9.0

[$./configure.py --prefix=/opt <other arguments>

On some systems shared libraries might not be immediately visible to the runtime linker. For example, on Linux you
may have to edit /etc/1d.so.conf and run 1dconfig (as root) in order for new shared libraries to be picked up
by the linker. An alternative is to set your LD_LIBRARY_PATH shell variable to include the directory that the Botan
libraries were installed into.

4.5 On macOS

A standard build on macOS works much like that on any other Unix-like system.

One notable difference with macOS is the common usage of “universal binaries”, which is effectively a multiarch
binary. This was used first for the PowerPC to x86 transition, and more recently for the x86 to Aarch64 transition.

Building a universal binary is a bit trickier for Botan compared with a standard application, as the library makes use
of many architecture specific extensions, for example AES-NI and AVX2 on x86, and NEON and the ARMv8 crypto
extensions on Aarch64. Botan’s build system also assumes that it is knowable at setup time which files are to be
compiled.

Typically (for software with no architecture dependent code) a universal binary is built by adding additional compilation
flags that look something like -force_cpusubtype_ALL -arch x86_64 -arch arm64. This effectively causes
XCode to compile each file twice, once for x86_64 and again for Aarch64. For most source files this works fine, but for
architecture-specific files it will result in errors when code specific to one architecture is encountered when compiling
for a different architecture, resulting in errors like:

$ make

error: unknown target CPU 'armv8.2-a+sha3'
note: valid target CPU values are:

There are currently two ways of proceeding.

The first is to use --cpu=generic. This disables all architecture specific code, which has performance implications,
especially for algorithms with dedicated hardware support like AES. This can be alleviated somewhat by making sure
the CommonCrypto provider (module commoncrypto) is built, since then Botan offloads many of these specific oper-
ations to CommonCrypto, which will be able to use the CPU instructions.

The second, and recommended, approach is to build twice and use 1lipo to combine the two binaries. This looks
something like:

$./configure.py --with-build-dir=botan_x86_64 --disable-cc-tests --build-targets=shared.
— --cpu=x86_64 --extra-cxxflags='-arch x86_64"' --ldflags='-arch x86_64"' --library-
—suffix=-x86_64

$ make -j8 -f botan_x86_64/Makefile

$./configure.py --with-build-dir=botan_aarch64 --disable-cc-tests --build-
—targets=shared --cpu=aarch64 --extra-cxxflags='-arch arm64' --ldflags='-arch arm64' --
—library-suffix=-aarch64

$ make -j8 -f botan_aarch64/Makefile

$ lipo -create botan_aarch64/libbotan-3-aarch64.dylib botan_x86_64/libbotan-3-x86_64.
—dylib -o libbotan-3.dylib

10 Chapter 4. Building The Library

Botan Reference Guide, Release 3.9.0

4.6 On Windows

Note

The earliest versions of Windows supported are Windows 7 and Windows 2008 R2

You need to have a copy of Python installed, and have both Python and your chosen compiler in your path. Open a
command shell (or the SDK shell), and run:

$ python3 configure.py --cc=msvc --os=windows
$ nmake

$ nmake check

$ nmake install

Micosoft’s nmake does not support building multiple jobs in parallel, which is unfortunate when building on modern
multicore machines. It is possible to use the (somewhat unmaintained) Jom (https://wiki.qt.io/Jom) build tool, which is
a nmake compatible build system that supports parallel builds. Alternately, starting in Botan 3.2, there is additionally
support for using the ninja build tool as an alternative to nmake:

$ python3 configure.py --cc=msvc --os=windows --build-tool=ninja
$ ninja

$ ninja check

$ ninja install

For MinGW, use:

$ python3 configure.py --cc=gcc --os=mingw
$ make

By default the install target will be C:\botan; you can modify this with the --prefix option.

When building your applications, all you have to do is tell the compiler to look for both include files and library files
in C:\botan, and it will find both. Or you can move them to a place where they will be in the default compiler search
paths (consult your documentation and/or local expert for details).

4.7 Ninja Support

Starting in Botan 3.2, there is additionally support for the ninja (https://ninja-build.org) build system.

This is particularly useful on Windows as there the default build tool nmake does not support parallel jobs. The ninja
based build also works on Unix and macOs systems.

Support for ninja is still new and there are probably some rough edges.

4.8 For iOS using XCode

For iOS, you typically build for 3 architectures: armv7 (32 bit, older iOS devices), armv8-a (64 bit, recent iOS de-
vices) and x86_64 for the iPhone simulator. You can build for these 3 architectures and then create a universal binary
containing code for all of these architectures, so you can link to Botan for the simulator as well as for an iOS device.

To cross compile for armv7, configure and make with:

4.6. On Windows 11

https://wiki.qt.io/Jom
https://ninja-build.org

Botan Reference Guide, Release 3.9.0

$./configure.py --os=ios --prefix="iphone-32" --cpu=armv7 --cc=clang \
--cc-abi-flags="-arch armv7"
$ xcrun --sdk iphoneos make install

To cross compile for armv8-a, configure and make with:

$./configure.py --os=ios --prefix="iphone-64" --cpu=armv8-a --cc=clang \
--cc-abi-flags="-arch arm64"
$ xcrun --sdk iphoneos make install

To compile for the iPhone Simulator, configure and make with:

$./configure.py --os=ios --prefix="iphone-simulator" --cpu=x86_64 --cc=clang \
--cc-abi-flags="-arch x86_64"
$ xcrun --sdk iphonesimulator make install

Now create the universal binary and confirm the library is compiled for all three architectures:

$ xcrun --sdk iphoneos lipo -create -output libbotan-2.a \
iphone-32/lib/libbotan-2.a \
iphone-64/1ib/libbotan-2.a \
iphone-simulator/lib/libbotan-2.a

$ xcrun --sdk iphoneos lipo -info libbotan-2.a

Architectures in the fat file: libbotan-2.a are: armv7 x86_64 armv64

The resulting static library can be linked to your app in Xcode.

4.9 For Android

Modern versions of Android NDK use Clang and support C++20. Simply configure using the appropriate NDK com-
piler and ar (ar only needed if building the static library). Here we build for Aarch64 targeting Android API 28:

$ export AR=/opt/android-ndk/toolchains/l1lvm/prebuilt/linux-x86_64/bin/1lvm-ar

$ export CXX=/opt/android-ndk/toolchains/1lvm/prebuilt/linux-x86_64/bin/aarch64-1linux-
—android28-clang++

$./configure.py --os=android --cc=clang --cpu=arm64

$ make

If you are building for mobile development, consider restricting the build to only what you need (see Minimized Builds)
to minimize code size.

4.10 Emscripten (WebAssembly)

To build for WebAssembly using Emscripten, try:

./configure.py --cpu=wasm --os=emscripten
make

This will produce HTML files botan-test.html and botan.html along with a static archive libbotan-3.a which
can be linked with other modules.

12 Chapter 4. Building The Library

Botan Reference Guide, Release 3.9.0

4.11 Supporting Older Distros

Some “stable” distributions, notably RHEL/CentOS, ship very obsolete versions of binutils, which do not support more
recent CPU instructions. As a result when building you may receive errors like:

[Error: no such instruction: “sha256rnds2 %xmm0,%xmm4,%xmm3"’]

Depending on how old your binutils is, you may need to disable BMI2, AVX2, SHA-NI, and/or RDSEED. These can be
disabled by passing the flags --disable-bmi2, --disable-avx2, --disable-sha-ni, and --disable-rdseed
to configure.py.

4.12 Other Build-Related Tasks

4.12.1 Building The Documentation

There are two documentation options available, Sphinx and Doxygen. Sphinx will be used if sphinx-build is detected
in the PATH, or if --with-sphinx is used at configure time. Doxygen is only enabled if --with-doxygen is used.
Both are generated by the makefile target docs.

4.12.2 The Amalgamation Build

You can also configure Botan to be built using only a single source file; this is quite convenient if you plan to embed
the library into another application.

To generate the amalgamation, run configure.py with whatever options you would ordinarily use, along with the
option --amalgamation. This will create two (rather large) files, botan_all.h and botan_all. cpp.

Note

The library will as usual be configured to target some specific operating system and CPU architecture. You can use
the CPU target “generic” if you need to target multiple CPU architectures, but this has the effect of disabling all
CPU specific features such as SIMD, AES instruction sets, or inline assembly. If you need to ship amalgamations
for multiple targets, it would be better to create different amalgamation files for each individual target.

Whenever you would have included a botan header, you can then include botan_all.h, and include botan_all.cpp
along with the rest of the source files in your build. If you want to be able to easily switch between amalgamated and
non-amalgamated versions (for instance to take advantage of prepackaged versions of botan on operating systems that
support it), you can instead ignore botan_all.h and use the headers from build/include as normal.

You can also build the library using Botan’s build system (as normal) but utilizing the amalgamation instead of the
individual source files by running something like . /configure.py --amalgamation && make. This is essentially
a very simple form of link time optimization; because the entire library source is visible to the compiler, it has more
opportunities for interprocedural optimizations. Additionally (assuming you are not making use of a compiler cache
such as ccache or sccache) amalgamation builds usually have significantly shorter compile times for full rebuilds.

4.12.3 Modules Relying on Third Party Libraries

Currently configure.py cannot detect if external libraries are available, so using them is controlled explicitly at build
time by the user using

e --with-bzip2 enables the filters providing bzip2 compression and decompression. Requires the bzip2 devel-
opment libraries to be installed.

e —-with-zlib enables the filters providing zlib compression and decompression. Requires the zlib development
libraries to be installed.

4.11. Supporting Older Distros 13

Botan Reference Guide, Release 3.9.0

e --with-1zma enables the filters providing Izma compression and decompression. Requires the 1zma develop-
ment libraries to be installed.

* --with-sqlite3 enables using sqlite3 databases in various contexts (TLS session cache, PSK database, etc).
¢ --with-tpm adds support for TPM 1.2 hardware via the TrouSerS library.
e —-with-tpm2 adds support for TPM 2.0 hardware via the TSS2 library.

e --with-boost enables using some Boost libraries. In particular Boost.Filesystem is used for a few operations
(but on most platforms, a native API equivalent is available), and Boost.Asio is used to provide a few extra TLS
related command line utilities.

4.12.4 Multiple Builds

It may be useful to run multiple builds with different configurations. Specify --with-build-dir=<dir> to setup a
build environment in a different directory.

4.12.5 Setting Distribution Info

The build allows you to set some information about what distribution this build of the library comes from. It is par-
ticularly relevant to people packaging the library for wider distribution, to signify what distribution this build is from.
Applications can test this value by checking the string value of the macro BOTAN_DISTRIBUTION_INFO. It can be
set using the --distribution-info flag to configure. py, and otherwise defaults to “unspecified”. For instance, a
Gentoo (https://www.gentoo.org) ebuild might set it with --distribution-info="Gentoo ${PVR}" where ${PVR}
is an ebuild variable automatically set to a combination of the library and ebuild versions.

4.12.6 Local Configuration Settings

You may want to do something peculiar with the configuration; to support this there is a flag to configure.py called
--with-local-config=<file>. The contents of the file are inserted into build/build.h which is (indirectly)
included into every Botan header and source file.

Warning

This option is deprecated and is planned to be removed in 3.9.0

4.12.7 Enabling or Disabling Use of Certain OS Features

Botan uses compile-time flags to enable or disable use of certain operating specific functions. You can also override
these at build time if desired.

The default feature flags are given in the files in src/build-data/os in the target_features block. For example
Linux defines flags like getrandom, getauxval, and sockets. The configure.py option --1list-os-features
will display all the feature flags for all operating system targets.

To disable a default-enabled flag, use --without-os-feature=featl, feat2,...

To enable a flag that isn’t otherwise enabled, use --with-os-feature=feat. For example, modern Linux systems
support the getentropy call, but it is not enabled by default because many older systems lack it. However if you know
you will only deploy to recently updated systems you can use --with-os-feature=getentropy to enable it.

A special case if dynamic loading, which applications for certain environments will want to disable. There is no specific
feature flag for this, but --disable-modules=dyn_load will prevent it from being used.

14 Chapter 4. Building The Library

https://www.gentoo.org

Botan Reference Guide, Release 3.9.0

Note

Disabling dyn_1load module will also disable the PKCS #11 wrapper, which relies on dynamic loading.

4.12.8 Feature Check Macros

When build.h is created, a set of macros are defined which can be used for compile-time feature checks.

Each of these macros has the form BOTAN_HAS_FOO, for example BOTAN_HAS_RSA or BOTAN_HAS_TLS_13. Each of
these macros also has a value, which cooresponds to a YYYYMMDD date code integer. If a user-visible change is
made to a module (for example adding a particular feature) the date code is set to a new value. This can be useful for
applications if they need to check that both a feature is enabled in general and that it supports some specific feature that
was added in a particular change.

4.13 Building Applications

4.13.1 Unix

Botan usually links in several different system libraries (such as 1librt or 1ibz), depending on which modules are
configured at compile time. In many environments, particularly ones using static libraries, an application has to link
against the same libraries as Botan for the linking step to succeed. But how does it figure out what libraries it is linked
against?

The answer is to ask the botan command line tool using the config and version commands.
botan version: Print the Botan version number.
botan config prefix: If no argument, print the prefix where Botan is installed (such as /opt or /usr/local).

botan config cflags: Print options that should be passed to the compiler whenever a C++ file is compiled. Typi-
cally this is used for setting include paths.

botan config libs: Print options for which libraries to link to (this will include a reference to the botan library
itself).

Your Makefile canrun botan config and get the options necessary for getting your application to compile and link,
regardless of whatever crazy libraries Botan might be linked against.

4.13.2 Windows

No special help exists for building applications on Windows. However, given that typically Windows software is
distributed as binaries, this is less of a problem - only the developer needs to worry about it. As long as they can
remember where they installed Botan, they just have to set the appropriate flags in their Makefile/project file.

4.13.3 CMake

Starting in Botan 3.3.0 we provide a botan-config.cmake module to discover the installed library binaries and
headers. This hooks into CMake’s find_package () and comes with common features like version detection. Also,
library consumers may specify which botan modules they require in £ind_package().

Examples:

find_package(Botan 3.3.0)
find_package(Botan 3.3.0 COMPONENTS rsa ecdsa tlsl13)
find_package(Botan 3.3.0 OPTIONAL_COMPONENTS tls13_pqc)

4.13. Building Applications 15

Botan Reference Guide, Release 3.9.0

4.14 Language Wrappers

4.14.1 Building the Python wrappers
The Python wrappers for Botan use ctypes and the C89 API so no special build step is required, just import botan3.py

See Python Bindings for more information about the Python bindings.

4.15 Minimized Builds

Many developers wish to configure a minimized build which contains only the specific features their application will
use. In general this is straighforward: use --minimized-build plus --enable-modules= to enable the specific
modules you wish to use. It is possible to use an asterisk (*) as a wildcard for related modules. For instance to enable
all available AES implementations, use --enable-modules="aes*' which will enable aes_ni, aes_powers, etc.
Any such configurations should build and pass the tests; if you encounter a case where it doesn’t please file an issue.

The only trick is knowing which features you want to enable. The most common difficulty comes with entropy sources.
By default, none are enabled, which means if you attempt to use AutoSeeded_RNG, it will fail. The easiest resolution
is to also enable system_rng which can act as either an entropy source or used directly as the RNG.

If you are building for x86, ARM, or POWER, it can be beneficial to enable hardware support for the relevant instruction
sets with modules such as aes_ni and clmul for x86, or aes_armv8, pmull, and sha2_32_armv8 on ARMvS. SIMD
optimizations such as chacha_avx2 also can provide substantial performance improvements.

Note

In a future release, hardware specific modules will be enabled by default if the underlying “base” module is enabled.
If you are building a TLS application, you may (or may not) want to include t1s_cbc which enables support for CBC

ciphersuites. If t1s_cbc is disabled, then it will not be possible to negotiate TLS v1.0/v1.1. In general this should be
considered a feature; only enable this if you need backward compatibility with obsolete clients or servers.

For TLS another useful feature which is not enabled by default is the ChaCha20Poly 1305 ciphersuites. To enable these,
add chacha20poly1305.

4.16 Configure Script Options

4.16.1 --cpu=CPU

Set the target CPU architecture. If not used, the arch of the current system is detected (using Python’s platform module)
and used.

4.16.2 --0s=0S

Set the target operating system.

4.16.3 --cc=COMPILER

Set the desired build compiler

16 Chapter 4. Building The Library

Botan Reference Guide, Release 3.9.0

4.16.4 --cc-min-version=MAJOR.MINOR

Set the minimal version of the target compiler. Use —cc-min-version=0.0 to support all compiler versions. Default is
auto detection.

4.16.5 --cc-bin=BINARY

Set path to compiler binary

If not provided, the value of the CXX environment variable is used if set.

4.16.6 --cc-abi-flags=FLAGS

Set ABI flags, which for the purposes of this option mean options which should be passed to both the compiler and
linker.

4.16.7 --cxxflags=FLAGS

Override all compiler flags. This is equivalent to setting CXXFLAGS in the environment.

4.16.8 --extra-cxxflags=FLAGS

Set extra compiler flags, which are appended to the default set. This is useful if you want to set just one or two additional
options but leave the normal logic for selecting flags alone.

4.16.9 --1dflags=FLAGS

Set flags to pass to the linker. This is equivalent to setting LDFLAGS

4.16.10 --ar-command=AR

Set the path to the tool to use to create static archives (ar). This is normally only used for cross-compilation.

If not provided, the value of the AR environment variable is used if set.

4.16.11 --ar-options=AR_OPTIONS
Specify the options to pass to ar.

If not provided, the value of the AR_OPTIONS environment variable is used if set.

4.16.12 --msvc-runtime=RT

Specify the MSVC runtime to use (MT, MD, MTd, or MDd). If not specified, picks either MD or MDd depending on
if debug mode is set.

4.16.13 --compiler-cache

Specify a compiler cache (like ccache) to use for each compiler invocation.

4.16.14 --with-os-features=FEAT

Specify an OS feature to enable. See src/build-data/os and doc/os.rst for more information.

4.16. Configure Script Options 17

Botan Reference Guide, Release 3.9.0

4.16.15 --without-os-features=FEAT
Specify an OS feature to disable.

Warning

One operating system feature that can be disabled using this option is threads. Be warned that doing so will
disable all support for threads including any locking of internal data structures. Calling the library from multiple
threads in such a configuration will lead to data races.

This is intended for use only on targets which truly do not support threads, for example certain baremetal configu-
rations.

4.16.16 --enable-experimental-features

Enable all experimental modules and features. Note that these are unstable and may change or even be removed in future
releases. Also note that individual experimental modules can be explicitly enabled using --enable-modules=MODS.

4.16.17 --disable-experimental-features

Disable all experimental modules and features. This is the default.

4.16.18 --enable-deprecated-features

Enable all deprecated modules and features. Note that these are scheduled for removal in future releases. This is the
default.

4.16.19 --disable-deprecated-features

Disable all deprecated modules and features. Note that individual deprecated modules can be explicitly disabled using
--disable-modules=MODS.

4.16.20 --system-cert-bundle=PATH

Set a path to a file containing one or more trusted CA certificates in PEM format. If not given, some default locations
are checked.

4.16.21 --with-debug-info
Include debug symbols.

4.16.22 --with-sanitizers

Enable some default set of sanitizer checks. What exactly is enabled depends on the compiler.

4.16.23 --enable-sanitizers=SAN

Enable specific sanitizers. See src/build-data/cc for more information.

4.16.24 --without-stack-protector

Disable stack smashing protections. not recommended

18 Chapter 4. Building The Library

Botan Reference Guide, Release 3.9.0

4.16.25 --enable-stack-scrubbing

Enable scrubbing of stack frames that were used for cryptographic calculations on potentially sensitive data. At the
moment, this is supported exclusively on GCC 14 and newer.

4.16.26 --with-coverage-info

Add coverage info

4.16.27 --disable-shared-library
Disable building a shared library

4.16.28 --disable-static-library

Disable building static library

4.16.29 --optimize-for-size

Optimize for code size.

4.16.30 --no-optimizations

Disable all optimizations for debugging.

4.16.31 --debug-mode

Enable debug info and disable optimizations

4.16.32 --amalgamation

Use amalgamation to build

4.16.33 --name-amalgamation

Specify an alternative amalgamation file name. By default we use botan_all.

4.16.34 --with-build-dir=DIR

Setup the build in a specified directory instead of . /build

4.16.35 --with-external-includedir=DIR

Search for includes in this directory. Provide this parameter multiple times to define multiple additional include direc-
tories.

4.16.36 --with-external-libdir=DIR

Add DIR to the link path. Provide this parameter multiple times to define multiple additional library link directories.

4.16.37 --define-build-macro

Set a compile-time pre-processor definition (i.e. add a -D... to the compiler invocations). Provide this parameter
multiple times to add multiple compile-time definitions. Both KEY=VALUE and KEY (without specific value) are
supported.

4.16. Configure Script Options 19

Botan Reference Guide, Release 3.9.0

4.16.38 --with-sysroot-dir=DIR

Use specified dir for system root while cross-compiling

4.16.39 --link-method=METHOD

During build setup a directory linking to each header file is created. Choose how the links are performed (options are
“symlink”, “hardlink”, or “copy”).

4.16.40 --with-local-config=FILE

Include the contents of FILE into the generated build.h

4.16.41 --distribution-info=STRING

Set distribution specific version information

4.16.42 --maintainer-mode

A build configuration used by library developers, which enables extra warnings and turns most warnings into errors.

Warning

When this option is used, all relevant warnings available in the most recent release of GCC/Clang are enabled, so
it may fail to build if your compiler is not sufficiently recent. In addition there may be non-default configurations
or unusual platforms which cause warnings which are converted to errors. Patches addressing such warnings are
welcome, but otherwise no support is available when using this option.

4.16.43 --werror-mode

Turns most warnings into errors.

4.16.44 --no-install-python-module
Skip installing Python module.

4.16.45 --with-python-versions=N.M

Where to install botan3.py. By default this is chosen to be the version of Python that is running configure. py.

4.16.46 --with-valgrind

Use valgrind API to perform additional checks. Not needed by end users.

4.16.47 --unsafe-fuzzer-mode
Disable essential checks for testing. UNSAFE FOR PRODUCTION

4.16.48 --build-fuzzers=TYPE

Select which interface the fuzzer uses. Options are “afl”, “libfuzzer”, “klee”, or “test”. The “test” mode builds fuzzers
that read one input from stdin and then exit.

20 Chapter 4. Building The Library

Botan Reference Guide, Release 3.9.0

4.16.49 --with-fuzzer-1ib=LIB

Specify an additional library that fuzzer binaries must link with.

4.16.50 --build-targets=BUILD_TARGETS

Build only the specific targets and tools (static, shared, cli, tests, bogo_shim).

4.16.51 --without-documentation

Skip building/installing documentation

4.16.52 --with-sphinx

Use Sphinx to generate the handbook

4.16.53 --with-pdf
Use Sphinx to generate PDF doc

4.16.54 --with-rst2man

Use rst2man to generate a man page for the CLI

4.16.55 --with-doxygen

Use Doxygen to generate API reference

4.16.56 --module-policy=POL

The option --module-policy=POL enables modules required by and disables modules prohibited by a text policy in
src/build-data/policy. Additional modules can be enabled if not prohibited by the policy. Currently available
policies include bsi, nist and modern:

[$./configure.py --module-policy=bsi --enable-modules=tlsl3_pqc,xts }

4.16.57 --enable-modules=MODS

Enable some specific modules

4.16.58 --disable-modules=MODS

Disable some specific modules

4.16.59 --minimized-build

Start with the bare minimum. This is mostly useful in conjuction with --enable-modules to get a build that has just
the features a particular application requires.

4.16.60 --with-boost

Use Boost.Asio for networking support. This primarily affects the command line utils.

4.16. Configure Script Options 21

Botan Reference Guide, Release 3.9.0

4.16.61 --with-bzip2

Enable bzip2 compression

4.16.62 --with-1zma

Enable 1zma compression

4.16.63 --with-zlib

Enable using zlib compression

4.16.64 --with-commoncrypto

Enable using CommonCrypto for certain operations

4.16.65 --with-sqlite3

Enable using sqlite3 for data storage

4.16.66 --with-tpm
Enable support for TPM 1.2

4.16.67 --with-tpm2
Enable support for TPM 2.0

4.16.68 --program-suffix=SUFFIX

A string to append to all program binaries.

4.16.69 --library-suffix=SUFFIX

A string to append to all library names.

4.16.70 --prefix=DIR

Set the install prefix.

4.16.71 --docdir=DIR

Set the documentation installation dir.

4.16.72 --bindir=DIR

Set the binary installation dir.

4.16.73 --libdir=DIR

Set the library installation dir.

22

Chapter 4. Building The Library

Botan Reference Guide, Release 3.9.0

4.16.74 --mandir=DIR

Set the man page installation dir.

4.16.75 --includedir=DIR

Set the include file installation dir.

4.16.76 --list-modules

List all modules that could be enabled or disabled using —enable-modules or —disable-modules.

4.16. Configure Script Options 23

Botan Reference Guide, Release 3.9.0

24

Chapter 4. Building The Library

CHAPTER
FIVE

SEMANTIC VERSIONING

Starting with 2.0.0, Botan adopted semantic versioning. This means we endevour to make no change which will either
break compilation of existing code, or cause different behavior in a way that will cause compatibility issues. Such
changes are reserved for new major versions.

If on upgrading to a new minor version, you encounter a problem where your existing code either fails to compile, or
the code behaves differently in some way that causes trouble, it is probably a bug; please report it on Github.

There are important exceptions to the SemVer guarantees that you should be aware of, described in the following list.

5.1 Exception #1: Deriving from Library Classes

If you in your application derive a new class from a class in the library, we do not guarantee a future minor release will
not break your code. For example, we may in a minor release introduce a new pure virtual function to a base class like
BlockCipher, and implement it for all subclasses within the library. In this case your code would fail to compile until
you implemented the new virtual function. Or we might rename or remove a protected function, or a protected member
variable.

There is also an exception to this exception! The following classes are intended for derivation by applications, and are
fully covered by SemVer:

* Credentials_Manager

* Entropy_Source

e TLS::Callbacks

e TLS::Policy (and subclasses thereof)

e TLS::Stream<T>

5.2 Exception #2: BOTAN_UNSTABLE_API

Certain functionality is available to users, and marked in the header using the macro BOTAN_UNSTABLE_API. These
interfaces are not covered by SemVer and may change or even vanish in a minor release.

Usually these interfaces are to enable applications that need to do something “interesting”, but we are not confident that
the API is any good. Examples include interfaces allowing applications to write custom TLS extensions and custom
public key operations.

25

Botan Reference Guide, Release 3.9.0

5.3 Exception #3: Experimental modules

Certain modules can be marked as experimental in the build system. Such modules are not built by default. Any
functionality exposed by such modules may change or vanish at any time without warning. See Building The Library
for more information on enabling or disabling these modules.

5.4 Exception #4: Any function starting with _
For various technical reasons, some functions are available for public use but are really only intended for use by the
library itself.

The developers denote such functions by starting them with an underscore (_). Any such function may change or
disappear at any time.

26 Chapter 5. Semantic Versioning

CHAPTER
SIX

BOTAN 2.X TO 3.X MIGRATION

This is a guide on migrating applications from Botan 2.x to 3.0.

This guide attempts to be, but is not, complete. If you run into a problem while converting code that does not seem to
be described here, please open an issue on GitHub (https://github.com/randombit/botan/issues).

6.1 Headers

Many headers have been removed from the public API.

In some cases, such as datastor.hor t1s_blocking.h, the functionality presented was entirely deprecated, in which
case it has been removed.

In other cases (such as loadstor.h or rotate.h) the header was really an implementation header of the library and
not intended to be consumed as a public API. In these cases the header is still used internally, but not installed for
application use.

However in most cases there is a better way of performing the same operations, which usually works in both 2.x and
3.x. For example, in 3.0 all of the algorithm headers (such as aes.h) have been removed. Instead you should create
objects via the factory methods (in the case of AES, BlockCipher: :create) which works in both 2.x and 3.0

6.1.1 Errata: pk_ops.h

Between Botan 3.0 and 3.2 the public header pk_ops.h was removed accidentally. This header is typically required
for specialized applications that interface with dedicated crypto hardware. If you are migrating such an application,
please make sure to use Botan 3.3 or newer.

6.2 Build Artifacts

For consistency with other platforms the DLL is now suffixed with the library’s major version on Windows as well.

6.3 TLS

Starting with Botan 3.0 TLS 1.3 is supported. This development required a number of backward-incompatible changes
to accomodate the protocol differences to TLS 1.2, which is still supported.

6.3.1 Build modules

The build module t1s is now internal and contains common TLS helpers. Users have to explicitly enable t1s12 and/or
t1s13. Note that for Botan 3.0 it is not (yet) possible to exclusively enable TLS 1.3 at build time.

27

https://github.com/randombit/botan/issues

Botan Reference Guide, Release 3.9.0

6.3.2 Removed Functionality
Functionality removed from the TLS implementation includes

*« TLS 1.0, 1.1 and DTLS 1.0

* DSA ciphersuites

* anonymous ciphersuites

* SRP ciphersuites

* SEED ciphersuites

* Camellia CBC ciphersuites

* AES-128 OCB ciphersuites

* DHE_PSK ciphersuites

* CECPQI ciphersuites

6.3.3 enum classes

The publicly available C++ enums in the TLS namespace are now enum class and their member naming scheme was
converted from SHOUTING_SNAKE_CASE to CamelCase.

6.3.4 Callbacks

A number of new callbacks were added with TLS 1.3. None of those new callbacks is mandatory to implement by
applications, though. Additionally there are a few backward incompatible changes in callbacks that might require
attention by some applications:

tls_record_received() / tis_emit_data()

Those callbacks now take std::span<const uint8_t> instead of const uint§_t* with a size_t buffer length.

tls_session_established()

This callback provides a summary of the just-negotiated connection. It used to have a bool return value letting an
application decide to store or discard the connection’s resumption information. This use case is now provided via:
tls_should_persist_resumption_information() which might be called more than once for a single TLS 1.3 connection.

tls_session_established is not a mandatory callback anymore but still allows applications to abort a connection given
a summary of the negotiated characteristics. Note that this summary is not a persistable Session anymore.
tls_verify_cert_chain()

The parameter ocsp_responses, which was previously std::shared_ptr<OCSP::Response>, is now
std::optional<OCSP::Response>.

tls_modify_extensions() / tIs_examine_extensions()

These callbacks now have an additional parameter of type Handshake_Type that identify the TLS handshake message
the extensions in question are residing in. TLS 1.3 makes much heavier use of such extensions in a wider range of
messages to implement core protocol functionality.

28 Chapter 6. Botan 2.x to 3.x Migration

Botan Reference Guide, Release 3.9.0

tls_dh_agree() / tls_ecdh_agree() / tis_decode_group_param()

These callbacks were used as customization points for the TLS 1.2 key exchange in the TLS client. To allow similar (and
more) customizations with the introduction of TLS 1.3, these callbacks were replaced with a more generic approach.

Key agreement is split into two callbacks, namely tls_generate_ephemeral_key() and tls_ephemeral_key_agreement().
Those are used in both clients and servers and in all protocol versions. tls_decode_group_param() is removed as it
became obsolete by the replacement of the other two callbacks.

6.3.5 Policy

choose_key_exchange_group()

The new parameter offered_by_peer identifies the key exchange groups a peer has sent public exchange offerings for
(in TLS 1.3 handshakes only). Choosing a key exchange group that is not listed is legal but will result in an additional
network round trip (cf. “Hello Retry Request”). In TLS 1.2, this vector is always empty and can be ignored.

session_ticket_lifetime()

Now returns std::chrono::seconds rather than a bare uint32_t.

6.3.6 Credentials Manager
find_cert_chain(), cert_chain() and cert_chain_single_type()

These methods now have a cert_signature_schemes parameter that identifies a list of signature schemes the peer is
willing to accept for signatures in certificates. Notably, this does not necessarily mean that the leaf certificate must
feature a public key type able to generate one of those schemes.

private_key_for()

Applications must now provide a std::shared_ptr<> to the requested private key object instead of a raw pointer to
better communicate the implementation’s life-time expectations of this private key object.

6.3.7 Session and Ticket Handling

Old (pre-Botan 3.0) sessions won’t load in Botan 3.0 anymore and should be discarded. For applications using Ses-
sion_Manager_SQL or Session_Manager_SQLite discarding happens automatically on first access after the update.

With Botan 3.0 the session manager now is responsible for stateful session handling (backed by a database) and creation
and management of stateless session tickets. The latter was previously handled transparently by the TLS implementation
itself.

Therefore, TLS server applications that relied on Botan’s default session management implementations (most notably
Session_Manager_SQLite or Session_Manager_In_Memory) are advised to re-evaluate their choice. Have a look at
Session_Manager_Hybrid to retain support for both stateful and stateless TLS sessions. TLS client applications may
safely keep relying on the above-mentioned default implementations.

Applications implementing their own Session_Manager will need to adapt to the new base class API.

New API of Session Manager

TLS 1.3 removed the legacy resumption procedures based on session IDs or session tickets and combined them under
the protocol’s Pre-Shared Key mechanism. This new approach allows TLS servers to handle sessions both stateless (as
self-contained encrypted and authenticated tickets) and stateful (identified with unique database handles).

To accomodates this flexibility the Session_Manager base class API has changed drastically and is now responsible for
creation, storage and management of both stateful sessions and stateless session tickets. Sub-classes therefore gain full
control over the session ticket’s structure and content.

6.3. TLS 29

Botan Reference Guide, Release 3.9.0

API details are documented in the class’ doxygen comments.

The Session Object and its Handle

Objects of class Session are not aware of their “session ID” or their “session ticket” anymore. Instead, the new class
Session_Handle encapsulates the session’s identifier or ticket and accompanies the Session object where necessary.

6.4 Algorithms Removed

The algorithms CAST-256, MISTY 1, Kasumi, DESX, XTEA, PBKDF1, MCEIES, CBC-MAC, Tiger, CECPQI, and
NewHope have been removed.

6.5 Certificate API shared_ptr

Previously the certificate store used shared_ptr<X509_Certificate> in various APIs. However starting in 2.4.0,
X509_Certificate itself is a pimpl to a shared_ptr, making the outer shared pointer pointless. In 3.0 the certificate
interfaces have changed to just consume and return X509_Certificate.

6.6 All Or Nothing Package Transform

This code was deprecated and has been removed.

6.7 Exception Changes

Several exceptions, mostly ones not used by the library, were removed.

A few others that were very specific (such as Illegal_Point) were replaced by throws of their immediate base class
exception type.

The base class of Encoding_Error and Decoding_Error changed from Invalid_Argument to Exception. If you are
explicitly catching Invalid_Argument, verify that you do not need to now also explicitly catch Encoding_Error and/or
Decoding_Error.

6.8 X.509 Certificate Info Access

Previously X509_Certificate: :subject_info and issuer_info could be used to query information about ex-
tensions. This is not longer the case; instead you should either call a specific function on X509_Certificate which
returns the same information, or lacking that, iterate over the result of X509_Certificate::v3_extensions.

6.9 OCSP Response Validation

After mitigating CVE-2022-43705 the OCSP response signature validation was refactored. This led to the removal
of the OCSP::Response::check_signature() method. If you must validate OCSP responses directly in your application
please use the new method OCSP::Response:.find_signing_certificate() and OCSP::Response::verify_signature().

6.10 Use of enum class

Several enumerations where modified to become enum class, including DL_Group::Format, CRL_Code,
EC_Group_Encoding, Signature_Format, Cipher_Dir, TLS::Extension_Code, TLS::Connection_Side,
TLS: :Record_Type, and TLS: :Handshake_Type

30 Chapter 6. Botan 2.x to 3.x Migration

Botan Reference Guide, Release 3.9.0

In many cases the enumeration values were renamed from SHOUTING_CASE to CamelCase. In some cases where
the enumeration was commonly used by applications (for example Signature_Format and Cipher_Dir) the old
enumeration names are retained as deprecated variants.

6.11 ASN.1 enums

The enum ASN1_Tag has been split into ASN1_Type and ASN1_Class. Unlike ASN1_Tag, these new enums are enum
class. The members of the enums have changed from SHOUTING_CASE to CamelCase, eg CONSTRUCTED is now
Constructed.

Also an important change related to ASN1_Tag: : PRIVATE. This enum value was incorrect, and actually was used for
explicitly tagged context specific values. Now, ASN1_Class: :Private refers to the correct class, but would lead to
a different encoding vs 2.x’s ASN1_Tag: :PRIVATE. The correct value to use in 3.0 to match ASN1_Tag: :PRIVATE is
ASN1_Class::ExplicitContextSpecific.

6.12 Cipher Mode Granularity

Previously Cipher_Mode::update_granularity specified the minimum buffer size that must be provided during process-
ing. However the value returned was often much larger than what was strictly required. In particular some modes can
easily accept inputs as small as 1 byte, but their update_granularity was much larger to encourage best performance.

Now update_granularity returns the true minimum value, and the new Cipher_Mode::ideal_granularity returns a value
which is a multiple of update_granularity sized for good performance.

If you are sizing buffers on the basis of update_granularity consider using ideal_granularity instead. Otherwise you
may encounter performance regressions due to creating and processing very small buffers.

6.13 “SHA-160” and “SHA1”

Previously the library accepted “SHA-160" and “SHA1” alternative names for “SHA-1”. This is no longer the case,
you must use “SHA-1”. Botan 2.x also recognizes “SHA-1".

6.14 PointGFp

This type is now named EC_Point

6.15 X509::load_key

Previously these functions returned a raw pointer. They now return a std::unique_ptr

6.16 PKCS11_Request::subject_public_key and X509_Certificate::subject_publi

These functions now return a unique_ptr

6.17 choose_sig_format removed

The freestanding functions choose_sig_format have been removed. Use X509_Object::choose_sig_format

6.11. ASN.1 enums 31

Botan Reference Guide, Release 3.9.0

6.18 DLIES Constructors

Previously the constructors to the DLIES classes took raw pointers, and retained ownership of them. They now consume
std::unique_ptrs

6.19 Credentials_Manager::private_key_ for
Previously this function returned a raw pointer, which the Credentials_Manager implementation had to keep alive
“forever”, since there was no way for it to know when or if the TLS layer had completed using the returned key.

Now this function returns std::shared_ptr<Private_Key>

6.20 OID operator+

OID operator+ allowed concatenating new fields onto an object identifier. This was not used at all within the library or
the tests, and seems of marginal value, so it was removed.

If necessary in your application, this can be done by retrieving the vector of components from your source OID, push
the new element onto the vector and create an OID from the result.

6.21 RSA with “EMSA1” padding

EMSAL indicates that effectively the plain hash is signed, with no other padding. It is typically used for algorithms
like ECSDA, but was allowed for RSA. This is now no longer implemented.

If you must generate such signatures for some horrible reason, you can pre-hash the message using a hash function as
usual, and then sign using a “Raw” padding, which will allow you to sign any arbitrary bits with no preprocessing.

6.22 ECDSA/DSA with “EMSA1” padding

Previous versions of Botan required using a hash specifier like “EMSA1(SHA-256)” when generating or verifying
ECDSA/DSA signatures, with the specified hash. The “EMSA1” was a reference to a now obsolete IEEE standard.

In Botan 3 the “EMSA1” notation is still accepted, but now also it is possible to simply use the name of the hash, eg
“EMSA1(SHA-256)" becomes “SHA-256".

6.23 Signature Algorithm OIDs

In line with the previous entries, previously Botan used a string like “ECDSA/EMSA1(SHA-256)” to identify the OID
1.2.840.10045.4.3.2. Now it uses the string “ECDSA/SHA-256" instead, and does not recognize the EMSA1 variant
at all (for example in OID: : from_string).

6.24 Public Key Signature Padding

In previous versions Botan was somewhat lenient about allowing the application to specify using a hash which was in
fact incompatible with the algorithm. For example, Ed25519 signatures are always generated using SHA-512; there is
no choice in the matter. In the past, requesting using some other hash, say SHA-256, would be silently ignored. Now
an exception is thrown, indicating the desired hash is not compatible with the algorithm.

In previous versions, various APIs required that the application specify the hash function to be used. In most cases this
can now be omitted (passing an empty string) and a suitable default will be chosen.

32 Chapter 6. Botan 2.x to 3.x Migration

Botan Reference Guide, Release 3.9.0

6.25 Discrete Logarithm Key Changes

Keys based on the discrete logarithm problem no longer derive from the DL_Scheme_PrivateKey and
DL_Scheme_PublicKey classes; these classes have been removed.

Functions to access DL algorithm internal fields (such as the integer value of the private key using get_x) have been
removed. If you need access to this information you can use the new get_int_field function.

The constructors of the DL scheme private keys have changed. Previously, loading and creating a key used the same
constructor, namely one taking arguments (DL_Group, RandomNumberGenerator&, BigInt x = 0) and then the
behavior of the constructor depend on if x was zero (in which case a new key was created) or otherwise if x was non-
zero then it was taken as the private key. Now there are two constructors, one taking a random number generator and a
group, which generates a new key, and a second taking a group and an integer, which loads an existing key.

6.26 XMSS Signature Changes

The logic to derive WOTS+ private keys from the seed contained in the XMSS private key has been updated according
to the recommendations in NIST SP 800-208. While signatures created with old private keys are still valid using the
old public key, new valid signatures cannot be created. To still support legacy private XMSS keys, they can be used by
passing WOTS_Derivation_Method: :Botan2x to the constructor of the XMSS_PrivateKey.

Private XMSS keys created this way use the old derivation logic and can therefore generate new valid signatures. It is
recommended to use WOTS_Derivation_Method: :NIST_SP800_208 (default) when creating new XMSS keys.

6.27 Random Number Generator

Fetching a large number of bytes via randomize_with_input() from a stateful RNG will now incorporate the provided
“input” data in the first request to the underlying DRBG only. This applies to such DRBGs that pose a limit on the
number of bytes per request (most notable HIAC_DRBG with a 64kB default). Botan 2.x (erroneously) applied the input
to all underlying DRBG requests in such cases.

Applications that rely on a static seed for deterministic RNG output might observe a different byte stream in such cases.
As a workaround, users are advised to “mimick” the legacy behaviour by manually pulling from the RNG in “byte
limit”-sized chunks and provide the “input” with each invocation.

6.25. Discrete Logarithm Key Changes 33

Botan Reference Guide, Release 3.9.0

34

Chapter 6. Botan 2.x to 3.x Migration

CHAPTER
SEVEN

OPENSSL 1.1 TO BOTAN 3.X MIGRATION

This aims to be a rough guide for migrating applications from OpenSSL 1.1 to Botan 3.x.

This guide attempts to be, but is not, complete. If you run into a problem while migrating code that does not seem to
be described here, please open an issue on GitHub (https://github.com/randombit/botan/issues).

Note

The OpenSSL code snippets in this guide may not be 100% correct. They are intended to show the differences in
using OpenSSL’s and Botan’s APIs rather to be a complete and correct example.

7.1 General Remarks

* Botan is a C++ library, whereas OpenSSL is a C library
* Botan also provides a C AP for most of its functionality, but it is not a 1:1 mapping of the C++ API

* With OpenSSL’s API, there are sometimes multiple ways to achieve the same result, whereas Botan’s API is
more consistent

* OpenSSL’s API is mostly underdocumented, whereas Botan targets 100% Doxygen coverage for all public API

* Itis often hard to find example code for OpenSSL, whereas Botan provides many examples and lots of test code
(https://github.com/randombit/botan/tree/master/src/tests).

7.2 X.509

Consider the following application code that uses OpenSSL to verify a certificate chain consisting of an end-entity
certificate, two untrusted intermediate certificates, and a trusted root certificate.

#include <openssl/x509.h>
#include <openssl/pem.h>
#include <openssl/ssl.h>

int main() {
// Create a new X.509 store
X509_STORE *store = X509_STORE_new();

// Load the root certificate

FILE* rootCertFileHandle = fopen('root.crt", "r");

X509* rootCert = PEM_read_X509(rootCertFileHandle, NULL, NULL, NULL);
X509_STORE_add_cert(store, rootCert);

(continues on next page)

35

https://github.com/randombit/botan/issues
https://github.com/randombit/botan/tree/master/src/tests

Botan Reference Guide, Release 3.9.0

(continued from previous page)

fclose(rootCertFileHandle);

// Create a new X.509 store context
X509_STORE_CTX *ctx = X509_STORE_CTX_new();
X509_STORE_CTX_init(ctx, store, NULL, NULL);

// Load the intermediate certificates

FILE* intermediateCertFileHandlel = fopen("int2.crt", "r");

FILE* intermediateCertFileHandle2 = fopen('intl.crt", "r");

X509* intermediateCertl = PEM_read_X509(intermediateCertFileHandlel, NULL, NULL,.
—NULL) ;

X509* intermediateCert2 = PEM_read_X509(intermediateCertFileHandle2, NULL, NULL,.,
< NULL) ;

X509_STORE_CTX_trusted_stack(ctx, sk_X509_new_null());

sk_X509_push (X509_STORE_CTX_getO_untrusted(ctx), intermediateCertl);

sk_X509_push(X509_STORE_CTX_getO®_untrusted(ctx), intermediateCert2);

fclose(intermediateCertFileHandlel);

fclose(intermediateCertFileHandle2);

// Load the end-entity certificate

FILE* endEntityCertFileHandle = fopen("ee.crt", "r");

X509* endEntityCert = PEM_read_X509(endEntityCertFileHandle, NULL, NULL, NULL);
X509_STORE_CTX_set_cert(ctx, endEntityCert);

fclose(endEntityCertFileHandle);

// Verify the certificate chain
int result = X509_verify_cert(ctx);
if(result != 1) {
// Verification failed
X509_STORE_CTX_free(ctx);
X509_STORE_free(store);
return -1;

}

// Verification succeeded
X509_STORE_CTX_free(ctx);
X509_STORE_free(store);
return 0;

First, we create a new X509_STORE object and add the trusted root certificate. Then we add the intermediate certificates
to the untrusted certificate stack. Finally, we set the end-entity certificate and call X509_verify_cert() to verify the
whole certificate chain.

Here is the equivalent C++ code using Botan:

#include <botan/certstor_system.h>
#include <botan/x509cert.h>
#include <botan/x509path.h>

int main(Q) {
// Create a certificate store and add a locally trusted CA certificate

Botan: :Certificate_Store_In_Memory customStore;
(continues on next page)

36 Chapter 7. OpenSSL 1.1 to Botan 3.x Migration

Botan Reference Guide, Release 3.9.0

(continued from previous page)

customStore.add_certificate(Botan: :X509_Certificate("root.crt"));

// Additionally trust all system-specific CA certificates
Botan: :System_Certificate_Store systemStore;
std: :vector<Botan: :Certificate_Store*> trusted_roots{&customStore, &systemStore};

// Load the end entity certificate and two untrusted intermediate CAs from file

std: :vector<Botan: :X509_Certificate> end_certs;

end_certs.emplace_back(Botan: :X509_Certificate("ee.crt")); // The end-entity.
—certificate, must come first

end_certs.emplace_back(Botan: :X509_Certificate("int2.crt")); // intermediate 2

end_certs.emplace_back(Botan: :X509_Certificate("intl.crt")); // intermediate 1

// Optional: Set up restrictions, e.g. min. key strength, maximum age of OCSP.
. responses
Botan: :Path_Validation_Restrictions restrictions;

// Optional: Specify usage type, compared against the key usage in end_certs[0]
Botan: :Usage_Type usage = Botan::Usage_Type: :UNSPECIFIED;

// Optional: Specify hostname, if not empty, compared against the DNS name in end_
—certs[0]
std: :string hostname;

Botan: :Path_Validation_Result validationResult =
Botan: :x509_path_validate(end_certs, restrictions, trusted_roots, hostname, usage);

if(!validationResult.successful_validation()) {

// call validationResult.result() to get the overall status code
return -1;

return 0; // Verification succeeded

First, we create a Certificate_Store_In_Memory object and add the trusted root certificate. Additionally, we use
System_Certificate_Store to load all trusted root certificates from the operating system’s certificate store to trust.
Botan provides several different Certificate Stores, including certificate stores that load certificates from a directory or
from an SQL database. It even provides an interface for implementing your own certificate store. Then we add the end-
entity certificate and the intermediate certificates to the end_certs chain. Optionally, we can set up path validation
restrictions, specify usage and hostname for DNS, and then call x509_path_validate() to verify the certificate chain.

7.3 Random Number Generation

Consider the following application code to generate random bytes using OpenSSL.

#include <openssl/rand.h>
#include <iostream>

int main(Q) {
unsigned char buffer[16]; // Buffer to hold 16 random bytes

(continues on next page)

7.3. Random Number Generation 37

Botan Reference Guide, Release 3.9.0

(continued from previous page)
if (RAND_bytes(buffer, sizeof(buffer)) != 1) {
std: :cerr << "Error generating random bytes.\n";
return 1;

}

// Print the random bytes in hexadecimal format

for(int i = 0; i < sizeof(buffer); i++) {
printf("%02X", buffer[i]);

3

printf("\n");

return 0;

This example uses the RAND_bytes () function to generate 16 random bytes, e.g., for a 128-bit AES key, and prints it
on the console.

Here is the equivalent C++ code using Botan:

#include <botan/auto_rng.h>
#include <botan/hex.h>
#include <iostream>

int main() {
Botan: :AutoSeeded_RNG rng;

const Botan::secure_vector<uint8_t> buffer = rng.random_vec(16);

// Print the random bytes in hexadecimal format
std::cout << Botan::hex_encode(buffer) << std::endl;

return 0;

This snippet uses the AutoSeeded_RNG class to generate the 16 random bytes. Botan provides difterent Random Num-
ber Generators, including system-specific as well as system-independent software and hardware-based generators, and
a comprehensive interface for implementing your own random number generator, if required. AutoSeeded_RNG is
the recommended random number generator for most applications. The random_vec () function returns the requested
number of random bytes passed. Botan provides a hex_encode () function that converts the random bytes to a hex-
adecimal string.

7.4 Hash Functions

Consider the following application code to hash some data using OpenSSL.

#include <openssl/evp.h>
#include <openssl/sha.h>
#include <iostream>
#include <vector>

void printHash(EVP_MD_CTX* ctx, const std::string& name) {
unsigned char hash[EVP_MAX_MD_SIZE];

(continues on next page)

38 Chapter 7. OpenSSL 1.1 to Botan 3.x Migration

Botan Reference Guide, Release 3.9.0

(continued from previous page)

unsigned int lengthOfHash = 0;

EVP_DigestFinal_ex(ctx, hash, &lengthOfHash);
std::cout << name << ": ";
for(unsigned int i = 0; i < lengthOfHash; ++i) {
std::cout << std::hex << std::setw(2) << std::setfill('0') << (int)hash[i];
1

std::cout << std::endl;

int main() {
EVP_MD_CTX *ctxl1 EVP_MD_CTX_new();
EVP_MD_CTX *ctx2 = EVP_MD_CTX_new();
EVP_MD_CTX *ctx3 EVP_MD_CTX_new();

EVP_DigestInit_ex(ctxl, EVP_sha256(), NULL);
EVP_DigestInit_ex(ctx2, EVP_sha384(), NULL);
EVP_DigestInit_ex(ctx3, EVP_sha3_512(), NULL);

std: :vector<uint8_t> buffer(2048);

while(std::cin.good()) {
std: :cin.read(reinterpret_cast<char*>(buffer.data()), buffer.size());
std: :streamsize bytesRead = std::cin.gcount();

EVP_DigestUpdate(ctxl, buffer.data(), bytesRead);

EVP_DigestUpdate(ctx2, buffer.data(), bytesRead);

EVP_DigestUpdate(ctx3, buffer.data(), bytesRead);
1

printHash(ctxl, "SHA-256");
printHash(ctx2, "SHA-384");
printHash(ctx3, "SHA-3-512");

EVP_MD_CTX_free(ctxl);
EVP_MD_CTX_free(ctx2);
EVP_MD_CTX_free(ctx3);

return 0;

This example uses the EVP_DigestInit_ex(), EVP_DigestUpdate(), and EVP_DigestFinal_ex() functions to
hash data using SHA-256, SHA-384, and SHA-3-512. The printHash() function is used to print the hash values in
hexadecimal format.

Here is the equivalent C++ code using Botan:

#include <botan/hash.h>
#include <botan/hex.h>

#include <iostream>

int main(Q) {
(continues on next page)

7.4. Hash Functions 39

Botan Reference Guide, Release 3.9.0

(continued from previous page)

const auto hashl = Botan::HashFunction: :create_or_throw(''SHA-256");
const auto hash2 Botan: :HashFunction: :create_or_throw("'SHA-384");
const auto hash3 Botan: :HashFunction: :create_or_throw("SHA-3");
std: :vector<uint8_t> buf(2048);

while(std::cin.good()) {
// read STDIN to buffer
std: :cin.read(reinterpret_cast<char*>(buf.data()), static_cast<std::streamsize>
—(buf.size()));
size_t readcount = std::cin.gcount();
// update hash computations with read data
hashl->update(std: :span{buf}. first(readcount));
hash2->update(std: :span{buf}. first(readcount));
hash3->update(std: :span{buf}. first(readcount));
}
std::cout << "SHA-256: " << Botan::hex_encode(hashl->final()) << '\n';
std::cout << "SHA-384: " << Botan::hex_encode(hash2->final()) << '\n';
std::cout << "SHA-3: " << Botan::hex_encode(hash3->final()) << '"\n';
return 0;

This example uses the HashFunction interface to hash data using SHA-256, SHA-384, and SHA-3-512. The hash()
function is used to hash the data and the output_length() function is used to determine the length of the hash value.
Botan provides a comprehensive list of hash functions, including all SHA-2 and SHA-3 variants, as well as message
authentication codes and key derivation functions.

7.5 Symmetric Encryption

Consider the following application code to encrypt some data with AES using OpenSSL.

#include <openssl/aes.h>
#include <openssl/evp.h>
#include <iostream>
#include <iomanip>

int main(Q) {
// Hex-encoded key and plaintext block
const char* key_hex =
—"000102030405060708090A0BOCODOEOF101112131415161718191A1B1CID1ELIF";
const char* plaintext_hex = "00112233445566778899AABBCCDDEEFF";

// Convert hex-encoded key and plaintext block to binary
unsigned char key[32], plaintext[16];
for(int i = 0; 1 < 32; i++) {
sscanf (&key_hex[i*2], "%02x", &key[i]);
}
for(int i = 0; i < 16; i++) {
sscanf(&plaintext_hex[i*2], "%02x", &plaintext[i]);
}

// Encrypt
unsigned char ciphertext[16], iv_enc[AES_BLOCK_SIZE] = {0};

(continues on next page)

40 Chapter 7. OpenSSL 1.1 to Botan 3.x Migration

Botan Reference Guide, Release 3.9.0

(continued from previous page)
EVP_CIPHER_CTX *ctx_enc = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx_enc, EVP_aes_256_cbc(), NULL, key, iv_enc);
int outlenl;
EVP_EncryptUpdate(ctx_enc, ciphertext, &outlenl, plaintext, sizeof(plaintext));
EVP_EncryptFinal_ex(ctx_enc, ciphertext + outlenl, &outlenl);

// Print ciphertext in hexadecimal format

for(int i = 0; 1 < 16; i++) {
printf("%02X", ciphertext[i]);

}

printf("\n");

return 0;

This example uses the EVP_EncryptInit_ex(), EVP_EncryptUpdate(), and EVP_EncryptFinal_ex() functions
to encrypt a 128-bit plaintext block with a 256-bit key using AES. The key and plaintext block are hex-decoded and
converted to binary before encryption.

Here is the equivalent C++ code using Botan:

#include <botan/auto_rng.h>
#include <botan/cipher_mode.h>
#include <botan/hex.h>
#include <botan/rng.h>

#include <iostream>

int main(Q) {
Botan: :AutoSeeded_RNG rng;

const std::string plaintext(
"Your great-grandfather gave this watch to your granddad for good "
"luck. Unfortunately, Dane's luck wasn't as good as his old man's.");
const Botan::secure_vector<uint8_t> key = Botan::hex_decode_locked(
—"2B7E151628AED2A6ABF7158809CF4F3C");

const auto enc = Botan::Cipher_Mode: :create_or_throw("AES-128/CBC/PKCS7",.
—Botan: :Cipher_Dir: :Encryption);
enc->set_key(key);

// generate fresh nonce (IV)
const auto iv = rng.random_vec<std::vector<uint8_t>>(enc->default_nonce_length());

// Copy input data to a buffer that will be encrypted
Botan: :secure_vector<uint8_t> pt(plaintext.data(), plaintext.data() + plaintext.
~length();

enc->start(iv);
enc->finish(pt);

std: :cout << enc->name() << " with iv " n"on

—encode(pt) << '\n';

<< Botan: :hex_encode(iv) << << Botan: :hex_

(continues on next page)

7.5. Symmetric Encryption 41

Botan Reference Guide, Release 3.9.0

(continued from previous page)

return 0;

This example uses the CipherMode interface to encrypt a 128-bit plaintext block with a 256-bit key using AES in CBC
mode with PKCS#7 padding. The set_key () function is used to set the key and the start () and £inish() functions
are used to encrypt the plaintext block.

To learn more about the BlockCipher and CipherMode interfaces, including a list of all available block ciphers and
cipher modes, see the Block Ciphers and Cipher Modes handbook sections.

7.6 Asymmetric Encryption

Consider the following application code to encrypt some data with RSA using OpenSSL.

#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
#include <openssl/err.h>
#include <string.h>
#include <stdio.h>

int main(Q) {
// Load public key
FILE* pubKeyFile = fopen('public.pem", "r");
if(pubKeyFile == NULL) {
fprintf(stderr, "Error opening public key file.\n");
return 1;
}
EVP_PKEY* pubKey = PEM_read_PUBKEY (pubKeyFile, NULL, NULL, NULL);
fclose(pubKeyFile);

// Load private key
FILE* privKeyFile = fopen("private.pem", "r'");
if(privKeyFile == NULL) {
fprintf(stderr, "Error opening private key file.\n");
return 1;
}
EVP_PKEY* privKey = PEM_read_PrivateKey(privKeyFile, NULL, NULL, NULL);
fclose(privKeyFile);

// String to encrypt

unsigned char* plaintext = "Your great-grandfather gave this watch to your granddad.
—for good luck. Unfortunately, Dane's luck wasn't as good as his old man's.";

size_t plaintext_len = strlen(plaintext);

// Encrypt
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pubKey, NULL);
EVP_PKEY_encrypt_init(ctx);
EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING) ;
EVP_PKEY_CTX_set_rsa_oaep_md(ctx, EVP_sha256());
size_t encrypted_len;
EVP_PKEY_encrypt(ctx, NULL, &encrypted_len, plaintext, plaintext_len);
(continues on next page)

42 Chapter 7. OpenSSL 1.1 to Botan 3.x Migration

Botan Reference Guide, Release 3.9.0

(continued from previous page)

unsigned char* encrypted = (unsigned char*)malloc(encrypted_len);
EVP_PKEY_encrypt(ctx, encrypted, &encrypted_len, plaintext, plaintext_len);

// Decrypt

EVP_PKEY_CTX *ctx2 = EVP_PKEY_CTX_new(privKey, NULL);
EVP_PKEY_decrypt_init(ctx2);

EVP_PKEY_CTX_set_rsa_padding(ctx2, RSA_PKCS1_OAEP_PADDING) ;
EVP_PKEY_CTX_set_rsa_oaep_md(ctx2, EVP_sha256());

size_t decrypted_len;

EVP_PKEY_decrypt(ctx2, NULL, &decrypted_len, encrypted, encrypted_len);
unsigned char* decrypted = (unsigned char*)malloc(decrypted_len + 1);
EVP_PKEY_decrypt(ctx2, decrypted, &decrypted_len, encrypted, encrypted_len);
decrypted[decrypted_len] = '\0';

// Print encrypted and decrypted strings

for(size_t i = 0; i < encrypted_len; i++) {
printf("%02X", encrypted[i]);

}

printf("\n");

printf("%s\n", decrypted);

// Clean up
EVP_PKEY_free(pubKey) ;
EVP_PKEY_free(privKey) ;
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_CTX_free(ctx2);
free(encrypted);
free(decrypted);

return 0;

This example uses OpenSSL’S EVP interface, specifically EVP_PKEY_encrypt () and EVP_PKEY_decrypt () func-
tions to encrypt and decrypt a string using RSA. The public and private keys are loaded from files. The
EVP_PKEY_CTX_set_rsa_padding() and EVP_PKEY_CTX_set_rsa_oaep_md() functions are used to set the
padding scheme and the hash function for RSA-OAEP.

Here is the equivalent C++ code using Botan:

#include <botan/auto_rng.h>
#include <botan/hex.h>
#include <botan/pk_keys.h>
#include <botan/pkcs8.h>
#include <botan/pubkey.h>
#include <botan/rng.h>

#include <iostream>

int main(int argc, char* argv[]) {
if(argc '= 2) {
return 1;
}
std: :string_view plaintext(
(continues on next page)

7.6. Asymmetric Encryption 43

Botan Reference Guide, Release 3.9.0

(continued from previous page)

"Your great-grandfather gave this watch to your granddad for good luck.
"Unfortunately, Dane's luck wasn't as good as his old man's.");
const Botan::secure_vector<uint8_t> pt(plaintext.data(), plaintext.data() + plaintext.
—length());
Botan: :AutoSeeded_RNG rng;

// load keypair
Botan: :DataSource_Stream in(argv[1]);
auto kp = Botan::PKCS8::load_key(in);

// encrypt with pk
Botan: :PK_Encryptor_EME enc(*kp, rng, "OAEP(SHA-256)");
const auto ct = enc.encrypt(pt, rng);

// decrypt with sk
Botan: :PK_Decryptor_EME dec(*kp, rng, "OAEP(SHA-256)");
const auto pt2 = dec.decrypt(ct);

std: :cout << "\nenc: << Botan::hex_encode(ct) << "\ndec: << Botan: :hex_

—,encode(pt2);

return 0;

This example uses the PK_Encryptor_EME and PK_Decryptor_EME classes to encrypt and decrypt. a message using
RSA. The public and private keys are loaded from files. The padding scheme and hash function are passed as a string
parameter.

7.7 Asymmetric Signatures

Consider the following application code to sign some data with ECDSA using OpenSSL.

#include <openssl/ec.h>
#include <openssl/obj_mac.h>
#include <openssl/err.h>
#include <openssl/ecdsa.h>
#include <openssl/pem.h>
#include <openssl/sha.h>
#include <iostream>

int main() {
EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp521rl);

if(ec_key == NULL) {
fprintf(stderr, "Error creating EC_KEY structure.\n");
return 1;

}

if ('EC_KEY_generate_key(ec_key)) {
fprintf(stderr, "Error generating key.\n");
ERR_print_errors_fp(stderr);
EC_KEY_free(ec_key);

(continues on next page)

44 Chapter 7. OpenSSL 1.1 to Botan 3.x Migration

Botan Reference Guide, Release 3.9.0

(continued from previous page)

return 1;

}

// String to sign
std::string plaintext = "This is a tasty burger!";

// Hash the plaintext
unsigned char hash[SHA256_DIGEST_LENGTH];
SHA256 ((unsigned char*)plaintext.c_str(), plaintext.size(), hash);

// Sign the hash
ECDSA_SIG* sig = ECDSA_do_sign(hash, SHA256_DIGEST_LENGTH, ec_key);
if(sig == NULL) {
std::cerr << "Error signing: " << ERR_error_string(ERR_get_error(), NULL) << "\n

return 1;

}

// Print the signature

const BIGNUM* r;

const BIGNUM* s;

ECDSA_SIG_getO(sig, &r, &s);

char* r_hex = BN_bn2hex(r);

char* s_hex = BN_bn2hex(s);

std::cout << "Signature: (" << r_hex << ", " << s_hex << ")\n";

// Clean up
EC_KEY_free(ec_key);
ECDSA_SIG_free(sig);
OPENSSL_free(r_hex);
OPENSSL_free(s_hex);
return 0;

This snippet uses OpenSSL's ECDSA interface, specifically ECDSA_do_sign(), to sign a string message using
ECDSA. The private key is loaded from a file. The SHA256 () function is used to hash the plaintext before signing.

Here is the equivalent C++ code using Botan:

#include <botan/auto_rng.h>
#include <botan/ec_group.h>
#include <botan/ecdsa.h>
#include <botan/hex.h>
#include <botan/pubkey.h>

#include <iostream>

int main(Q) {
Botan: :AutoSeeded_RNG rng;
// Generate ECDSA keypair
const auto group = Botan::EC_Group::from_name('secp521r1");
Botan: :ECDSA_PrivateKey key(rng, group);

(continues on next page)

7.7. Asymmetric Sighatures 45

Botan Reference Guide, Release 3.9.0

(continued from previous page)

const std::string message(""This is a tasty burger!");

// sign data

Botan: :PK_Signer signer(key, rng, "SHA-256");
signer.update(message);

std: :vector<uint8_t> signature = signer.signature(rng);

std: :cout << "Signature:\n" << Botan::hex_encode(signature);

// now verify the signature

Botan: :PK_Verifier verifier(key, "SHA-256");

verifier.update(message);

std: :cout << "\nis " << (verifier.check_signature(signature) ? "valid" : "invalid");
return 0;

This example uses the PK_Signer and PK_Verifier classes to sign and verify a message using ECDSA.
The private key is similary loaded from a file. The hash function is passed as a string parameter.
PK_Verifier::check_signature() is used to verify the signature.

46

Chapter 7. OpenSSL 1.1 to Botan 3.x Migration

CHAPTER
EIGHT

API REFERENCE

8.1 Footguns

This section notes areas where certain usages can cause confusing bugs or problems.

8.1.1 Static Objects

If you maintain static variables which hold Botan objects, you will perhaps find that in some circumstances your
application crashes in strange ways on shutdown. That is because, at least on some operating systems, Botan uses a
locked memory pool as backing storage for the secure_vector type. This pool allocates out of pages which have
been locked into memory using mlock or VirtualLock system calls.

If your variable happens to be destroyed before the pool, all is well. If the pool happens to be destroyed before the
variable, then when the object goes to free its memory, a crash will occur.

This is basically the famous C++ “Static Initialization Order Fiasco”, except in reverse.

The best course of action is to avoid static variables. If that is impossible or inconvenient, one option is to disable
the pool, either at build time (disable the locking_allocator module) or at runtime. Unfortunately the runtime
setting requires setting an environment variable (see Environment Variables), and doing so consistently prior to static
intialization is not trivial, due to the previously mentioned fiasco. One option might be to use GCC’s constructor
function attribute.

Another approach is to use the utility class Allocator_Initializer (declared in mem_ops.h) as an associated
static variable in your code. As long as the Allocator_Initializer is created before your static variables, that
means the allocator is created before your object, and thus will be destroyed after your object is destroyed.

Ideally a more satisfactory solution to this issue could be found, especially given the difficulty of disabling the pool at
runtime.

8.1.2 Multithreaded Access

It is perfectly safe to use the library from multiple threads.
It is not safe to use the same object from multiple threads, without some form of external serialization or locking.

There are a few exceptions to this rule, where the type itself maintains an internal mutexes. This will be noted in the
respective documentation for that type.

8.1.3 Use of fork

If you use the fork syscall in your code, and attempt to use the library in both processes, likely bad things will happen
due to internal locks. You can avoid this problem by either at build time disabling the features associated with these
locks (namely locking_allocator and thread_utils) or disabling them at runtime using Environment Variables,
ideally at the very start of main.

47

Botan Reference Guide, Release 3.9.0

8.2 Versioning

All versions are of the tuple (major,minor,patch).

As of Botan 2.0.0, Botan uses semantic versioning. The minor number increases if any feature addition is made. The
patch version is used to indicate a release where only bug fixes were applied. If an incompatible API change is required,
the major version will be increased.

The library has functions for checking compile-time and runtime versions.
The build-time version information is defined in botan/build.h

BOTAN_VERSION_MAJOR

The major version of the release.

BOTAN_VERSION_MINOR

The minor version of the release.

BOTAN_VERSION_PATCH

The patch version of the release.

BOTAN_VERSION_DATESTAMP

Expands to an integer of the form YYYYMMDD if this is an official release, or 0 otherwise. For instance, 3.6.1,
which was released on October 26, 2024, has a BOTAN_VERSION_DATESTAMP of 20241026.

Warning

This macro is deprecated and will be removed in Botan4. Use version_datestamp

BOTAN_DISTRIBUTION_INFO
Added in version 1.9.3.
A macro expanding to a string that is set at build time using the --distribution-info option. It allows a

packager of the library to specify any distribution-specific patches. If no value is given at build time, the value
is the string “unspecified”.

Warning

This macro is deprecated and will be removed in Botan4. Use version_distribution_info

BOTAN_VERSION_VC_REVISION
Added in version 1.10.1.

A macro expanding to a string that is set to a revision identifier corresponding to the source, or “unknown” if
this could not be determined. It is set for all official releases.

Warning

This macro is deprecated and will be removed in Botan4. Use version_vc_revision

The runtime version information, and some helpers for compile time version checks, are included in botan/version.h

48 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

std::string version_string()
Returns a single-line string containing relevant information about this build and version of the library in an
unspecified format.

uint32_t version_major()
Returns the major part of the version.

uint32_t version_minor ()

Returns the minor part of the version.
uint32_t version_patch()
Returns the patch part of the version.
uint32_t version_datestamp ()
Return the datestamp of the release (or O if the current version is not an official release).

std::optional<std::string> version_vc_revision()
Added in version 3.8.
Returns a string that is set to a revision identifier corresponding to the source, or nullopt if this could not be
determined. It is set for all official releases, and for builds that originated from within a git checkout.
std::optional<std::string> version_distribution_info()
Added in version 3.8.

Return any string that is set at build time using the --distribution-info option. It allows a packager of the
library to specify any distribution-specific patches. If no value is given at build time, returns nullopt.

BOTAN_VERSION_CODE_FOR (maj, min, patch)

Return a value that can be used to compare versions. The current (compile-time) version is available as the macro
BOTAN_VERSION_CODE. For instance, to choose one code path for version 3.4.0 and later, and another code path
for older releases:

#1if BOTAN_VERSION_CODE >= BOTAN_VERSION_CODE_FOR(3,4,0)
// 3.4+ code path

#else
// code path for older versions

#endif

8.3 Memory container

A major concern with mixing modern multi-user OSes and cryptographic code is that at any time the code (including
secret keys) could be swapped to disk, where it can later be read by an attacker, or left floating around in memory for
later retrieval.

For this reason the library uses a std: :vector with a custom allocator that will zero memory before deallocation,
named via typedef as secure_vector. Because it is simply a STL vector with a custom allocator, it has an identical
API to the std: : vector you know and love.

Some operating systems offer the ability to lock memory into RAM, preventing swapping from occurring. Typically
this operation is restricted to privileged users (root or admin), however some OSes including Linux and FreeBSD allow
normal users to lock a small amount of memory. On these systems, allocations first attempt to allocate out of this small
locked pool, and then if that fails will fall back to normal heap allocations.

The secure_vector template is only meant for primitive data types (bytes or ints): if you want a container of higher
level Botan objects, you can just use a std: : vector, since these objects know how to clear themselves when they are
destroyed. You cannot, however, have a std: :vector (or any other container) of Pipe objects or filters, because these

8.3. Memory container 49

Botan Reference Guide, Release 3.9.0

types have pointers to other filters, and implementing copy constructors for these types would be both hard and quite
expensive (vectors of pointers to such objects is fine, though).

8.4 Random Number Generators

class RandomNumberGenerator
The base class for all RNG objects, is declared in rng.h.

void randomize (uint8_t *output_array, size_t length)
Places length random bytes into the provided buffer.

void randomize_with_input (uint8_t *data, size_t length, const uint8_t *extra_input, size_t extra_input_len)
Like randomize, but first incorporates the additional input field into the state of the RNG. The additional
input could be anything which parameterizes this request. Not all RNG types accept additional inputs, the
value will be silently ignored when not supported.

void randomize_with_ts_input (uint8_t *data, size_t length)

Creates a buffer with some timestamp values and calls randomize_with_input

Note

When RDRAND is enabled and available at runtime, instead of timestamps the output of RDRAND is
used as the additional data.

uint8_t next_byte()
Generates a single random byte and returns it. Note that calling this function several times is much slower
than calling randomize once to produce multiple bytes at a time.

void add_entropy (const uint8_t *data, size_t length)
Incorporates provided data into the state of the PRNG, if at all possible. This works for most RNG types,
including the system and TPM RNGs. But if the RNG doesn’t support this operation, the data is dropped,
no error is indicated.

bool accepts_input () const
This function returns false if it is known that this RNG object cannot accept external inputs. In this case,
any calls to RandomNumberGenerator: :add_entropy will be ignored.

void reseed_from_rng (RandomNumberGenerator &rng, size_t poll_bits =
BOTAN_RNG_RESEED_POLL_BITS)

Reseed by calling rng to acquire poll_bits data.

8.4.1 RNG Types

Several different RNG types are implemented. Some access hardware RNGs, which are only available on certain
platforms. Others are mostly useful in specific situations.

Generally prefer using System_RNG, or if not available use AutoSeeded_RNG which is intended to provide best possible
behavior in a userspace PRNG.

System_RNG

On systems which support it, in system_rng.h you can access a shared reference to a process global instance
of the system PRNG (using interfaces such as /dev/urandom, getrandom, arc4random, BCryptGenRandom, or
RtlGenRandom):

50 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

RandomNumberGenerator &system_rng ()

Returns a reference to the system RNG

There is also a wrapper class System_RNG which simply invokes on the return value of system_rng (). This is useful
in situations where you may sometimes want to use the system RNG and a userspace RNG in others, for example:

std: :unique_ptr<Botan: :RandomNumberGenerator> rng;
#1f defined (BOTAN_HAS_SYSTEM_RNG)

rng.reset(new System_RNG);

#else

rng.reset(new AutoSeeded_RNG);

#endif

Unlike nearly any other object in Botan it is acceptable to share a single instance of System_RNG between threads
without locking, because the underlying RNG is itself thread safe due to being serialized by a mutex in the kernel itself.

AutoSeeded_RNG

AutoSeeded_RNG is type naming a ‘best available’ userspace PRNG. The exact definition of this has changed over
time and may change again in the future. Fortunately there is no compatibility concerns when changing any RNG since
the only expectation is it produces bits indistinguishable from random.

Note

Starting in 2.16.0, AutoSeeded_RNG uses an internal lock and so is safe to share among threads. However if
possible it is still better to use a RNG per thread as otherwise the RNG object needlessly creates a point of contention.
In previous versions, the RNG does not have an internal lock and all access to it must be serialized.

The current version uses HMAC_DRBG with either SHA-384 or SHA-256. The initial seed is generated either by the
system PRNG (if available) or a default set of entropy sources. These are also used for periodic reseeding of the RNG
state.

HMAC_DRBG

HMAC-DRBG is a random number generator designed by NIST and specified in SP 800-90A. It seems to be the most
conservative generator of the NIST approved options.

It can be instantiated with any HMAC but is typically used with SHA-256, SHA-384, or SHA-512, as these are the
hash functions approved for this use by NIST.

Note

There is no reason to use this class directly unless your application requires HMAC-DRBG with specific parameters
or options. Usually this would be for some standards conformance reason. If you just want a userspace RNG, use
AutoSeeded_RNG.

HMAC_DRBG’s constructors are:
class HMAC_DRBG

HMAC_DRBG(std::unique_ptr<MessageAuthenticationCode> prf, RandomNumberGenerator &underlying_rng,
size_t reseed_interval = BOTAN_RNG_DEFAULT_RESEED_INTERVAL, size_t
max_number_of_bytes_per_request = 64 * 1024)

8.4. Random Number Generators 51

Botan Reference Guide, Release 3.9.0

Creates a DRBG which will automatically reseed as required by making calls to underlying_rng either
after being invoked reseed_interval times, or if use of fork system call is detected.

You can disable automatic reseeding by setting reseed_interval to zero, in which case
underlying_rng will only be invoked in the case of fork.

The specification of HMAC DRBG requires that each invocation produce no more than 64 kibibytes of data.
However, the RNG interface allows producing arbitrary amounts of data in a single request. To accommo-
date this, HMAC_DRBG treats requests for more data as if they were multiple requests each of (at most) the
maximum size. You can specify a smaller maximum size with max_number_of_bytes_per_request.
There is normally no reason to do this.

HMAC_DRBG(std::unique_ptr<MessageAuthenticationCode> prf, Entropy_Sources &entropy_sources, size_t
reseed_interval = BOTAN_RNG_DEFAULT_RESEED_INTERVAL, size_t
max_number_of_bytes_per_request = 64 * 1024)

Like above function, but instead of an RNG taking a set of entropy sources to seed from as required.

HMAC_DRBG(std::unique_ptr<MessageAuthenticationCode> prf, RandomNumberGenerator &underlying_rng,
Entropy_Sources &entropy_sources, size_t reseed_interval =
BOTAN_RNG_DEFAULT_RESEED_INTERVAL, size_t max_number_of_bytes_per_request =
64 *1024)

Like above function, but taking both an RNG and a set of entropy sources to seed from as required.

HMAC_DRBG(std::unique_ptr<MessageAuthenticationCode> prtf)

Creates an unseeded DRBG. You must explicitly provide seed data later on in order to use this RNG. This
is primarily useful for deterministic key generation.

Since no source of data is available to automatically reseed, automatic reseeding is disabled when this
constructor is used. If the RNG object detects that fork system call was used without it being subsequently
reseeded, it will throw an exception.

HMAC_DRBG(const std::string &hmac_hash)

Like the constructor just taking a PRF, except instead of a PRF object, a string specifying what hash to use
with HMAC is provided.

ChaCha_RNG

This is a very fast userspace PRNG based on ChaCha20 and HMAC(SHA-256). The key for ChaCha is derived by
hashing entropy inputs with HMAC. Then the ChaCha keystream generator is run, first to generate the new HMAC key
(used for any future entropy additions), then the desired RNG outputs.

This RNG composes two primitives thought to be secure (ChaCha and HMAC) in a simple and well studied way
(the extract-then-expand paradigm), but is still an ad-hoc and non-standard construction. It is included because it is
roughly 20x faster then HMAC_DRBG (basically running as fast as ChaCha can generate keystream bits), and certain
applications need access to a very fast RNG.

One thing applications using ChaCha_RNG need to be aware of is that for performance reasons, no backtracking re-
sistance is implemented in the RNG design. An attacker who recovers the ChaCha_RNG state can recover the output
backwards in time to the last rekey and forwards to the next rekey.

An explicit reseeding (RandomNumberGenerator: :add_entropy) or providing
any input to the RNG (RandomNumberGenerator: :randomize_with_ts_input,
RandomNumberGenerator: :randomize_with_input) is sufficient to cause a reseeding. Or, if a RNG or en-
tropy source was provided to the ChaCha_RNG constructor, then reseeding will be performed automatically after a
certain interval of requests.

52 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Processor RNG

This RNG type directly invokes a CPU instruction capable of generating a cryptographically secure random number.
On x86 it uses rdrand, on POWER darn. If the relevant instruction is not available, the constructor of the class will
throw at runtime. You can test beforehand by checking the result of Processor_RNG: :available().

TPM_RNG & TPM2_RNG
These RNG types allow using the RNG exported from a TPM chip.

PKCS11_RNG
This RNG type allows using the RNG exported from a hardware token accessed via PKCS11.

Jitter RNG

This is an RNG based on low-level CPU timing jitter, using the jitterentropy library
(https://github.com/smuellerDD/jitterentropy-library).

Can be enabled with configure.py via --enable-modules="jitter_rng", provided you have the library installed
and made available to the build, including headers.

8.4.2 Entropy Sources

An EntropySource is an abstract representation of some method of gather “real” entropy. This tends to be very system
dependent. The only way you should use an EntropySource is to pass it to a PRNG that will extract entropy from it
— never use the output directly for any kind of key or nonce generation!

EntropySource has a single function which is called at runtime, poll”, which is passed the
" "RandomNumberGenerator that it should be seeding. The source can perform polling and pass whatever it
gathers to the RNG using the object’s add_entropy function. The source then returns a best estimate of the number
of bits of entropy gathered; this can be zero if the source should be used but not counted.

Note for writers of EntropySource subclasses: it isn’t necessary to use any kind of cryptographic hash on your
output. The data produced by an EntropySource is only used by an application after it has been hashed by the
RandomNumberGenerator that asked for the entropy, thus any hashing you do will be wasteful of both CPU cycles
and entropy.

The following entropy sources are currently included in the library:
* The system RNG (/dev/urandom, getrandom, arc4random, BCryptGenRandom, or Rt1GenRandom).

¢ Processor provided RNG outputs (RDRAND, RDSEED, DARN) are used if available (but not counted as con-
tributing entropy)

* The getentropy call is used on OpenBSD, FreeBSD, and macOS

* Gathering Windows system statistics (a last ditch protection against a flawed system RNG)

8.4.3 Custom Entropy Sources

On some systems (most notably baremetal embedded systems without an operating system) you may have to implement
your own RNG and/or entropy source.

An example of how to create an entropy source:

[. . literalinclude:: /../src/examples/entropy.cpp

An example of how to create a custom RNG:

8.4. Random Number Generators 53

https://github.com/smuellerDD/jitterentropy-library

Botan Reference Guide, Release 3.9.0

[. . literalinclude:: /../src/examples/custom_system_rng.cpp

8.4.4 Fork Safety

On Unix platforms, the fork() and clone() system calls can be used to spawn a new child process. Fork safety
ensures that the child process doesn’t see the same output of random bytes as the parent process. Botan tries to ensure
fork safety by feeding the process ID into the internal state of the random generator and by automatically reseeding
the random generator if the process ID changed between two requests of random bytes. However, this does not protect
against PID wrap around. The process ID is usually implemented as a 16 bit integer. In this scenario, a process will
spawn a new child process, which exits the parent process and spawns a new child process himself. If the PID wrapped
around, the second child process may get assigned the process ID of it’s grandparent and the fork safety can not be
ensured.

Therefore, it is strongly recommended to explicitly reseed any userspace random generators after forking a new process.
If this is not possible in your application, prefer using the system PRNG instead.

8.5 Hash Functions and Checksums

Hash functions are one-way functions, which map data of arbitrary size to a fixed output length. Most of the hash
functions in Botan are designed to be cryptographically secure, which means that it is computationally infeasible to
create a collision (finding two inputs with the same hash) or preimages (given a hash output, generating an arbitrary
input with the same hash). But note that not all such hash functions meet their goals, in particular MD4 and MDS are
trivially broken. However they are still included due to their wide adoption in various protocols.

The class HashFunction is defined in botan/hash.h.

Using a hash function is typically split into three stages: initialization, update, and finalization (often referred to as
a IUF interface). The initialization stage is implicit: after creating a hash function object, it is ready to process data.
Then update is called one or more times. Calling update several times is equivalent to calling it once with all of the
arguments concatenated. After completing a hash computation (eg using final), the internal state is reset to begin
hashing a new message.

class HashFunction
static std::unique_ptr<HashFunction> create(const std::string &name)
Return a newly allocated hash function object, or nullptr if the name is not recognized.
static std::unique_ptr<HashFunction> create_or_throw(const std::string &name)
Like create except that it will throw an exception instead of returning nullptr.
size_t output_length()
Return the size (in byfes) of the output of this function.
void update (const uint8_t *input, size_t length)
Updates the computation with input.
void update (uint8_t input)
Updates the computation with input.
void update (const std::vector<uint8_t> &input)
Updates the computation with input.
void update (const std::string &input)

Updates the computation with input.

54 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

void final (uint8_t *out)
Finalize the calculation and place the result into out. For the argument taking an array, exactly
output_length bytes will be written. After you call final, the algorithm is reset to its initial state,
so it may be reused immediately.

secure_vector<uint8 _t> final ()
Similar to the other function of the same name, except it returns the result in a newly allocated vector.

secure_vector<uint8_t> process (const uint8_t in[], size_t length)
Equivalent to calling update followed by final.

secure_vector<uint8_t> process (const std::string &in)
Equivalent to calling update followed by final.

std::unique_ptr<HashFunction> new_object ()
Return a newly allocated HashFunction object of the same type as this one.

std::unique_ptr<HashFunction> copy_state()

Return a newly allocated HashFunction object of the same type as this one, whose internal state matches
the current state of this.

8.5.1 Code Example

Assume we want to calculate the SHA-256, SHA-384, and SHA-3 hash digests of the STDIN stream using the Botan
library.

#include <botan/hash.h>
#include <botan/hex.h>

#include <iostream>

int main() {

const auto hashl

Botan: :HashFunction: : create_or_throw("'SHA-256");

const auto hash2 = Botan::HashFunction: :create_or_throw(''SHA-384");
const auto hash3 = Botan::HashFunction: :create_or_throw(''SHA-3");
std: :vector<uint8_t> buf(2048);

while(std::cin.good()) {

// read STDIN to buffer
std: :cin.read(reinterpret_cast<char*>(buf.data()), static_cast<std::streamsize>

< (buf.size()));

}

size_t readcount = std::cin.gcount();

// update hash computations with read data
hashl->update(std: :span{buf}. first(readcount));
hash2->update(std: : span{buf}. first(readcount));
hash3->update(std: :span{buf}. first(readcount));

std: :cout << "SHA-256: " << Botan::hex_encode(hashl->final()) << '\n';
std::cout << "SHA-384: " << Botan::hex_encode(hash2->final()) << '"\n';

std::cout << "SHA-3:

<< Botan: :hex_encode(hash3->final()) << '"\n';

return 0;

8.5. Hash Functions and Checksums 55

Botan Reference Guide, Release 3.9.0

8.5.2 Available Hash Functions

The following cryptographic hash functions are implemented. If in doubt, any of SHA-384, SHA-3, or BLAKE2b are
fine choices.

BLAKE2b

Available if BOTAN_HAS_BLAKE2B is defined.

A recently designed hash function. Very fast on 64-bit processors. Can output a hash of any length between 1 and 64
bytes, this is specified by passing a value to the constructor with the desired length.

Named like “Blake2b” which selects default 512-bit output, or as “Blake2b(256)” to select 256 bits of output.

Algorithm specification name: BLAKE2b(<optional output bits>) (reported name) / Blake2b(<optional
output bits>)

e Qutput bits defaults to 512.
* Examples: BLAKE2b(256), BLAKE2b(512), BLAKE2b

BLAKE2s
Available if BOTAN_HAS_BLAKE2S is defined.

A recently designed hash function. Very fast on 32-bit processors. Can output a hash of any length between 1 and 32
bytes, this is specified by passing a value to the constructor with the desired length.

Named like “Blake2s” which selects default 256-bit output, or as “Blake2s(128)” to select 128 bits of output.

Algorithm specification name: BLAKE2s(<optional output bits>) (reported name) / Blake2s(<optional
output bits>)

* Output bits defaults to 256.
* Examples: BLAKE2s(128), BLAKE2s(256), BLAKE2s

GOST-34.11
Deprecated since version 2.11.
Available if BOTAN_HAS_GOST_34_11 is defined.

Russian national standard hash. It is old, slow, and has some weaknesses. Avoid it unless you must.

Warning

As this hash function is no longer approved by the latest Russian standards, support for GOST 34.11 hash is depre-
cated and will be removed in a future major release.

Algorithm specification name: GOST-R-34.11-94 (reported name) / GOST-34.11

Keccak-1600
Available if BOTAN_HAS_KECCAK is defined.
An older (and incompatible) variant of SHA-3, but sometimes used. Prefer SHA-3 in new code.
Algorithm specification name: Keccak-1600(<optional output bits>)
e Qutput bits defaults to 512.
* Examples: Keccak-1600(256), Keccak-1600(512), Keccak-1600

56 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

MD4

An old and now broken hash function. Available if BOTAN_HAS_MD4 is defined.

Warning

MD4 collisions can be easily created. There is no safe cryptographic use for this function.

Warning

Support for MD4 is deprecated and will be removed in a future major release.

Algorithm specification name: MD4

MD5
An old and now broken hash function. Available if BOTAN_HAS_MD5 is defined.

Warning

MDS5 collisions can be easily created. MDS5 should never be used for signatures.

Algorithm specification name: MD5

RIPEMD-160
Available if BOTAN_HAS_RIPEMD160 is defined.

A 160 bit hash function, quite old but still thought to be secure (up to the limit of 2**80 computation required for a
collision which is possible with any 160 bit hash function). Somewhat deprecated these days. Prefer SHA-2 or SHA-3
in new code.

Algorithm specification name: RIPEMD-160

SHA-1
Available if BOTAN_HAS_SHA1 is defined.
Widely adopted NSA designed hash function. Use SHA-2 or SHA-3 in new code.

Warning

SHA-1 collisions can now be created by moderately resourced attackers. It must never be used for signatures.

Algorithm specification name: SHA-1

SHA-256

Available if BOTAN_HAS_SHA2_32 is defined.

Relatively fast 256 bit hash function, thought to be secure.

Also includes the variant SHA-224. There is no real reason to use SHA-224.

8.5. Hash Functions and Checksums 57

Botan Reference Guide, Release 3.9.0

Algorithm specification names:
e SHA-224
* SHA-256

SHA-512
Available if BOTAN_HAS_SHA2_64 is defined.

SHA-512 is faster than SHA-256 on 64-bit processors. Also includes the truncated variants SHA-384 and SHA-
512/256, which have the advantage of avoiding message extension attacks.

Algorithm specification names:
* SHA-384
e SHA-512
e SHA-512-256

SHA-3
Available if BOTAN_HAS_SHA3 is defined.
The new NIST standard hash. Fairly slow.

Supports 224, 256, 384 or 512 bit outputs. SHA-3 is faster with smaller outputs. Use as “SHA-3(256)” or “SHA-
3(512)”. Plain “SHA-3” selects default 512 bit output.

Algorithm specification name: SHA-3 (<optional output bits>)
* Qutput bits defaults to 512.
* Examples: SHA-3(256), SHA-3(512), SHA-3

SHAKE (SHAKE-128, SHAKE-256)
Auvailable if BOTAN_HAS_SHAKE is defined.

These are actually XOFs (extensible output functions) based on SHA-3, which can output a value of any byte length.
For example “SHAKE-128(1024)” will produce 1024 bits of output. The specified length must be a multiple of 8.

Algorithm specification names:
e SHAKE-128(<output bits>), e.g. SHAKE-128(128)
e SHAKE-256(<output bits>, e.g. SHAKE-256(256)

Skein-512
Available if BOTAN_HAS_SKEIN_512 is defined.

A contender for the NIST SHA-3 competition. Very fast on 64-bit systems. Can output a hash of any length between 1
and 64 bytes. It also accepts an optional “personalization string” which can create variants of the hash. This is useful
for domain separation.

To set a personalization string set the second param to any value, typically ASCII strings are used. Examples “Skein-
512(256)” or “Skein-512(384,personalization_string)”.

Algorithm specification name:
e Skein-512(<optional output bits>)

— Output bits defaults to 512.

58 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

— Examples: Skein-512(256), Skein-512(512), Skein-512

e Skein-512(<output bits>,<personalization>),e.g. Skein-512(512,Test)

SM3
Available if BOTAN_HAS_SM3 is defined.

Chinese national hash function, 256 bit output. Widely used in industry there. Fast and seemingly secure, but no reason
to prefer it over SHA-2 or SHA-3 unless required.

Algorithm specification name: SM3

Streebog (Streebog-256, Streebog-512)
Auvailable if BOTAN_HAS_STREEBOG is defined.

Newly designed Russian national hash function. Due to use of input-dependent table lookups, it is vulnerable to side
channels. There is no reason to use it unless compatibility is needed.

Warning

The Streebog Sbox has recently been revealed to have a hidden structure which interacts with its linear layer in a
way which may provide a backdoor when used in certain ways. Avoid Streebog if at all possible.

Algorithm specification names:
e Streebog-256
e Streebog-512

Whirlpool
Available if BOTAN_HAS_WHIRLPOOL is defined.

A 512-bit hash function standardized by ISO and NESSIE. Relatively slow, and due to the table based implementation
it is potentially vulnerable to cache based side channels.

Algorithm specification name: Whirlpool

8.5.3 Hash Function Combiners and Modifiers

These are functions which combine multiple hash functions, or modify the output of hash functions, to create a new
hash function. They are typically only used in specialized applications.

Parallel
Available if BOTAN_HAS_PARALLEL_HASH is defined.

Parallel simply concatenates multiple hash functions. For example “Parallel(SHA-256,SHA-512)” outputs a 256+512
bit hash created by hashing the input with both SHA-256 and SHA-512 and concatenating the outputs.

Note that due to the “multicollision attack” it turns out that generating a collision for multiple parallel hash functions
is no harder than generating a collision for the strongest hash function.

Algorithm specification name: Parallel (<HashFunction>,<HashFunction>,...), e.g. Parallel (SHA-256,
SHA-512), Parallel (MD5,SHA-1,SHA-256,SHA-512)

8.5. Hash Functions and Checksums 59

Botan Reference Guide, Release 3.9.0

Comp4P
Available if BOTAN_HAS_COMBA4P is defined.

This combines two cryptographic hashes in such a way that preimage and collision attacks are provably at least as hard
as a preimage or collision attack on the strongest hash.

Algorithm specification name: Comb4P (<HashFunction>,<HashFunction>), e.g. Comb4P (SHA-1,RIPEMD-160)

Truncated

Available if BOTAN_HAS_TRUNCATED_HASH is defined.

Wrapper class to truncate underlying hash function output to a given number of bits. The leading bits are retained.
Algorithm specification name: Truncated(<HashFunction>, <output bits>), e.g.

Truncated (SHAKE-128(256) ,42)

8.5.4 Checksums

Note

Checksums are not suitable for cryptographic use, but can be used for error checking purposes.

Adler32
Available if BOTAN_HAS_ADLER32 is defined.
The Adler32 checksum is used in the zlib format. 32 bit output.

Algorithm specification name: Adler32

CRC24
Available if BOTAN_HAS_CRC24 is defined.
This is the CRC function used in OpenPGP. 24 bit output.

Algorithm specification name: CRC32

CRC32
Available if BOTAN_HAS_CRC32 is defined.
This is the 32-bit CRC used in protocols such as Ethernet, gzip, PNG, etc.

Algorithm specification name: CRC32

8.6 Block Ciphers

Block ciphers are a n-bit permutation for some small n, typically 64 or 128 bits. They are a cryptographic primitive
used to generate higher level operations such as authenticated encryption.

Warning

In almost all cases, a bare block cipher is not what you should be using. You probably want an authenticated cipher
mode instead (see Cipher Modes) This interface is used to build higher level operations (such as cipher modes or
MAC:s), or in the very rare situation where ECB is required, eg for compatibility with an existing system.

60 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

class BlockCipher

static std::unique_ptr<BlockCipher> create (const std::string &algo_spec, const std::string &provider = "")
Create a new block cipher object, or else return null.
static std::unique_ptr<BlockCipher> create_or_throw(const std::string &algo_spec, const std::string
&provider ="")

Like create, except instead of returning null an exception is thrown if the cipher is not known.

void set_key (const uint8_t *key, size_t length)

This sets the key to the value specified. Most algorithms only accept keys of certain lengths. If you attempt
to call set_key with a key length that is not supported, the exception Invalid_Key_Length will be
thrown.

In all cases, set_key must be called on an object before any data processing (encryption, decryption, etc)
is done by that object. If this is not done, an exception will be thrown. thrown.
bool valid_keylength(size_t length) const
This function returns true if and only if length is a valid keylength for this algorithm.
size_t minimum_keylength() const
Return the smallest key length (in bytes) that is acceptable for the algorithm.
size_t maximum_keylength() const
Return the largest key length (in bytes) that is acceptable for the algorithm.

std::string name () const
Return a human readable name for this algorithm. This is guaranteed to round-trip with create and
create_or_throw calls, ie create(“Foo’)->name() == “Foo”

void clear ()

Zero out the key. The key must be reset before the cipher object can be used.

std::unique_ptr<BlockCipher> new_object () const

Return a newly allocated BlockCipher object of the same type as this one. The new object is unkeyed.

size_t block_size () const
Return the size (in byfes) of the cipher.

size_t parallelism() const
Return the parallelism underlying this implementation of the cipher. This value can vary across versions
and machines. A return value of N means that encrypting or decrypting with N blocks can operate in
parallel.

size_t parallel_bytes() const
Returns parallelism multiplied by the block size as well as a small fudge factor. That’s because even
ciphers that have no implicit parallelism typically see a small speedup for being called with several blocks
due to caching effects.

std::string provider () const
Return the provider type. Default value is “base” but can be any arbitrary string. Other example values are
“sse2”, “avx2”, “openssl”.

void encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const

Encrypt blocks blocks of data, taking the input from the array in and placing the ciphertext into out. The
two pointers may be identical, but should not overlap ranges.

8.6.

Block Ciphers 61

Botan Reference Guide, Release 3.9.0

void decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const

Decrypt blocks blocks of data, taking the input from the array in and placing the plaintext into out. The two
pointers may be identical, but should not overlap ranges.

void encrypt (const uint8_t in[], uint8_t out[]) const
Encrypt a single block. Equivalent to encrypt_n(in, out, 1).

void encrypt (uint8_t block[]) const

Encrypt a single block. Equivalent to encrypt_n(block, block, 1)
void decrypt (const uint8_t in[], uint8_t out[]) const

Decrypt a single block. Equivalent to decrypt_n(in, out, 1)
void decrypt (uint8_t block[]) const

Decrypt a single block. Equivalent to decrypt_n(block, block, 1)

template<typename Alloc>
void encrypt (std::vector<uint8_t, Alloc> &block) const

Assumes block is of a multiple of the block size.

template<typename Alloc>
void decrypt (std::vector<uint8_t, Alloc> &block) const

Assumes block is of a multiple of the block size.

8.6.1 Code Example

For sheer demonstrative purposes, the following code encrypts a provided single block of plaintext with AES-256 using
two different keys.

#include <botan/block_cipher.h>
#include <botan/hex.h>

#include <iostream>

int main() {
auto key = Botan::hex_decode_locked(
—"000102030405060708090A0BOCODOEOF101112131415161718191A1B1CIDIEIF");
auto block = Botan::hex_decode_locked("00112233445566778899AABBCCDDEEFF™);
const auto cipher = Botan::BlockCipher: :create_or_throw("AES-256");
cipher->set_key(key);
cipher->encrypt(block);
std: :cout << cipher->name() <<
~< "\n';

single block encrypt: << Botan: :hex_encode(block) <

// clear cipher for 2nd encryption with other key

cipher->clear();

key = Botan::hex_decode_locked(
—"1337133713371337133713371337133713371337133713371337133713371337");

cipher->set_key(key);

cipher->encrypt(block);

std: :cout << cipher->name() <<
< '"\n';
return 0;

single block encrypt: << Botan: :hex_encode(block) <

¥

62 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.6.2 Available Ciphers

Botan includes a number of block ciphers that are specific to particular countries, as well as a few that are included
mostly due to their use in specific protocols such as PGP but not widely used elsewhere. If you are developing new
code and have no particular opinion, use AES-256. If you desire an alternative to AES, consider Serpent, SHACAL2
or Threefish.

Warning

Avoid any 64-bit block cipher in new designs. There are combinatoric issues that affect any 64-bit cipher that render
it insecure when large amounts of data are processed.

AES
Comes in three variants, AES-128, AES-192, and AES-256.
The standard 128-bit block cipher.

Several different implementations are included, depending on what is supported by the processor; all AES implemen-
tation used in Botan are immune to cache/timing based side channel attacks.

Available if BOTAN_HAS_AES is defined.
Algorithm specification names:

e AES-128

e AES-192

* AES-256

ARIA
South Korean cipher used in industry there. No reason to use it otherwise.
Available if BOTAN_HAS_ARTIA is defined.
Algorithm specification names:
e ARTA-128
e ARTA-192
e ARTA-256

Blowfish
A 64-bit cipher popular in the pre-AES era. Very slow key setup. Also used (with berypt) for password hashing.
Available if BOTAN_HAS_BLOWFISH is defined.

Algorithm specification name: Blowfish

Camellia

Comes in three variants, Camellia-128, Camellia-192, and Camellia-256.

A Japanese design standardized by ISO, NESSIE and CRYPTREC. Rarely used outside of Japan.
Auvailable if BOTAN_HAS_CAMELLIA is defined.

Algorithm specification names:

8.6. Block Ciphers 63

Botan Reference Guide, Release 3.9.0

e Camellia-128
e Camellia-192
e Camellia-256

Cascade

Creates a block cipher cascade, where each block is encrypted by two ciphers with independent keys. Useful if you're
very paranoid. In practice any single good cipher (such as Serpent, SHACAL?2, or AES-256) is more than sufficient.

Available if BOTAN_HAS_CASCADE is defined.

Algorithm specification name: Cascade(<BlockCipher 1>,<BlockCipher 2>), e.g. Cascade(Serpent,
AES-256)

CAST-128

A 64-bit cipher, commonly used in OpenPGP.
Auvailable if BOTAN_HAS_CAST128 is defined.
Algorithm specification name:

* CAST-128 (reported name) / CAST5

DES and 3DES

Originally designed by IBM and NSA in the 1970s. Today, DES’s 56-bit key renders it insecure to any well-resourced
attacker. 3DES extends the key length, and is still thought to be secure, modulo the limitation of a 64-bit block. All are
somewhat common in some industries such as finance. Avoid in new code.

Available if BOTAN_HAS_DES is defined.
Algorithm specification names:
* DES
e TripleDES (reported name) / 3DES / DES-EDE

GOST-28147-89
Aka “Magma”. An old 64-bit Russian cipher. Possible security issues, avoid unless compatibility is needed.

Auvailable if BOTAN_HAS_GOST_28147_89 is defined.

Warning

Support for this cipher is deprecated and will be removed in a future major release.

Algorithm specification names:
e GOST-28147-89/ GOST-28147-89(R3411_94_TestParam) (reported name)
e GOST-28147-89(R3411_CryptoPro)

IDEA

An older but still unbroken 64-bit cipher with a 128-bit key. Somewhat common due to its use in PGP. Avoid in new
designs.

Available if BOTAN_HAS_IDEA is defined.

64 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Algorithm specification name: IDEA

Kuznyechik
Added in version 3.2.
Newer Russian national cipher, also known as GOST R 34.12-2015 or “Grasshopper”.

Warning

The sbox of this cipher is supposedly random, but was found to have a mathematical structure which is exceedingly
unlikely to have occurred by chance. This may indicate the existence of a backdoor or other issue. Avoid using this
cipher unless strictly required.

Available if BOTAN_HAS_KUZNYECHIK is defined.

Algorithm specification name: Kuznyechik

Lion

A “block cipher construction” which can encrypt blocks of nearly arbitrary length. Built from a stream cipher and a
hash function. Useful in certain protocols where being able to encrypt large or arbitrary length blocks is necessary.

Available if BOTAN_HAS_LION is defined.

Algorithm specification name: Lion(<HashFunction>,<StreamCipher>,<optional block size>)
* Block size defaults to 1024.
* Examples: Lion(SHA-1,RC4,64)

Noekeon

A fast 128-bit cipher by the designers of AES. Easily secured against side channels. Quite obscure however.
Available if BOTAN_HAS_NOEKEON is defined.

Warning

Noekeon support is deprecated and will be removed in a future major release.

Algorithm specification name: Noekeon

SEED
A older South Korean cipher, widely used in industry there. No reason to choose it otherwise.
Available if BOTAN_HAS_SEED is defined.

Algorithm specification name: SEED

Serpent

An AES contender. Widely considered the most conservative design. Fairly slow unless SIMD instructions are avail-
able.

Available if BOTAN_HAS_SERPENT is defined.

Algorithm specification name: Serpent

8.6. Block Ciphers 65

Botan Reference Guide, Release 3.9.0

SHACAL2

The 256-bit block cipher used inside SHA-256. Accepts up to a 512-bit key. Fast, especially when SIMD or SHA-2
acceleration instructions are available. Standardized by NESSIE but otherwise obscure.

Available if BOTAN_HAS_SHACAL?2 is defined.

Algorithm specification name: SHACAL2

SM4

A 128-bit Chinese national cipher, required for use in certain commercial applications in China. Quite slow unless
hardware support (either ARMv8 crypto extensions or x86 GFNI instructions) is available. Probably no reason to use
it outside of legal requirements.

Available if BOTAN_HAS_SM4 is defined.

Algorithm specification name: SM4

Threefish-512
A 512-bit tweakable block cipher that was used in the Skein hash function. Very fast on 64-bit processors.
Available if BOTAN_HAS_THREEFISH_512 is defined.

Algorithm specification name: Threefish-512

Twofish

A 128-bit block cipher that was one of the AES finalists. Has a somewhat complicated key setup and a “kitchen sink”
design.

Available if BOTAN_HAS_TWOFISH is defined.

Algorithm specification name: Twofish

8.7 Stream Ciphers

In contrast to block ciphers, stream ciphers operate on a plaintext stream instead of blocks. Thus encrypting data results
in changing the internal state of the cipher and encryption of plaintext with arbitrary length is possible in one go (in
byte amounts). All implemented stream ciphers derive from the base class StreamCipher (botan/stream_cipher.h).

Warning

Using a stream cipher without an authentication code is extremely insecure, because an attacker can trivially modify
messages. Prefer using an authenticated cipher mode such as GCM or SIV.

Warning

Encrypting more than one message with the same key requires careful management of initialization vectors. Oth-
erwise the keystream will be reused, which causes the security of the cipher to completely fail.

class StreamCipher

std::string name () const

Returns a human-readable string of the name of this algorithm.

66 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

void clear ()
Clear the key.

std::unique_ptr<StreamCipher> new_object () const

Return a newly allocated object of the same type as this one. The new object is unkeyed.
void set_key (const uint8_t *key, size_t length)

Set the stream cipher key. If the length is not accepted, an Invalid_Key_Length exception is thrown.
bool valid_keylength(size_t length) const

This function returns true if and only if length is a valid keylength for the algorithm.
size_t minimum_keylength() const

Return the smallest key length (in bytes) that is acceptable for the algorithm.
size_t maximum_keylength() const

Return the largest key length (in bytes) that is acceptable for the algorithm.
bool valid_iv_length(size_t iv_len) const

This function returns true if and only if length is a valid IV length for the stream cipher. Some ciphers do
not support IVs at all, and will return false for any value except zero.

size_t default_iv_length() const

Returns some default IV size, normally the largest IV supported by the cipher. If this function returns zero,
then IVs are not supported and any call to set_iv with a non-empty value will fail.

void set_1iv(const uint8_t*, size_t len)

Load IV into the stream cipher state. This should happen after the key is set and before any operation
(encrypt/decrypt/seek) is called.

If the cipher does not support I'Vs, then a call with 1en equal to zero will be accepted and any other length
will cause a Invalid_IV_Length exception.

void seek (uint64_t offset)

Sets the state of the stream cipher and keystream according to the passed offset, exactly as if offser bytes
had first been encrypted. The key and (if required) the IV have to be set before this can be called. Not all
ciphers support seeking; such objects will throw Not_Implemented in this case.

void cipher (const uint8_t *in, uint8_t *out, size_t n)

Processes n bytes plain/ciphertext from in and writes the result to out.
void cipherl (uint8_t *inout, size_t n)

Processes n bytes plain/ciphertext in place. Acts like cipher(inout, inout, n).
void encipher (std::vector<uint8_t> inout)

void encrypt (std::vector<uint8_t> inout)

void decrypt (std::vector<uint8_t> inout)

Processes plain/ciphertext inout in place. Acts like cipher(inout.data(), inout.data(), inout.size()).

8.7.1 Code Example
The following code encrypts a provided plaintext using ChaCha20.

8.7. Stream Ciphers 67

Botan Reference Guide, Release 3.9.0

#include <botan/auto_rng.h>
#include <botan/hex.h>
#include <botan/stream_cipher.h>

#include <iostream>

int main(Q) {

std: :string plaintext("This is a tasty burger!");

Botan: :secure_vector<uint8_t> pt(plaintext.data(), plaintext.data() + plaintext.
~length(Q);

const auto key = Botan::hex_decode_locked(
—"000102030405060708090A0BOCODOEOF101112131415161718191A1B1CID1EIF");

const auto cipher = Botan::StreamCipher: :create_or_throw('ChaCha(20)");

// generate fresh nonce (IV)
Botan: :AutoSeeded_RNG rng;
const auto iv = rng.random_vec<std::vector<uint8_t>>(8);

// set key and IV
cipher->set_key(key);
cipher->set_iv(iv);
cipher->encipher(pt);

std: :cout << cipher->name() << " with iv " << Botan::hex_encode(iv) <<
—,Botan: :hex_encode(pt) << '\n';

return 0;

S

¥

8.7.2 Available Stream Ciphers
Botan provides the following stream ciphers. If in doubt, pick ChaCha20 or CTR(AES-256).

CTR-BE

Counter mode converts a block cipher into a stream cipher. It offers parallel execution and can seek within the output
stream, both useful properties.

CTR mode requires a nonce, which can be any length up to the block size of the underlying cipher. If it is shorter than
the block size, sufficient zero bytes are appended.

It is possible to choose the width of the counter portion, which can improve performance somewhat, but limits the
maximum number of bytes that can safely be encrypted. Different protocols have different conventions for the width
of the counter portion. This is done by specifying the width (which must be at least 4 bytes, allowing to encrypt 232
blocks of data) for example using “CTR(AES-256,8)” will select a 64-bit (8 byte) counter.

(The -BE suffix refers to big-endian convention for the counter. Little-endian counter mode is rarely used and not
currently implemented.)

Algorithm specification name: CTR-BE(<BlockCipher>,<optional counter size>) (reported name) /
CTR(<BlockCipher>,<optional counter size>)

 Counter size (in bytes) defaults to the block size of the underlying cipher
* If the counter size is the same as the underlying cipher, the name will be reported as CTR-BE (<BlockCipher>).

* Examples: CTR-BE(AES-128), CTR-BE(AES-128,8)

68 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

OFB

Another stream cipher based on a block cipher. Unlike CTR mode, it does not allow parallel execution or seeking
within the output stream. Prefer CTR.

Available if BOTAN_HAS_OFB is defined.
Algorithm specification name: OFB(<BlockCipher>), e.g. OFB(AES-256)

ChaCha

A very fast cipher, now widely deployed in TLS as part of the ChaCha20Poly1305 AEAD. Can be used with 8 (fast but
dangerous), 12 (balance), or 20 rounds (conservative). Even with 20 rounds, ChaCha is very fast. Use 20 rounds.

ChaCha supports an optional IV (which defaults to all zeros). It can be of length 64, 96 or (since 2.8) 192 bits. Using
ChaCha with a 192 bit nonce is also known as XChaCha.

Available if BOTAN_HAS_CHACHA is defined.
Algorithm specification names:
¢ ChaChaz2®, alias for ChaCha(20)
¢ ChaCha(<optional rounds>)
— Optional rounds defaults to 20
— Examples: ChaCha(20), ChaCha(12)

Salsa20
An earlier iteration of the ChaCha design, this cipher is popular due to its use in the libsodium library. Prefer ChaCha.

Salsa supports an optional IV (which defaults to all zeros). It can be of length 64 or 192 bits. Using Salsa with a 192
bit nonce is also known as XSalsa.

Available if BOTAN_HAS_SALSA20 is defined.

Algorithm specification name: Salsa20

SHAKE-128

This is the SHAKE-128 XOF exposed as a stream cipher. It is slower than ChaCha and somewhat obscure, and was
primarily implemented to support a particular post-quantum scheme which is no longer supported.

SHAKE does not support IVs, nor seeking within the cipher stream.
Available if BOTAN_HAS_SHAKE_CIPHER is defined.

Warning

SHAKE support (as a stream cipher) is deprecated and will be removed in a future major release.

Algorithm specification names:
e SHAKE-128 (reported name) / SHAKE-128-XOF
* SHAKE-256 (reported name) / SHAKE-256-XOF

8.7. Stream Ciphers 69

Botan Reference Guide, Release 3.9.0

RC4

An old and very widely deployed stream cipher notable for its simplicity. It does not support IVs or seeking within the
cipher stream. Compared to modern algorithms like ChaCha20, it is also quite slow.

Warning

RC4 is prone to numerous attacks. Avoid in new code and use only if required for compatibility with existing
systems.

Auvailable if BOTAN_HAS_RC4 is defined.
Algorithm specification names:
* RC4 (reported name) / ARC4
* MARK-4
e RC4(SKIP) (reported name) / ARC4 (SKIP)
— RC4(0®) is an alias for RC4
— RC4(256) is an alias for MARK-4
— Examples: RC4(3)

8.8 Message Authentication Codes (MAC)

A Message Authentication Code algorithm computes a tag over a message utilizing a shared secret key. Thus a valid
tag confirms the authenticity and integrity of the message. Only entities in possession of the shared secret key are able
to verify the tag.

Note

When combining a MAC with unauthenticated encryption mode, prefer to first encrypt the message and then MAC
the ciphertext. The alternative is to MAC the plaintext, which depending on exact usage can suffer serious security
issues. For a detailed discussion of this issue see the paper “The Order of Encryption and Authentication for
Protecting Communications” by Hugo Krawczyk

The Botan MAC computation is split into five stages.

1. Instantiate the MAC algorithm.

2. Set the secret key.

3. Process IV.

4. Process data.

5. Finalize the MAC computation.
class MessageAuthenticationCode

std::string name () const
Returns a human-readable string of the name of this algorithm.

void clear()
Clear the key.

70 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

std::unique_ptr<MessageAuthenticationCode> new_object () const

Return a newly allocated object of the same type as this one. The new object is unkeyed.

void set_key (const uint8_t *key, size_t length)
Set the shared MAC key for the calculation. This function has to be called before the data is processed.

bool valid_keylength(size_t length) const

This function returns true if and only if length is a valid keylength for the algorithm.
size_t minimum_keylength() const

Return the smallest key length (in bytes) that is acceptable for the algorithm.

size_t maximum_keylength() const
Return the largest key length (in bytes) that is acceptable for the algorithm.

void start(const uint8_t *nonce, size_t nonce_len)

Set the IV for the MAC calculation. Note that not all MAC algorithms require an I'V. If an IV is required,
the function has to be called before the data is processed. For algorithms that don’t require it, the call can
be omitted, or else called with nonce_1len of zero.

void update (const uint8_t *input, size_t length)
Process the passed data.

void update (const secure_vector<uint8_t> &in)

Process the passed data.
void update (uint8_t in)
Process a single byte.
void final (uint8_t *out)
Complete the MAC computation and write the calculated tag to the passed byte array.

secure_vector<uint8_t> final ()

Complete the MAC computation and return the calculated tag.

bool verify_mac (const uint8_t *mac, size_t length)

Finalize the current MAC computation and compare the result to the passed mac. Returns true, if the
verification is successful and false otherwise.

8.8.1 Code Examples

The following example computes an HMAC with a random key then verifies the tag.

#include <botan/auto_rng.h>
#include <botan/hex.h>
#include <botan/mac.h>

#include <assert.h>
namespace {

std: :string compute_mac(std::string_view msg, std::span<const uint8_t> key) {
auto hmac = Botan::MessageAuthenticationCode: :create_or_throw("HMAC(SHA-256)");

hmac->set_key(key) ;
hmac->update(msg) ;

(continues on next page)

8.8. Message Authentication Codes (MAC) 71

Botan Reference Guide, Release 3.9.0

(continued from previous page)

return Botan::hex_encode(hmac->final());

3
} // namespace

int main(Q) {
Botan: :AutoSeeded_RNG rng;

const auto key = rng.random_vec(32); // 256 bit random key

// "Message" != "Mussage" so tags will also not match
std::string tagl = compute_mac(''Message", key);
std::string tag2 = compute_mac(''Mussage", key);
assert(tagl != tag2);

// Recomputing with original input message results in identical tag
std: :string tag3 = compute_mac("lMessage", key);

assert(tagl == tag3);

return 0;

The following example code computes a AES-256 GMAC and subsequently verifies the tag. Unlike most other MACs,
GMAC requires a nonce which must not repeat or all security is lost.

#include <botan/hex.h>
#include <botan/mac.h>

#include <iostream>

int main() {

const auto key = Botan::hex_decode_locked(
«»"1337133713371337133713371337133713371337133713371337133713371337");

const auto nonce = Botan::hex_decode("FFFFFFFFFFFFFFFFFFFFFFFF");

const auto data = Botan::hex_decode_locked("6BCIBEE22E409F96E93D7E117393172A");

const auto mac = Botan::MessageAuthenticationCode: :create_or_throw("GMAC(AES-256)");
mac->set_key(key);
mac->start(nonce);
mac->update(data);

const auto tag = mac->final(Q);
std: :cout << mac->name() << ": " << Botan::hex_encode(tag) << '\n';
// Verify created MAC
mac->start(nonce);
mac->update(data);

std: :cout << "Verification:
return 0;

<< (mac->verify_mac(tag) ? "success" : "failure");

The following example code computes a valid AES-128 CMAC tag and modifies the data to demonstrate a MAC
verification failure.

72 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

#include <botan/hex.h>
#include <botan/mac.h>

#include <iostream>

int main(Q) {
const auto key = Botan::hex_decode_locked("2B7E151628AED2AGABF7158809CF4F3C");
auto data = Botan::hex_decode("6BCI1BEE22E409F96E93D7E117393172A");

const auto mac = Botan::MessageAuthenticationCode: :create_or_throw("'CMAC(AES-128)");
mac->set_key(key);

mac->update(data);

const auto tag = mac->final(Q);

// Corrupting data
data.back()++;

// Verify with corrupted data
mac->update(data);
std::cout << "Verification with malformed data:

<" 1 "failure");

<< (mac->verify_mac(tag) ? "success

return 0;

8.8.2 Available MACs

Currently the following MAC algorithms are available in Botan. In new code, default to HMAC with a strong hash like
SHA-256 or SHA-384.

Blake2B MAC
Available if BOTAN_HAS_BLAKE2BMAC is defined.

Algorithm specification name: BLAKE2b(<optional output bits>) (reported name) / Blake2b(<optional
output bits>)

* Output bits defaults to 512.
» Examples: BLAKE2b(256), BLAKE2b

CMAC

A modern CBC-MAC variant that avoids the security problems of plain CBC-MAC. Approved by NIST. Also some-
times called OMAC.

Available if BOTAN_HAS_CMAC is defined.

Algorithm specification name: CMAC(<BlockCipher>) (reported name) / OMAC(<BlockCipher>), e.g.
CMAC(AES-256)

GMAC

GMAC is related to the GCM authenticated cipher mode. It is quite slow unless hardware support for carryless mul-
tiplications is available. A new nonce must be used with each message authenticated, or otherwise all security is
lost.

8.8. Message Authentication Codes (MAC) 73

Botan Reference Guide, Release 3.9.0

Available if BOTAN_HAS_GMAC is defined.

Warning

Due to the nonce requirement, GMAC is exceptionally fragile. Avoid it unless absolutely required.

Algorithm specification name: GMAC(<BlockCipher>), e.g. GMAC(AES-256)

HMAC

A message authentication code based on a hash function. Very commonly used.
Available if BOTAN_HAS_HMAC is defined.

Algorithm specification name: HMAC (<HashFunction>), e.g. HMAC(SHA-512)

KMAC
Added in version 3.2.
A SHA-3 derived message authentication code defined by NIST in SP 800-185.

There are two variants, KMAC-128 and KMAC-256. Both take a parameter which specifies the output length in bits, for
example KMAC-128(256).

Auvailable if BOTAN_HAS_KMAC is defined.

Algorithm specification names:
e KMAC-128(<output size>),e.g. KMAC-128(256)
e KMAC-256(<output size>), e.g. KMAC-256(256)

Poly1305

A polynomial mac (similar to GMAC). Very fast, but tricky to use safely. Forms part of the ChaCha20Poly1305 AEAD
mode. A new key must be used for each message, or all security is lost.

Available if BOTAN_HAS_POLY1305 is defined.

Warning

Due to the nonce requirement, Poly1305 is exceptionally fragile. Avoid it unless absolutely required.

Algorithm specification name: Poly1305

SipHash
Deprecated since version 3.8.0.

SipHash is primarily designed for hash table randomization and, while not known to be insecure for message authen-
tication, is not advisable for this use due to the small output size (just 64 bits).

Defaults to “SipHash(2,4)” which is the recommended configuration, using 2 rounds for each input block and 4 rounds
for finalization.

Available if BOTAN_HAS_STIPHASH is defined.

Algorithm specification name: SipHash(<optional C>,<optional D>)

74 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

e C defaults to 2
e D defaults to 4
* Examples: SipHash(2,4), SipHash(2), SipHash

X9.19-MAC
Deprecated since version 3.7.0.

A CBC-MAC variant sometimes used in finance. Always uses DES. Sometimes called the “DES retail MAC”, also
standardized in ISO 9797-1.

It is slow and has known attacks. Avoid unless required.
Available if BOTAN_HAS_X919_MAC is defined.

Algorithm specification name: X9.19-MAC

8.9 Cipher Modes

A block cipher by itself, is only able to securely encrypt a single data block. To be able to securely encrypt data of
arbitrary length, a mode of operation applies the block cipher’s single block operation repeatedly to encrypt an entire
message.

All cipher mode implementations are are derived from the base class Cipher_Mode, which is declared in botan/
cipher_mode.h.

Warning

Using an unauthenticted cipher mode without combining it with a Message Authentication Codes (MAC)is insecure.
Prefer using an AEAD Mode.

class Cipher_Mode
void set_key (const uint8_t *key, size_t length)
Set the symmetric key to be used.

bool valid_keylength(size_t length) const
This function returns true if and only if length is a valid keylength for the algorithm.
size_t minimum_keylength() const
Return the smallest key length (in bytes) that is acceptable for the algorithm.
size_t maximum_keylength() const
Return the largest key length (in bytes) that is acceptable for the algorithm.
size_t default_nonce_length() const

Return the default (preferable) nonce size for this cipher mode.

bool valid_nonce_length(size_t nonce_len) const

Return true if nonce_len is a valid length for a nonce with this algorithm.

bool authenticated() const
Return true if this cipher mode is authenticated

8.9. Cipher Modes 75

Botan Reference Guide, Release 3.9.0

size_t tag_size() const

Return the length in bytes of the authentication tag this algorithm generates. If the mode is not authenticated,
this will return 0. If the mode is authenticated, it will return some positive value (typically somewhere
between 8 and 16).

Note

Usually, the ciphertext and tag are considered a bundle, and not split apart except for internally during
the decryption process. However a few unfortunate libraries require you, the developer, to manually
split the ciphertext and the tag apart for decryption.

Should you encounter such an interface, it would be helpful to know that in (almost all) cases the tag is
appended at the end of the ciphertext. The only exception to this at the moment is SIV, which prefixes
the tag instead - but SIV is rarely implemented by such libraries.

void clear()
Clear all internal state. The object will act exactly like one which was just allocated.

void reset ()

Reset all message state. For example if you called start_msg, then process to process some ciphertext,
but then encounter an IO error and must abandon the current message, you can call reset. The object will
retain the key (unlike calling cIear which also resets the key) but the nonce and current message state will
be erased.

void start_msg(const uint8_t *nonce, size_t nonce_len)

Set up for processing a new message. This function must be called with a new random value for each
message. For almost all modes (excepting SIV), if the same nonce is ever used twice with the same key,
the encryption scheme loses its confidentiality and/or authenticity properties.

void start (const std::vector<uint8_t> nonce)

Acts like start_msg(nonce.data(), nonce.size()).

void start(const uint8_t *nonce, size_t nonce_len)

Acts like start_msg(nonce, nonce_len).

virtual size_t update_granularity() const
The Cipher_Mode interface requires message processing in multiples of the block size. Returns size of
required blocks to update. Will return 1 if the mode implementation does not require buffering.

virtual size_t ideal_granularity() const
Returns a multiple of update_granularity sized for ideal performance.
In fact this is not truly the “ideal” buffer size but just reflects the smallest possible buffer that can reasonably
take advantage of available parallelism (due to SIMD execution, etc). If you are concerned about perfor-
mance, it may be advisable to take this return value and scale it to approximately 4 KB, and use buffers of
that size.

virtual size_t process (uint8_t *msg, size_t msg_len)
Process msg in place and returns the number of bytes written. msg must be a multiple of
update_granularity.

void update (secure_vector<uint8_t> &buffer, size_t offset = 0)

Continue processing a message in the buffer in place. The passed buffer’s size must be a multiple of
update_granularity. The first offset bytes of the buffer will be ignored.

76

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

size_t minimum_final_size() const

Returns the minimum size needed for finish. This is used for example when processing an AEAD mes-
sage, to ensure the tag is available. In that case, the encryption side will return O (since the tag is generated,
rather than being provided) while the decryption mode will return the size of the tag.

void finish(secure_vector<uint8_t> &final_block, size_t offset = 0)

Finalize the message processing with a final block of at least minimum_final_size size. The first offset
bytes of the passed final block will be ignored.

8.9.1 Code Example
The following code encrypts the specified plaintext using AES-128/CBC with PKCS#7 padding.

Warning

This example ignores the requirement to authenticate the ciphertext

Note

Simply replacing the string “AES-128/CBC/PKCS7” string in the example below with “AES-128/GCM” suffices
to use authenticated encryption.

#include <botan/auto_rng.h>
#include <botan/cipher_mode.h>
#include <botan/hex.h>
#include <botan/rng.h>

#include <iostream>

int main() {
Botan: :AutoSeeded_RNG rng;

const std::string plaintext(
"Your great-grandfather gave this watch to your granddad for good "
"luck. Unfortunately, Dane's luck wasn't as good as his old man's.");
const Botan::secure_vector<uint8_t> key = Botan::hex_decode_locked(
- ""2B7E151628AED2A6ABF7158809CF4F3C");

const auto enc = Botan::Cipher_Mode: :create_or_throw("AES-128/CBC/PKCS7", .
—Botan: :Cipher_Dir: :Encryption);
enc->set_key(key);

// generate fresh nonce (IV)
const auto iv = rng.random_vec<std::vector<uint8_t>>(enc->default_nonce_length());

// Copy input data to a buffer that will be encrypted
Botan: :secure_vector<uint8_t> pt(plaintext.data(), plaintext.data() + plaintext.
—length();

enc->start(iv);

enc->finish(pt);
(continues on next page)

8.9. Cipher Modes 77

Botan Reference Guide, Release 3.9.0

(continued from previous page)

std: :cout << enc->name() << with iv << Botan::hex_encode(iv) << << Botan::hex_
—,encode(pt) << '\n';
return 0;

}

8.9.2 Available Unauthenticated Cipher Modes

Note

CTR and OFB modes are also implemented, but these are treated as Stream_Ciphers instead.

CBC
Available if BOTAN_HAS_MODE_CBC is defined.
CBC requires the plaintext be padded using a reversible rule. The following padding schemes are implemented

PKCS#7 (RFC5652)
The last byte in the padded block defines the padding length p, the remaining padding bytes are set to p as well.

ANSI X9.23
The last byte in the padded block defines the padding length, the remaining padding is filled with 0x00.

OneAndZeros (ISO/IEC 7816-4)
The first padding byte is set to 0x80, the remaining padding bytes are set to 0x00.

ESP (RFC 4303)
The first padding byte is set to 0x01, the next ones to 0x02, 0x03, ... (monotonically increasing sequence).

Ciphertext stealing (CTS) is also implemented. This scheme allows the ciphertext to have the same length as the
plaintext, however using CTS requires the input be at least one full block plus one byte. It is also less commonly
implemented.

Warning

Using CBC with padding without an authentication mode exposes your application to CBC padding oracle attacks,
which allow recovering the plaintext of arbitrary messages. Always pair CBC with a MAC such as HMAC (or,
preferably, use an AEAD such as GCM).

Algorithm specification name: <BlockCipher>/CBC/<optional padding scheme> (reported name) /
CBC(<BlockCipher>,<optional padding scheme>)

* Available padding schemes:

NoPadding

PKCS7 (default)

OneAndZeros

X9.23

— ESP
- CTS

78 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

» Examples: AES-128/CBC/PKCS7, AES-256/CBC

CFB
Available if BOTAN_HAS_MODE_CFB is defined.

CFB uses a block cipher to create a self-synchronizing stream cipher. It is used for example in the OpenPGP protocol.
There is no reason to prefer it, as it has worse performance characteristics than modes such as CTR or CBC.

Algorithm specification name: <BlockCipher>/CFB(<optional feedback bits>) (reported name) /
CFB(<BlockCipher>,<optional feedback bits>)

 Feedback bits defaults to the size of the underlying block cipher.
* Examples: AES-192/CFB, AES-128/CFB(8)

XTS
Available if BOTAN_HAS_MODE_XTS is defined.

XTS is a mode specialized for encrypting disk or database storage where ciphertext expansion is not possible. XTS
requires all inputs be at least one full block (16 bytes for AES), however for any acceptable input length, there is no
ciphertext expansion.

Algorithm specification name: <BlockCipher>/XTS (reported name) / XTS (<BlockCipher>), e.g. AES-256/XTS

8.9.3 AEAD Mode

AEAD (Authenticated Encryption with Associated Data) modes provide message encryption, message authentication,
and the ability to authenticate additional data that is not included in the ciphertext (such as a sequence number or
header). It is a subclass of Cipher_Mode.

class AEAD_Mode

void set_key(const SymmetricKey &key)
Set the key

Key_Length_Specification key_spec() const
Return the key length specification

void set_associated_data(const uint8_t ad[], size_t ad_len)
Set any associated data for this message. For maximum portability between different modes, this must be
called after set_key and before start.

If the associated data does not change, it is not necessary to call this function more than once, even across
multiple calls to start and finish.
void start (const uint8_t nonce[], size_t nonce_len)

Start processing a message, using nonce as the unique per-message value. It does not need to be random,
simply unique (per key).

Warning

With almost all AEADs, if the same nonce is ever used to encrypt two different messages under the
same key, all security is lost. If reliably generating unique nonces is difficult in your environment, use
SIV mode which retains security even if nonces are repeated.

8.9. Cipher Modes 79

Botan Reference Guide, Release 3.9.0

void update (secure_vector<uint8_t> &buffer, size_t offset = 0)

Continue processing a message. The buffer is an in/out parameter and may be resized. In particular, some
modes require that all input be consumed before any output is produced; with these modes, buffer will be
returned empty.

On input, the buffer must be sized in blocks of size update_granularity. For instance if the update
granularity was 64, then buffer could be 64, 128, 192, ... bytes.

The first offset bytes of buffer will be ignored (this allows in place processing of a buffer that contains an
initial plaintext header)

void finish(secure_vector<uint8_t> &buffer, size_t offset = 0)
Complete processing a message with a final input of buffer, which is treated the same as with update. It
must contain at least final_minimum_size bytes.

Note that if you have the entire message in hand, calling finish without ever calling update is both efficient
and convenient.

Note

During decryption, if the supplied authentication tag does not validate, finish will throw an instance of
Invalid_Authentication_Tag (aka Integrity_Failure, which was the name for this exception in versions
before 2.10, a typedef is included for compatibility).

If this occurs, all plaintext previously output via calls to update must be destroyed and not used in any
way that an attacker could observe the effects of. This could be anything from echoing the plaintext back
(perhaps in an error message), or by making an external RPC whose destination or contents depend on
the plaintext. The only thing you can do is buffer it, and in the event of an invalid tag, erase the previously
decrypted content from memory.

One simply way to assure this could never happen is to never call update, and instead always marshal
the entire message into a single buffer and call finish on it when decrypting.

size_t update_granularity() const
The AEAD interface requires update be called with blocks of this size. This will be 1, if the mode can
process any length inputs.

size_t final_minimum_size() const
The AEAD interface requires finish be called with at least this many bytes (which may be zero, or greater
than update_granularity)

bool valid_nonce_length(size_t nonce_len) const
Returns true if nonce_len is a valid nonce length for this scheme. For EAX and GCM, any length nonces
are allowed. OCB allows any value between 8 and 15 bytes.

size_t default_nonce_length() const

Returns a reasonable length for the nonce, typically either 96 bits, or the only supported length for modes
which don’t support 96 bit nonces.

8.9.4 Available AEAD Modes

If in doubt about what to use, pick ChaCha20Poly1305, AES-256/GCM, or AES-256/SIV. Both ChaCha20Poly1305
and AES with GCM are widely implemented. SIV is somewhat more obscure (and is slower than either GCM or
ChaCha20Poly1305), but has excellent security properties.

80 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

CCM
Available if BOTAN_HAS_AEAD_CCH is defined.

A composition of CTR mode and CBC-MAC. Requires a 128-bit block cipher. This is a NIST standard mode, but that
is about all to recommend it. Prefer EAX.

Algorithm specification name: <BlockCipher>/CCM(<optional tag size>,<optional L>) (reported name) /
CCM(<BlockCipher>,<optional tag size>,<optional L>)

* Tag size defaults to 16.
* L defaults to 3.
e Examples: AES-128/CCM, AES-128/CCM(8), AES-128/CCM(8,2)

ChaCha20Poly1305
Available if BOTAN_HAS_AEAD_CHACHA20_POLY1305 is defined.

Unlike the other AEADs which are based on block ciphers, this mode is based on the ChaCha stream cipher and the
Poly 1305 authentication code. It is very fast on all modern platforms.

ChaCha20Poly1305 supports 64-bit, 96-bit, and (since 2.8) 192-bit nonces. 64-bit nonces are the ‘“classic”
ChaCha20Poly 1305 design. 96-bit nonces are used by the IETF standard version of ChaCha20Poly1305. And 192-bit
nonces is the XChaCha20Poly1305 construction, which is somewhat less common.

For best interop use the IETF version with 96-bit nonces. However 96 bits is small enough that it can be dangerous
to generate nonces randomly if more than ~ 2732 messages are encrypted under a single key, since if a nonce is ever
reused ChaCha20Poly 1305 becomes insecure. It is better to use a counter for the nonce in this case.

If you are encrypting many messages under a single key and cannot maintain a counter for the nonce, prefer
XChaCha20Poly1305 since a 192 bit nonce is large enough that randomly chosen nonces are extremely unlikely to
repeat.

Algorithm specification name: ChaCha20Poly1305

EAX
Available if BOTAN_HAS_AEAD_EAX is defined.
A secure composition of CTR mode and CMAC. Supports 128-bit, 256-bit and 512-bit block ciphers.

Algorithm specification name: <BlockCipher>/EAX(<optional tag size>) / EAX(<BlockCipher>,
<optional tag size>)

* Tag size defaults to 16.
* Reports name as <BlockCipher>/EAX, i.e. without the tag size.

» Examples: e.g. AES-128/EAX, AES-128/EAX(8)

GCM
Available if BOTAN_HAS_AEAD_GCM is defined.

NIST standard, commonly used. Requires a 128-bit block cipher. Fairly slow, unless hardware support for carryless
multiplies is available.

Algorithm specification name: <BlockCipher>/GCM(<optional tag size>) (reported name) /
GCM(<BlockCipher>,<optional tag size>)

* Tag size defaults to 16.
* Examples: e.g. AES-128/GCM, AES-128/GCM(12)

8.9. Cipher Modes 81

Botan Reference Guide, Release 3.9.0

ocB
Available if BOTAN_HAS_AEAD_OCB is defined.

A block cipher based AEAD. Supports 128-bit, 256-bit and 512-bit block ciphers. This mode is very fast and easily
secured against side channels. Adoption has been poor because until 2021 it was patented in the United States. The
patent was allowed to lapse in early 2021.

Algorithm specification name: <BlockCipher>/0CB(<optional tag size>) / OCB(<BlockCipher>,
<optional tag size>)

* Tag size defaults to 16.
* Reports name as <BlockCipher>/0CB, i.e. without the tag size.

* Examples: e.g. AES-128/0CB, AES-128/0CB(12)

SIvV
Available if BOTAN_HAS_AEAD_S1IV is defined.

Requires a 128-bit block cipher. Unlike other AEADs, SIV is “misuse resistant”; if a nonce is repeated, SIV retains
security, with the exception that if the same nonce is used to encrypt the same message multiple times, an attacker can
detect the fact that the message was duplicated (this is simply because if both the nonce and the message are reused,
SIV will output identical ciphertexts).

Algorithm specification name: <BlockCipher>/SIV (reported name) / SIV(<BlockCipher>), e.g. AES-128/SIV

8.10 Public Key Cryptography

Public key cryptography is a collection of techniques allowing for encryption, signatures, and key agreement.

8.10.1 Key Objects

Public and private keys are represented by classes Public_Key and Private_Key. Both derive from
Asymmetric_Key.

Currently there is an inheritance relationship between Private_Key and Public_Key, so that a private key can also
be used as the corresponding public key. It is best to avoid relying on this, as this inheritance will be removed in a
future major release.

class Asymmetric_Key
std::string algo_name ()
Return a short string identifying the algorithm of this key, eg “RSA” or “ML-DSA”.

size_t estimated_strength() const

Return an estimate of the strength of this key, in terms of brute force key search. For example if this function
returns 128, then it is is estimated to be roughly as difficult to crack as AES-128.

OID object_identifier() const
Return an object identifier which can be used to identify this type of key.

bool supports_operation(PublicKeyOperation op) const
Check if this key could be used for the queried operation type.

class Public_Key

82 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

size_t key_length() const = 0;

Return an integer value that most accurately captures for the security level of the key. For example for RSA
this returns the length of the public modules, while for ECDSA keys it returns the size of the elliptic curve

group.
bool check_key (RandomNumberGenerator &rng, bool strong) const = 0;
Check if the key seems to be valid. If strong is set to true then more expensive tests are performed.

Algorithmldentifier algorithm_identifier() const = 0;
Return an X.509 algorithm identifier that can be used to identify the key.

std::vector<uint8_t> public_key_bits () const =0;
Returns a binary representation of the public key. Typically this is a BER encoded structure that includes
metadata like the algorithm and parameter set used to generate the key.

Note that pre-standard post-quantum algorithms of the NIST competition (e.g. Kyber, Dilithium,
FrodoKEM, etc) do not have a standardized BER encoding, yet. For the time being, the raw public key
bits are returned for these algorithms. That might change as the standards evolve.

std::vector<uint8_t> raw_public_key_bits() const =0;

Returns a binary representation of the public key’s canonical structure. Typically, this does not include any
metadata like an algorithm identifier or parameter set. Note that some schemes (e.g. RSA) do not know
such “raw” canonical structure and therefore throw Not_Implemented. For key agreement algorithms, this
is the canonical public value of the scheme.

Decoding the resulting raw bytes typically requires knowledge of the algorithm and parameters used to
generate the key.

std::vector<uint8_t> subject_public_key () const;
Return the X.509 SubjectPublicKeyInfo encoding of this key. See RFC 5280
(https://datatracker.ietf.org/doc/html/rfc5280.html) for details.

std::string fingerprint_public(const std::string &alg = "SHA-256") const;
Return a hashed fingerprint of this public key.

class Private_Key

std::unique_ptr<Public_Key> public_key () const
Return an object containing the public key corresponding to this private key.
Prefer this over the (deprecated) implicit conversion of a private key to a public key currently possible due
to an inheritence relation.

secure_vector<uint8_t> private_key_info() const
Return the key encoded as a PKCS #8 PrivateKeylnfo structure. See RFC 5208
(https://datatracker.ietf.org/doc/html/rfc5208.html) for details.

Further functions relating to encoding and encrypting PKCS #8 private are detailed in Serializing Private
Keys Using PKCS #8.

secure_vector<uint8_t> private_key_bits() const
Return the serialization of the private key, cooresponding to the PrivateKey field of a PKCS #8 PrivateKey-
Info structure. See RFC 5208 (https://datatracker.ietf.org/doc/html/rfc5208.html) for details.

bool stateful _operation() const;

Returns true if this keys operation is stateful, that is if updating the key is required after each private oper-
ation. Currently the only stateful schemes included are XMSS and LMS.

8.10. Public Key Cryptography 83

https://datatracker.ietf.org/doc/html/rfc5280.html
https://datatracker.ietf.org/doc/html/rfc5208.html
https://datatracker.ietf.org/doc/html/rfc5208.html

Botan Reference Guide, Release 3.9.0

std::optional<uint64_t> remaining_operations() const

If this algorithm is stateful, returns the number of private operations remaining before this key is exhausted.
Returns nullopt if the key is not stateful.

8.10.2 Public Key Algorithms

Botan includes a number of public key algorithms, some of which are in common use, others only used in specialized
or niche applications.

RSA

Based on the difficulty of factoring. Usable for encryption, signatures, and key encapsulation.

ECDSA

Fast signature scheme based on elliptic curves.

ECDH, DH, X25519 and X448

Key agreement schemes. DH uses arithmetic over finite fields and is slower and with larger keys. ECDH, X25519 and
X448 use elliptic curves instead.

ML-DSA (FIPS 204)

Post-quantum secure signature scheme based on (structured) lattices. This algorithm is standardized in FIPS 204.
Signing keys are always stored and expanded from the 32-byte private random seed (xi), loading the expanded key
format specified in FIPS 204 is explicitly not supported.

Support for ML-DSA is implemented in the module m1_dsa

Additionally, support for the pre-standardized version “Dilithium” is retained for the time being. The implemented
specification is commonly referred to as version 3.1 of the CRYSTALS-Dilithium submission to NIST’s third round of
the PQC competition. This is not compatible to the “Initial Public Draft” version of FIPS 204 for which Botan does
not offer an implementation.

Currently two flavors of Dilithium are implemented in separate Botan modules:
e dilithium, that uses Keccak (SHAKE), and that saw some public usage by early adopters.

e dilithium_aes, that uses AES instead of Keccak-based primitives. This mode is deprecated and will be re-
moved in a future release.

ML-KEM (FIPS 203)

Post-quantum key encapsulation scheme based on (structured) lattices. This algorithm is standardized in FIPS 203.
New decapsulation keys are stored and expanded from the 64-byte private random seeds (d || z). Keys imported as
seeds are always serialized as seeds, while keys imported in expanded format (as specified in FIPS 203) are serialized
in expanded format. Exporting seeds as expanded keys is supported using ML-KEM private key-specific methods.

Support for ML-KEM is implemented in the module m1_kem.

Additionally, support for the pre-standardized version “Kyber” is retained for the time being. The implemented specifi-
cation is commonly referred to as version 3.01 of the CRYSTALS-Kyber submission to NIST’s third round of the PQC
competition. This is not compatible to the “Initial Public Draft” version of FIPS 203 for which Botan does not offer an
implementation.

Currently two flavors of Kyber are implemented in separate Botan modules:

* kyber, that uses Keccak (SHAKE and SHA-3), and that saw some public usage by early adopters.

84 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

* kyber_90s, that uses AES/SHA-2 instead of Keccak-based primitives. This mode is deprecated and will be
removed in a future release.

Ed25519 and Ed448

Signature schemes based on a specific elliptic curve.

XMSS

A post-quantum secure signature scheme whose security is based (only) on the security of a hash function. Unfortu-
nately XMSS is stateful, meaning the private key changes with each signature, and only a certain pre-specified number
of signatures can be created. If the same state is ever used to generate two signatures, then the whole scheme becomes
insecure, and signatures can be forged.

HSS-LMS

A post-quantum secure hash-based signature scheme similar to XMSS. Contains support for multitrees. It is stateful,
meaning the private key changes after each signature. If the same state is ever used to generate two signatures, then the
whole scheme becomes insecure, and signatures can be forged.

SLH-DSA (FIPS 205)

The Stateless Hash-Based Digital Signature Standard (SLH-DSA) is the FIPS 205 post-quantum secure signature
scheme whose security is solely based on the security of a hash function. Unlike XMSS, it is a stateless signature
scheme, meaning that the private key does not change with each signature. It has high security but very long signatures
and high runtime.

Support for SLH-DSA is implemented in the modules s1h_dsa_sha2 and slh_dsa_shake.

Additionally, support for the pre-standardized version “SPHINCS+"” is retained for the time being. The implemented
specification is commonly referred to as version 3.1 of the SPHINCS+ submission to NIST’s third round of the PQC
competition. This is not compatible with the “Initial Public Draft” version of FIPS 205 for which Botan does not offer
an implementation. Also, Botan does not support the Haraka hash function.

Currently, two flavors of SPHINCS+ are implemented in separate Botan modules:
¢ sphincsplus_shake, that uses Keccak (SHAKE) hash functions
¢ sphincsplus_sha2, that uses SHA-256

FrodoKEM

A post-quantum secure key encapsulation scheme based on (unstructured) lattices.

McEliece

Deprecated since version 3.0.0.

Post-quantum secure key encapsulation scheme based on the hardness of certain decoding problems. Deprecated; use
Classic McEliece

Classic McEliece

Post-quantum secure, code-based key encapsulation scheme.

8.10. Public Key Cryptography 85

Botan Reference Guide, Release 3.9.0

ElGamal

Encryption scheme based on the discrete logarithm problem. Generally unused except in PGP.

DSA

Deprecated since version 3.7.0.

Finite field based signature scheme. A NIST standard but now quite obsolete.

ECGDSA, ECKCDSA, SM2, GOST-34.10

A set of signature schemes based on elliptic curves. All are national standards in their respective countries (Germany,
South Korea, China, and Russia, resp), and are completely obscure and unused outside of that context.

GOST-34.10 support is deprecated.

8.10.3 Creating New Private Keys

Creating a new private key requires two things: a source of random numbers (see Random Number Generators) and
potentially some algorithm specific parameters.

Generic Method
There is a generic method which can create keys of any algorithm type, defined in pk_algs.h

std::unique_ptr<Private_Key> create_private_key(std::string_view algo, RandomNumberGenerator &rng,
std::string_view params)

Examples of algorithm/parameter pairs that can be provided here:
* “RSA” /%3072
* “ECDSA” / “secp256r1”
o “Ed5519” /¢
e “ML-KEM” / “ML-KEM-768"
e “DH” / “modp/ietf/2048”

If params is left empty then a suitable algorithm-specific default will be chosen. This default may change from
release to release, but generally tries to reflect a conservative setting.

Creating A New RSA Private Key

RSA_PrivateKey: :RSA_PrivateKey (RandomNumberGenerator &rng, size_t bits)
A constructor that creates a new random RSA private key with a modulus of length bits.

RSA key generation is relatively slow, and can take an unpredictable amount of time. Generating a 2048 bit
RSA key might take 5 to 10 seconds on a slow machine like a Raspberry Pi 2. Even on a fast desktop it might
take up to half a second. In a GUI blocking for that long can be a problem. The usual approach is to perform
key generation in a new thread, with a animated modal Ul element so the user knows the application is still
alive. If you wish to provide a progress estimate things get a bit complicated but some library users documented
their approach in a blog post (https://medium.com/nexenio/indicating-progress-of-rsa-key-pair-generation-the-
practical-approach-a049ba829dbe).

86 Chapter 8. API Reference

https://medium.com/nexenio/indicating-progress-of-rsa-key-pair-generation-the-practical-approach-a049ba829dbe

Botan Reference Guide, Release 3.9.0

Creating A New EC Private Key
For a few schemes, the curve and signature scheme come as a package, and there are no extra parameters:
Ed25519_PrivateKey: :Ed25519_PrivateKey (RandomNumberGenerator &rng)
Generate a new Ed25519 private key
Ed448_PrivateKey: :Ed448_PrivateKey (RandomNumberGenerator &rng)
Generate a new Ed448 private key
X25519_PrivateKey: :X25519_PrivateKey (RandomNumberGenerator &rng)
Generate a new X25519 private key
X448_PrivateKey: :X448_PrivateKey (RandomNumberGenerator &rng)
Generate a new X448 private key

Others require additionally specfiying which curve to use. First create a relevant EC_Group using for example
EC_Group: : from_name or EC_Group: : from_OID. Then pass it to the private key constructor. If the choice of group
is not otherwise mandated by your application, use “secp256r1” (aka P-256) or “secp384r1” (aka P-384) as they are
fastest, widely implemented, and considered secure.

ECDH_PrivateKey: :ECDH_PrivateKey (RandomNumberGenerator &rng, const EC_Group &group)
Generate a new ECDH private key

ECDSA_PrivateKey: :ECDSA_PrivateKey (RandomNumberGenerator &rng, const EC_Group &group)
Generate a new ECDSA private key

ECKCDSA_PrivateKey: :ECKCDSA_PrivateKey (RandomNumberGenerator &rng, const EC_Group &group)
Generate a new ECKCDSA private key

ECGDSA_PrivateKey: : ECGDSA_PrivateKey (RandomNumberGenerator &rng, const EC_Group &group)
Generate a new ECGDSA private key

GOST_3410_PrivateKey: :GOST_3410_PrivateKey (RandomNumberGenerator &rng, const EC_Group &group)
Generate a new GOST-34.10 private key

SM2_PrivateKey: :SM2_PrivateKey (RandomNumberGenerator &rng, const EC_Group &group)

Generate a new SM2 private key

Creating A New Finite Field DL Private Key

Instead of elliptic curves, some older algorithms are based on the security of discrete logarithms in the group of integers
modulo a prime. For security, these require much larger keys than elliptic curve schemes, and are typically much slower.

Warning

Avoid such algorithms in new code

DH_PrivateKey: :DH_PrivateKey (RandomNumberGenerator &rng, const DL_Group &group)

Create a new Diffie-Hellman private key. In most protocols that still support finite field DH,
it is used with a set of pre-created and trusted groups. These were specified in RFC 3526
(https://datatracker.ietf.org/doc/html/rfc3526.html) and are usually called the IETF MODP groups.

The MODP groups are built into the library and can be accessed by name for example
DL_Group: : from_name ("modp/iet£f/3072"), where 3072 refers to the number of bits in the prime
modulus.

8.10. Public Key Cryptography 87

https://datatracker.ietf.org/doc/html/rfc3526.html

Botan Reference Guide, Release 3.9.0

DSA_PrivateKey: :DSA_PrivateKey (RandomNumberGenerator &rng, const DL_Group &group)
Create a new DSA private key. DSA requires groups of a special form. The best way to create such a group is to

create a new DL_Group at random for each key, using the “DSA kosherizer” algorithm. See DL_Group for more
information.

ElGamal_PrivateKey: :ElGamal_PrivateKey (RandomNumberGenerator &rng, const DL_Group &group)

8.10.4 Serializing Private Keys Using PKCS #8

The standard format for serializing a private key is PKCS #8, the operations for which are defined in pkcs8.h. It
supports both unencrypted and encrypted storage.

secure_vector<uint8_t> PKCS8: :BER_encode (const Private_Key &key, RandomNumberGenerator &rng, const
std::string &password, const std::string &pbe_algo ="")

Takes any private key object, serializes it, encrypts it using password, and returns a binary structure representing
the private key.

The final (optional) argument, pbe_algo, specifies a particular password based encryption (or PBE) algorithm.
If you don’t specify a PBE, a sensible default will be used.

The currently supported PBE is PBES2 from PKCSS5. Format is as follows: PBE-PKCS5v20 (CIPHER, PBKDF)
or PBES2 (CIPHER, PBKDF).

Cipher can be any block cipher using CBC or GCM modes, for example “AES-128/CBC” or “Camellia-
256/GCM”. For best interop with other systems, use AES in CBC mode. The PBKDF can be either the name
of a hash function (in which case PBKDF?2 is used with that hash) or “Scrypt”, which causes the scrypt memory
hard password hashing function to be used. Scrypt is supported since version 2.7.0.

Use PBE-PKCS5v20(AES-256/CBC,SHA-256) if you want to ensure the keys can be imported by different soft-
ware packages. Use PBE-PKCS5v20(AES-256/GCM,Scrypt) for best security assuming you do not care about
interop.

For ciphers you can use anything which has an OID defined for CBC, GCM or SIV modes. Currently this
includes AES, Camellia, Serpent, Twofish, and SM4. Most other libraries only support CBC mode for private
key encryption. GCM has been supported in PBES2 since 2.0. SIV has been supported since 2.8.

std::string PKCS8: : PEM_encode (const Private_Key &key, RandomNumberGenerator &rng, const std::string &pass,
const std::string &pbe_algo ="")

This formats the key in the same manner as BER_encode, but additionally encodes it into a text format with
identifying headers. Using PEM encoding is highly recommended for many reasons, including compatibility
with other software, for transmission over 8-bit unclean channels, because it can be identified by a human without
special tools, and because it sometimes allows more sane behavior of tools that process the data.

Unencrypted serialization is also supported.

Warning

In most situations, using unencrypted private key storage is a bad idea, because anyone can come along and grab
the private key without having to know any passwords or other secrets. Unless you have very particular security
requirements, always use the versions that encrypt the key based on a passphrase, described above.

secure_vector<uint8_t> PKCS8: :BER_encode (const Private_Key &key)
Serializes the private key and returns the result.
std::string PKCS8: : PEM_encode (const Private_Key &key)

Serializes the private key, base64 encodes it, and returns the result.

88 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Last but not least, there are some functions that will load (and decrypt, if necessary) a PKCS #8 private key:

std::unique_ptr<Private_Key> load_key (DataSource &source, std::function<std::string()> get_passphrase)
std::unique_ptr<Private_Key> load_key (DataSource &source, const std::string &pass)
std::unique_ptr<Private_Key> load_key (DataSource &source)

These functions will return an object allocated key object based on the data from whatever source it is using (assuming,
of course, the source is in fact storing a representation of a private key, and the decryption was successful). The
encoding used (PEM or BER) need not be specified; the format will be detected automatically. The DataSource is
usually a DataSource_Stream to read from a file or DataSource_Memory for an in-memory buffer.

The versions taking a std: : string attempt to decrypt using the password given (if the key is encrypted; if it is not,
the passphase value will be ignored). If the passphrase does not decrypt the key, an exception will be thrown.

8.10.5 Serializing Public Keys
To import and export public keys, use:

std::vector<uint8_t> X509: :BER_encode (const Public_Key &key)

std::string X509 : : PEM_encode (const Public_Key &key)

std::unique_ptr<Public_Key> X509: : load_key (DataSource &in)
std::unique_ptr<Public_Key> X509: : 1oad_key (const secure_vector<uint§_t> &buffer)

std::unique_ptr<Public_Key> X509: : 1load_key (const std::string &filename)

These functions operate in the same way as the ones described in Serializing Private Keys Using PKCS #8, except
that no encryption option is available.

Note

In versions prior to 3.0, these functions returned a raw pointer instead of a unique_ptr.

8.10.6 DL_Group

class DL_Group

Represents parameters for finite field discrete logarithm algorithms

static DL_Group DL_Group: : from_name (std::string_view name)

The name here is a (Botan specific) identifier which maps to one of the standard discrete logarithm groups.

For the groups from RFC 5208 (https://datatracker.ietf.org/doc/html/rfc5208.html) (often called the MODP
groups, the IETF groups, or the IPsec groups) use “modp/ietf/N” where N can be any of 1024, 1536, 2048,
3072, 4096, 6144, or 8192. This group type is used for Diffie-Hellman and ElGamal algorithms, but cannot be
used with DSA.

For the groups from RFC 7919 (https://datatracker.ietf.org/doc/html/rfc7919.html) (often called the TLS FFDHE
groups) use “ffdhe/ietf/N” where N is any of 2048, 3072, 4096, 6144, or 8192. These groups are typically only
used in TLS, but can be used with Diffie-Hellman more generally. They cannot be used with DSA.

For the groups from RFC 5054 (https://datatracker.ietf.org/doc/html/rfc5054.html) (the SRP6 groups) use
“modp/srp/N” where N can be any of 1024, 1536, 2048, 3072, 4096, 6144, or 8192. These groups should
only be used with SRP6.

8.10. Public Key Cryptography 89

https://datatracker.ietf.org/doc/html/rfc5208.html
https://datatracker.ietf.org/doc/html/rfc7919.html
https://datatracker.ietf.org/doc/html/rfc5054.html

Botan Reference Guide, Release 3.9.0

Finally a small number of pre-created groups usable for DSA are available. These are “dsa/jce/1024”,
“dsa/botan/2048”, and “dsa/botan/3072”. Support for these groups is deprecated and they will be removed in a
future major release. Should DSA be required, create a new random group for each key.

You can generate a new random group using

DL_Group: :DL_Group (RandomNumberGenerator &rng, PrimeType type, size_t pbits, size_t gbits = 0)
The type can be

e Strong: A group where (p-1)/2 is also prime. Best for Diffie-Hellman, but very slow to generate.

e Prime_Subgroup: A group where (p-1) is divided by a large prime q, of size gbits. Faster to generate
than Strong, suitable for Diffie-Hellman.

* DSA_Kosherizer: Generate a group suitable for DSA using the algorithm specified in FIPS 186-3.

If gbits is set to zero then a suitable value is chosen relative to the value of pbits and the type of group being
created.

You can serialize a DL_Group using

std::vector<uint8_t> DL_Group: : DER_Encode (Format format) const

or

std::string DL_Group: :PEM_encode (Format format) const

where format is any of

e ANSTI_X9_42 (or DH_PARAMETERS) for modp groups

e ANSI_X9_57 (or DSA_PARAMETERS) for DSA-style groups

* PKCS_3 is an older format for modp groups; it should only be used for backwards compatibility.
You can reload a serialized group from BER or PEM formats using

DL_Group: :DL_Group (std::span<const uint§8_t> ber, DL_Group_Format format)

static DL._Group DL_Group: : from_pem(std::string_view pem, DL._Group_Format format)

Code Example: DL_Group

The example below creates a new 2048 bit DL_Group, prints the generated parameters and ANSI_X9_42 encodes the
created group for further usage with DH.

#include <botan/auto_rng.h>
#include <botan/dl_group.h>
#include <botan/rng.h>

#include <iostream>
int main(Q) {

Botan: :AutoSeeded_RNG rng;
auto group = std::make_unique<Botan::DL_Group>(rng, Botan::DL_Group::Strong, 2048);

std::cout << "P = " << group->get_p().to_hex_string() << "\n"
<< "Q = " << group->get_g().to_hex_string() << "\n"
<< "G = " << group->get_g().to_hex_string() << "\n";

std: :cout << "\nPEM:\n" << group->PEM_encode(Botan: :DL_Group_Format::ANSI_X9_42) << "\

(continues on next page)

90 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

=N

return 0;

8.10.7 Key Checking

Most public key algorithms have limitations or restrictions on their parameters. For example RSA requires an odd
exponent, and algorithms based on the discrete logarithm problem need a generator > 1.

Each public key type has a function

bool Public_Key: :check_key(RandomNumberGenerator &rng, bool strong)

This function performs a number of algorithm-specific tests that the key seems to be mathematically valid and
consistent, and returns true if all of the tests pass.

It does not have anything to do with the validity of the key for any particular use, nor does it have anything to do
with certificates that link a key (which, after all, is just some numbers) with a user or other entity. If strong is
true, then it does “strong” checking, which includes expensive operations like primality checking.

As key checks are not automatically performed they must be called manually after loading keys from untrusted sources.
If a key from an untrusted source is not checked, the implementation might be vulnerable to algorithm specific attacks.

The following example loads the Subject Public Key from the x509 certificate cert.pem and checks the loaded key.
If the key check fails a respective error is thrown.

#include <botan/auto_rng.h>
#include <botan/pk_keys.h>
#include <botan/rng.h>
#include <botan/x509cert.h>
#include <iostream>

int main() {
Botan: :X509_Certificate cert("cert.pem");
Botan: :AutoSeeded_RNG rng;
auto key = cert.subject_public_key(Q);
if('key->check_key(rng, false)) {
std: :cerr << "Loaded key is invalid";
return 1;

3

return 0;

8.10.8 Public Key Encryption/Decryption

Safe public key encryption requires the use of a padding scheme which hides the underlying mathematical properties of
the algorithm. Additionally, they will add randomness, so encrypting the same plaintext twice produces two different
ciphertexts.

The primary interface for encryption is

class PK_Encryptor

std::vector<uint8_t> encrypt (const uint8_t in[], size_t length, RandomNumberGenerator &rng) const

8.10. Public Key Cryptography 91

Botan Reference Guide, Release 3.9.0

std::vector<uint8_t> encrypt (std::span<const uint8_t> in, RandomNumberGenerator &rng) const
These encrypt a message, returning the ciphertext.
size_t maximum_input_size() const
Returns the maximum size of the message that can be processed, in bytes. If you call
PK_Encryptor: :encrypt with a value larger than this the operation will fail with an exception.
size_t ciphertext_length(size_t ctext_len) const
Return an upper bound on the returned size of a ciphertext, if this particular key/padding scheme is used to

encrypt a message of the provided length.

PK_Encryptor is only an interface - to actually encrypt you have to create an implementation, of which there are
currently three available in the library, PK_Encryptor_EME, DLIES_Encryptor and ECIES_Encryptor. DLIES is a
hybrid encryption scheme (from IEEE 1363) that uses Diffie-Hellman key agreement technique in combination with a
KDF, a MAC and a symmetric encryption algorithm to perform message encryption. ECIES is similar to DLIES, but
uses ECDH for the key agreement. Normally, public key encryption is done using algorithms which support it directly,
such as RSA or ElGamal; these use the EME class:

class PK_Encryptor_EME

PK_Encryptor_EME (const Public_Key &key, std::string padding)
With key being the key you want to encrypt messages to. The padding method to use is specified in padding.

If you are not sure what padding to use, use “OAEP(SHA-256)”. If you need compatibility with protocols
using the PKCS #1 v1.5 standard, you can also use “PKCS1v15”.

For SM2 encryption, the padding string specifies which hash function to use; normally this would be “SM3”".

class DLIES_Encryptor
Deprecated since version 2.13.0: DLIES should no longer be used

Available in the header dlies.h

DLIES_Encryptor (const DH_PrivateKey &own_priv_key, RandomNumberGenerator &rng,
std::unique_ptr< KDF> kdf, std::unique_ptr<MessageAuthenticationCode> mac, size_t
mac_key_len = 20)

Where kdf is a key derivation function (see Key Derivation Functions (KDF)) and mac is a MessageAu-
thenticationCode. The encryption is performed by XORing the message with a stream of bytes provided
by the KDF.

DLIES_Encryptor (const DH_PrivateKey &own_priv_key, RandomNumberGenerator &rng,
std::unique_ptr<KDF> kdf, std::unique_ptr<Cipher_Mode> cipher, size_t cipher_key_len,
std::unique_ptr<MessageAuthenticationCode> mac, size_t mac_key_len = 20)

Instead of XORing the message with KDF output, a cipher mode can be used

class ECIES_Encryptor
Available in the header ecies.h.

Warning

ECIES is standardized by various organizations (including IEEE and ISO) but unfortunately has dozens of
different options which greatly hinder interoperability. ECDH key exchange with a static receiver key is much
simpler, and provides similar security properties.

Parameters for encryption and decryption are set by the ECIES_System_Params class which stores the EC
domain parameters, the KDF (see Key Derivation Functions (KDF)), the cipher (see Cipher Modes) and the
MAC.

92 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

ECIES_Encryptor (const PK_Key_Agreement_Key &private_key, const ECIES_System_Params
&ecies_params, RandomNumberGenerator &rng)

Where private_key is the key to use for the key agreement. The system parameters are specified in
ecies_params and the RNG to use is passed in rng.

ECIES_Encryptor (RandomNumberGenerator &rng, const ECIES_System_Params &ecies_params)
Creates an ephemeral private key which is used for the key agreement.
class PK_Decryptor
Interface for public key decryption.

secure_vector<uint8_t> decrypt (std::span<const uint8_t> in) const

Decrypts a message, throwing an exception in the case of failure.

Warning

If using PKCS1v1.5 encryption padding this function is not safe since it exposes via a side channel if
the decryption succeeded or not. This side channel is sufficient for an attacker to decrypt arbitrary
messages and forge arbitrary signatures. Use PK_Decryptor: :decrypt_or_random to avoid this
situation.

secure_vector<uint8_t> decrypt_or_random(const uint8_t in[], size_t length, size_t expected_pt_len,
RandomNumberGenerator &rng) const

Similar to decrypt except that if the decryption fails, or if the decrypted key is not of the expected length,
then it returns a random string of the expected length. This hides the PKCS1v1.5 oracle.

secure_vector<uint8_t> decrypt_or_random(const uint8_t in[], size_t length, size_t expected_pt_len,
RandomNumberGenerator &rng, const uint8_t
required_content_bytes[], const uint8_t
required_content_offsets[], size_t required_contents) const

Similar to decrypt except that if the decryption fails, or if the decrypted key is not of the expected length,
then it returns a random string of the expected length. This hides the PKCS1v1.5 oracle.

This variant of the function is used if there are specific bytes within the message which must take on a certain
value, rather than the encrypted “message” just being a random key, which is the more typical usage. If any
of the required values are incorrect, then again a randomly generated key is returned to hide the PKCS1v1.5
oracle.

Botan implements the following encryption algorithms:
1. RSA. Requires a padding scheme as parameter.

DLIES (deprecated)

ECIES

SM2. Takes an optional HashFunction as parameter which defaults to SM3.

A

ElGamal. Requires a padding scheme as parameter.

Code Example: RSA Encryption

The following code sample reads a PKCS #8 keypair from the passed location and subsequently encrypts a fixed plain-
text with the included public key, using OAEP with SHA-256. For the sake of completeness, the ciphertext is then
decrypted using the private key.

8.10. Public Key Cryptography 93

Botan Reference Guide, Release 3.9.0

#include <botan/auto_rng.h>
#include <botan/hex.h>
#include <botan/pk_keys.h>
#include <botan/pkcs8.h>
#include <botan/pubkey.h>
#include <botan/rng.h>

#include <iostream>

int main(int argc, char* argv[]) {
if(argc !'= 2) {
return 1;
}
std: :string_view plaintext(
"Your great-grandfather gave this watch to your granddad for good luck.
"Unfortunately, Dane's luck wasn't as good as his old man's.");
const Botan::secure_vector<uint8_t> pt(plaintext.data(), plaintext.data() + plaintext.
—length());
Botan: :AutoSeeded_RNG rng;

// load keypair
Botan: :DataSource_Stream in(argv[1]);
auto kp = Botan: :PKCS8::load_key(in);

// encrypt with pk
Botan: :PK_Encryptor_EME enc(*kp, rng, "OAEP(SHA-256)");
const auto ct = enc.encrypt(pt, rng);

// decrypt with sk
Botan: :PK_Decryptor_EME dec(*kp, rng, "OAEP(SHA-256)");
const auto pt2 = dec.decrypt(ct);

std::cout << "\nenc: << Botan: :hex_encode(ct) << "\ndec: << Botan: :hex_

—encode(pt2);

return 0;

Available encryption padding schemes

Note

Padding schemes in the context of encryption are sometimes also called Encoding Method for Encryption (EME).

OAEP

OAEDP (called EMEL1 in IEEE 1363 and in earlier versions of the library) as specified in PKCS#1 v2.0 (RFC 2437) or
PKCS#1 v2.1 (RFC 3447).

e Name: OAEP,
* Deprecated aliases: EME-OAEP, EME1

94 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

 Parameters specification:

(<HashFunction>)

(<HashFunction>,MGF1)

(<HashFunction>,MGF1(<HashFunction>))

(<HashFunction>,MGF1(<HashFunction>) ,<optional label>)
* The only Mask generation function available is MGF1, which is also the default.

* By default the same hash function will be used for the label and MGF1.

By default the OAEP label is the empty string

* Examples: OAEP(SHA-256), OAEP(SHA-256,MGF1), OAEP(SHA-256,MGF1(SHA-512)), OAEP(SHA-512,
MGF1(SHA-512),TCPA)

PKCS #1 v1.5 Type 2 (encryption)

PKCS #1 v1.5 Type 2 (encryption) padding.
Name: PKCS1v15 Deprecated alias: EME-PKCS1-v1_5

Warning

PKCS v1.5 encryption padding is prone to oracle attacks (the Bleichenbacher attack, and the many variations
thereof). Avoid it if at all possible. If you must use it, use PK_Decryptor: :decrypt_or_random function which
can hide the decryption failures.

Raw EME

Does not change the input during padding. Unpadding will strip leading zero bytes.

Warning

This is extremely unsafe and only necessary in specialized situations. Don’t use this unless you know what you are
doing.

Name: Raw

8.10.9 Public Key Signature Schemes
Signature generation is performed using
class PK_Signer
PK_Signer (const Private_Key &key, const std::string &padding, Signature_Format format =
Siganture_Format::Standard)

Constructs a new signer object for the private key key using the hash/padding specified in padding. The
key must support signature operations. In the current version of the library, this includes RSA, ECDSA,
ML-DSA, ECKCDSA, ECGDSA, SM2, and others.

8.10. Public Key Cryptography 95

Botan Reference Guide, Release 3.9.0

Note

Botan both supports non-deterministic and deterministic (as per RFC 6979) DSA and ECDSA signa-
tures. Either type of signature can be verified by any other (EC)DSA library, regardless of which mode
it prefers. If the r£c6979 module is enabled at build time, deterministic DSA and ECDSA signatures
will be created.

The proper value of padding depends on the algorithm. For many signature schemes including ECDSA
and DSA, simply naming a hash function like “SHA-256" is all that is required.

For RSA, more complicated padding is required. The two most common schemes for RSA signature
padding are PSS and PKCS1v1.5, so you must specify both the padding mechanism as well as a hash,
for example “PSS(SHA-256)” or “PKCS1v15(SHA-256)".

Certain newer signature schemes, especially post-quantum based ones, hardcode the hash function associ-
ated with their signatures, and no configuration is possible. In this case padding should be left blank, or
may possibly be used to identify some algorithm-specific option. For instance ML-DSA may be parame-
terized with “Randomized” or “Deterministic” to choose if the generated signature is randomized or not.
If left blank, a default is chosen.

Another available option, usable in certain specialized scenarios, is using padding scheme “Raw”, where
the provided input is treated as if it was already hashed, and directly signed with no other processing.

The format defaults to Standard which is either the usual, or the only, available formatting method, depend-
ing on the algorithm. For certain signature schemes including ECDSA, DSA, ECGDSA and ECKCDSA
you can also use DerSequence, which will format the signature as an ASN.1 SEQUENCE value. This
formatting is used in protocols such as TLS and Bitcoin.

void update (const uint8_t *in, size_t length)
void update (std::span<const uint8_t> in)

void update (uint8_t in)

These add more data to be included in the signature computation. Typically, the input will be provided
directly to a hash function.

std::vector<uint8_t> signature (RandomNumberGenerator &rng)

Creates the signature and returns it. The rng may or may not be used, depending on the scheme.

std::vector<uint8_t> sign_message (const uint8_t *in, size_t length, RandomNumberGenerator &rng)

std::vector<uint8_t> sign_message (std::span<const uint8_t> in, RandomNumberGenerator &rng)
These functions are equivalent to calling PK_Signer: :update and then PK_Signer::signature. Any
data previously provided using update will also be included in the signature.

size_t signature_length() const

Return an upper bound on the length of the signatures returned by this object.

Algorithmldentifier algorithm_identifier() const

Return an algorithm identifier appropriate to identify signatures generated by this object in an X.509 struc-
ture.

std::string hash_function() const

Return the hash function which is being used

Signatures are verified using

96

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

class PK_Verifier

PK_Verifier(const Public_Key &pub_key, const std::string &padding, Signature_Format format =
Signature_Format::Standard)

Construct a new verifier for signatures associated with public key pub_key. The padding and format should
be the same as that used by the signer.

void update (const uint8_t *in, size_t length)
void update (std::span<const uint8_t> in)
void update (uint8_t in)
Add further message data that is purportedly associated with the signature that will be checked.
bool check_signature (const uint8_t *sig, size_t length)

bool check_signature (std::span<const uint8_t> sig)

Check to see if sig is a valid signature for the message data that was written in. Return true if so. This
function clears the internal message state, so after this call you can call PK_Verifier: :update to start
verifying another message.

bool verify_message (const uint8_t *msg, size_t msg_length, const uint8_t *sig, size_t sig_length)

bool verify_message (std::span<const uint8_t> msg, std::span<const uint8_t> sig)

These are equivalent to calling PK Verifier::update on msg and then calling
PK_Verifier::check_signature on sig. Any data previously provided to PK_Verifier: :update
will also be included.

Botan implements the following signature algorithms:
1. RSA. Requires a padding scheme as parameter.

. DSA. Requires a hash function as parameter.
. ECDSA. Requires a hash function as parameter.

. ECGDSA. Requires a hash function as parameter.

2
3
4
5. ECKDSA. Requires a hash function as parameter, not supporting Raw.
6. GOST 34.10-2001. Requires a hash function as parameter.
7. Ed25519 and Ed448. See Ed25519 and Ed448 Variants for parameters.
8. SM2. Takes one of the following as parameter:
e <user ID> (uses SM3)
e <user ID>,<HashFunction>
9. ML-DSA (Dilithium). Takes the optional parameter Deterministic (default) or Randomized.
10. SLH-DSA. Takes the optional parameter Deterministic (default) or Randomized.
11. XMSS. Takes no parameter.

12. HSS-LMS. Takes no parameter.

Code Example: ECDSA Signature

The following sample program below demonstrates the generation of a new ECDSA keypair over the curve secp512r1
and a ECDSA signature using SHA-256. Subsequently the computed signature is validated.

8.10. Public Key Cryptography 97

Botan Reference Guide, Release 3.9.0

#include <botan/auto_rng.h>
#include <botan/ec_group.h>
#include <botan/ecdsa.h>
#include <botan/hex.h>
#include <botan/pubkey.h>

#include <iostream>

int main() {
Botan: :AutoSeeded_RNG rng;
// Generate ECDSA keypair
const auto group = Botan::EC_Group::from_name('secp521r1");
Botan: :ECDSA_PrivateKey key(rng, group);

const std::string message("This is a tasty burger!");

// sign data

Botan: :PK_Signer signer(key, rng, "SHA-256");
signer.update(message) ;

std: :vector<uint8_t> signature = signer.signature(rng);

std: :cout << "Signature:\n" << Botan::hex_encode(signature);

// now verify the signature

Botan: :PK_Verifier verifier(key, "SHA-256");

verifier.update(message);

std::cout << "\nis " << (verifier.check_signature(signature) ? "valid" : "invalid");
return 0;

RSA signature padding schemes

These signature padding mechanisms are specific to RSA; no other public key algorithms included in Botan make use
of then. For historical reasons, many different padding schemes have been defined for RSA over the years. The most
common are PSS and the (now obsolete) PKCS1v15.

Note

Padding schemes in the context of signatures are sometimes also called Encoding methods for signatures with
appendix (EMSA).

PKCS #1 v1.5 Type 1 (signature)

PKCS #1 v1.5 Type 1 (signature) padding, aka EMSA3 in IEEE 1363.

Note

While not as actively unsafe as PKCS1v15 encryption padding is, PKCS1 signature padding is considered quite
obsolete.

¢ Name: PKCS1v15
* Deprecated aliases: EMSA_PKCS1, EMSA-PKCS1-v1_5, EMSA3

98 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

 Parameters specification:
— (<HashFunction>)
— (Raw,<optional HashFunction>)
* The raw variant encodes a precomputed hash, optionally with the digest ID of the given hash.

* Examples: PKCS1v15(SHA-256), PKCS1v15(Raw), PKCS1v15(Raw,MD5),

Probabilistic signature scheme (PSS)

Called EMSA4 in IEEE 1363.
e Name: PSS
* Deprecated aliases: EMSA-PSS, PSSR, PSS-MGF1, EMSA4
» Parameters specification:
— (<HashFunction>)
— (<HashFunction>,MGF1,<optional salt size>)
* Examples: PSS(SHA-256), PSS(SHA-256,MGF1,32),

There also exists a raw version, which accepts a pre-hashed buffer instead of the message. Don’t use this unless you
know what you are doing.

e Name: PSS_Raw
* Deprecated alias: PSSR_Raw
» Parameters specification:

— (<HashFunction>)

— (<HashFunction>,MGF1l,<optional salt size>)

1ISO-9796-2

The ISO-9796-2 padding schemes are used for signatures in the EMV contactless payment card system. There is likely
no reason to use it in other contexts.

ISO-9796-2 - Digital signature scheme 2 (probabilistic).
e Name: IS0_9796_DS2
» Parameters specification:
— (<HashFunction>)
— (<HashFunction>,<exp|imp>,<optional salt size>)
* Defaults to the explicit mode.
* Examples: ISO_9796_DS2 (RIPEMD-1660), ISO_9796_DS2 (RIPEMD-160,imp)
ISO-9796-2 - Digital signature scheme 3 (deterministic), i.e. DS2 without a salt.
e Name: IS0_9796_DS3
» Parameters specification:
— (<HashFunction>)

— (<HashFunction>,<exp|imp>

8.10. Public Key Cryptography 99

Botan Reference Guide, Release 3.9.0

¢ Defaults to the explicit mode.

» Examples: IS0_9796_DS3 (RIPEMD-160), IS0_9796_DS3 (RIPEMD-160, imp),

X9.31

Padding scheme from ANSI X9.31. Called EMSA?2 in IEEE 1363.

Deprecated since version 3.7.0: X9.31 signatures are obsolete, and support for it is deprecated
e Name: X9.31
* Deprecated aliases: EMSA2, EMSA_X931
* Parameters specification: (<HashFunction>)

» Example: X9.31(SHA-256)

Raw

Sign inputs directly with no hashing or padding

Warning

This exists as an escape hatch allowing an application to define some protocol-specific padding scheme, and using
it in a naive way is completely insecure. Don’t use this unless you know what you are doing.

e Name: Raw
» Parameters specification: (<optional HashFunction>)

e Examples: Raw, Raw(SHA-256)

Signature with Hash

For many signature schemes including ECDSA and DSA, simply naming a hash function like SHA-256 is all that is
required.

Note

Previous versions of Botan required using a hash specifier like EMSA1(SHA-256) when generating or verifying
ECDSA/DSA signatures, with the specified hash. The EMSA1 was a reference to a now obsolete IEEE standard.

Parameters specification:
¢ <HashFunction>
* EMSA1(<HashFunction>) [deprecated]

There also exists a raw mode, which accepts a pre-hashed buffer instead of the message.

Warning

This is used for situations where somehow the hash is computed by another module and then signed. Many ways
of doing this are insecure. Don’t use this unless you know what you are doing.

Parameters specification:

100 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

e Raw

¢ Raw(<HashFunction>)

Ed25519 and Ed448 Variants

Warning

Ed25519 and Ed448 have different verification criteria, depending on the implementation. This can be problem-
atic in systems which rely on consensus - see It’s 255:19AM. Do you know what your validation criteria are?
(https://hdevalence.ca/blog/2020-10-04-its-25519am) for details.

Most signature schemes in Botan follow a hash-then-sign paradigm. That is, the entire message is digested to a fixed
length representative using a collision resistant hash function, and then the digest is signed. Ed25519 and Ed448
instead sign the message directly. This is beneficial, in that the design should remain secure even in the (extremely
unlikely) event that a collision attack on SHA-512 is found. However it means the entire message must be buffered in
memory, which can be a problem for many applications which might need to sign large inputs. To use this variety of
Ed25519/Ed448, use a padding name of “Pure”.

This is the default mode if no padding name is given.
Parameter specification: Pure / Identity

Ed25519ph (or Ed448) (pre-hashed) instead hashes the message with SHA-512 (or SHAKE256(512)) and then signs
the digest plus a special prefix specified in RFC 8032. To use it, specify padding name “Ed25519ph” (or “Ed448ph”).

Parameter specification: Ed25519ph

Another variant of pre-hashing is used by GnuPG. There the message is digested with any hash function, then the
digest is signed. To use it, specify any valid hash function. Even if SHA-512 is used, this variant is not compatible
with Ed25519ph.

Parameter specification: <HashFunction>

For best interop with other systems, prefer “Ed25519ph”.

8.10.10 Key Agreement

Key agreement is a scheme where two parties exchange public keys, after which it is possible for them to derive a secret
key which is known only to the two of them.

There are different approaches possible for key agreement. In many protocols, both parties generate a new key, exchange
public keys, and derive a secret, after which they throw away their private keys, using them only the once. However
this requires the parties to both be online and able to communicate with each other.

In other protocols, one of the parties publishes their public key online in some way, and then it is possible for someone
to send encrypted messages to that recipient by generating a new keypair, performing key exchange with the published
public key, and then sending both the message along with their ephemeral public key. Then the recipient uses the
provided public key along with their private key to complete the key exchange, recover the shared secret, and decrypt
the message.

Typically the raw output of the key agreement function is not uniformly distributed, and may not be of an appropriate
length to use as a key. To resolve these problems, key agreement will use a Key Derivation Functions (KDF) on the
shared secret to produce an output of the desired length.

1. ECDH over GF(p) Weierstrass curves
2. ECDH over x25519 or x448
3. DH over prime fields

8.10. Public Key Cryptography 101

https://hdevalence.ca/blog/2020-10-04-its-25519am

Botan Reference Guide, Release 3.9.0

class PK_Key_Agreement

PK_Key_Agreement (const Private_Key &key, RandomNumberGenerator &rng, const std::string &kdf, const

std::string &provider = "")
Set up to perform key derivation using the given private key and specified KDF.

SymmetricKey derive_key (size_t key_len, const uint8_t peer_key[], size_t peer_key_len, const uint8_t

salt[], size_t salt_len) const

SymmetricKey derive_key (size_t key_len, std::span<const uint8_t> peer_key, const uint8_t salt[], size_t

salt_len) const

SymmetricKey derive_key (size_t key_len, const uint8_t peer_key[], size_t peer_key_len, const std::string

&salt="") const

SymmetricKey derive_key (size_t key_len, std::span<const uint§_t> peer_key, const std::string &salt ="")

const

Return a shared secret key.
The peer_key parameter must be the public key associated with the other party.

The shared key will be of length key_len. If the KDF cannot accomodate outputs of this size (only likely
for very large values, or if using KDF1), an exception will be thrown. If a KDF is not in use (“Raw”” KDF),
key_len is ignored and this function will always return directly what the agreement scheme output, of length
equal to agreed_value_size.

The salt will be hashed along with the shared secret by the KDF; this can be useful to bind the shared secret
to a specific usage. If a KDF is not being used (“Raw” KDF) then any non-empty salt will be rejected.

Code Example: ECDH Key Agreement

The code below performs an unauthenticated ECDH key agreement using the secp521r1 elliptic curve and applies the
key derivation function KDF2(SHA-256) with 256 bit output length to the computed shared secret.

#include
#include
#include
#include
#include

#include

<botan/auto_rng.h>
<botan/ec_group.h>
<botan/ecdh.h>
<botan/hex.h>
<botan/pubkey.h>

<iostream>

int main(Q) {

Botan:

// ec
const
const

:AutoSeeded_RNG rng;

domain and KDF
auto domain = Botan::EC_Group::from_name('secp521r1");
std: :string kdf = "KDF2(SHA-256)";

// the two parties generate ECDH keys

Botan:
Botan:

:ECDH_PrivateKey key_a(rng, domain);
:ECDH_PrivateKey key_b(rng, domain);

// now they exchange their public values

const
const

auto key_apub = key_a.public_value();
auto key_bpub = key_b.public_value();

(continues on next page)

102

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

// Construct key agreements and agree on a shared secret
Botan: :PK_Key_Agreement ka_a(key_a, rng, kdf);
const auto sA = ka_a.derive_key(32, key_bpub).bits_of(Q);

Botan: :PK_Key_Agreement ka_b(key_b, rng, kdf);
const auto sB = ka_b.derive_key(32, key_apub).bits_of(Q);

if(sA = sB) {
return 1;

3

std: :cout << "agreed key:\n" << Botan::hex_encode(sA);
return 0;

8.10.11 Key Encapsulation

Key encapsulation (KEM) is a variation on public key encryption which is commonly used by post-quantum secure
schemes. Instead of choosing a random secret and encrypting it, as in typical public key encryption, a KEM encryption
takes no inputs and produces two values, the shared secret and the encapsulated key. The decryption operation takes in
the encapsulated key and returns the shared secret.

class PK_KEM_Encryptor

PK_KEM_Encryptor (const Public_Key &Kkey, const std::string &kdf = "", const std::string &provider = "")
Create a KEM encryptor

size_t shared_key_length(size_t desired_shared_key_len) const
Size in bytes of the shared key being produced by this PK_KEM_Encryptor.

size_t encapsulated_key_length() const
Size in bytes of the encapsulated key being produced by this PK_KEM_Encryptor.

KEM_Encapsulation encrypt (RandomNumberGenerator &rng, size_t desired_shared_key_len = 32,
std::span<const uint8_t> salt = {})

Perform a key encapsulation operation with the result being returned as a convenient struct.

void encrypt (std::span<uint8_t> out_encapsulated_key, std::span<uint8_t> out_shared_key,
RandomNumberGenerator &rng, size_t desired_shared_key_len = 32, std::span<const uint8_t>
salt={})

Perform a key encapsulation operation by passing in out-buffers of the correct output length. Use encapsu-
lated_key_length() and shared_key_length() to pre-allocate the output buffers.

void encrypt (secure_vector<uint8_t> &out_encapsulated_key, secure_vector<uint8_t> &out_shared_key,
size_t desired_shared_key_len, RandomNumberGenerator &rng, std::span<const uint8_t> salt)

Perform a key encapsulation operation by passing in out-vectors that will be re-allocated to the correct
output size.

class KEM_Encapsulation
std::vector<uint8_t> encapsulated_shared_key() const

secure_vector<uint8_t> shared_key () const

8.10. Public Key Cryptography 103

Botan Reference Guide, Release 3.9.0

class PK_KEM_Decryptor
PK_KEM_Decryptor (const Public_Key &key, const std::string &kdf = "", const std::string &provider = "")
Create a KEM decryptor

size_t encapsulated_key_length() const
Size in bytes of the encapsulated key expected by this PK_KEM_Decryptor.

size_t shared_key_length(size_t desired_shared_key_len) const
Size in bytes of the shared key being produced by this PK_KEM_Encryptor.

secure_vector<uint8> decrypt (std::span<const uint8> encapsulated_key, size_t desired_shared_key_len,
std::span<const uint8_t> salt)

Perform a key decapsulation operation

void decrypt (std::span<uint8_t> out_shared_key, std::span<const uint8_t> encap_key, size_t
desired_shared_key_len = 32, std::span<const uint8_t> salt = {})

Perform a key decapsulation operation by passing in a pre-allocated out-buffer. Use shared_key_length()
to determine the byte-length required.

Botan implements the following KEM schemes:
1. RSA
2. ML-KEM (formerly known as Kyber)
3. FrodoKEM

4. Classic McEliece

5. HyMES McEliece (deprecated)

Code Example: ML-KEM
The code below demonstrates key encapsulation using ML-KEM (FIPS 203), formerly known as Kyber.

#include <botan/ml_kem.h>

#include <botan/pubkey.h>

#include <botan/system_rng.h>

#include <iostream>

int main() {
const size_t shared_key_len = 32;
const std::string_view kdf = "HKDF(SHA-512)";
Botan: :System_RNG rng;

const auto salt = rng.random_array<16>(Q);

Botan: :ML_KEM_PrivateKey priv_key(rng, Botan::ML_KEM_Mode::ML_KEM_768);
auto pub_key = priv_key.public_key(Q);

Botan: :PK_KEM_Encryptor enc(*pub_key, kdf);
const auto kem_result = enc.encrypt(rng, shared_key_len, salt);

Botan: :PK_KEM_Decryptor dec(priv_key, rng, kdf);

(continues on next page)

104 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

auto dec_shared_key = dec.decrypt(kem_result.encapsulated_shared_key(), shared_key_
—len, salt);

if(dec_shared_key != kem_result.shared_key()) {
std: :cerr << "Shared keys differ\n";
return 1;

}

return 0;

8.10.12 HyMES McEliece cryptosystem

McEliece is a cryptographic scheme based on error correcting codes which is thought to be resistant to quantum com-
puters. First proposed in 1978, it is fast and patent-free. Variants have been proposed and broken, but with suitable
parameters the original scheme remains secure. However the public keys are quite large, which has hindered deploy-
ment in the past.

The implementation of McEliece in Botan was contributed by cryptosource GmbH. It is based on the implementation
HyMES, with the kind permission of Nicolas Sendrier and INRIA to release a C++ adaption of their original C code
under the Botan license. It was then modified by Falko Strenzke to add side channel and fault attack countermeasures.
You can read more about the implementation at http://www.cryptosource.de/docs/mceliece_in_botan.pdf

Encryption in the McEliece scheme consists of choosing a message block of size n, encoding it in the error correcting
code which is the public key, then adding ¢ bit errors. The code is created such that knowing only the public key,
decoding ¢ errors is intractable, but with the additional knowledge of the secret structure of the code a fast decoding
technique exists.

The McEliece implementation in HyMES, and also in Botan, uses an optimization to reduce the public key size, by
converting the public key into a systemic code. This means a portion of the public key is a identity matrix, and can be
excluded from the published public key. However it also means that in McEliece the plaintext is represented directly
in the ciphertext, with only a small number of bit errors. Thus it is absolutely essential to only use McEliece with a
CCAZ2 secure scheme.

For a given security level (SL) a McEliece key would use parameters n and t, and have the corresponding key sizes
listed:

SL n t public key KB private key KB

80 1632 33 59 140
107 2280 45 128 300
128 2960 57 195 459
147 3408 67 265 622
191 4624 95 516 1234
256 6624 115 942 2184

You can check the speed of McEliece with the suggested parameters above using botan speed McEliece

8.10. Public Key Cryptography 105

http://www.cryptosource.de/docs/mceliece_in_botan.pdf

Botan Reference Guide, Release 3.9.0

8.10.13 Classic McEliece KEM

Classic McEliece (https://classic.mceliece.org/) is an IND-CCA2 secure key encapsulation algorithm based on the
McEliece cryptosystem introduced in 1978. It is a code-based scheme that relies on conservative security assumptions
and is considered secure against quantum computers. It is an alternative to lattice-based schemes.

Other advantages of Classic McEliece are the small ciphertext size and the fast encapsulation. Key generation and
decapsulation are slower than in lattice-based schemes. The main disadvantage of Classic McEliece is the large public
key size, ranging from 0.26 MB to 1.36 MB, depending on the instance. Due to its large key size, Classic McEliece
is recommended for applications where the public key is stored for a long time, and memory is not a critical resource.
Usage with ephemeral keys is not recommended.

Botan’s implementation covers the parameter sets of the NIST round 4 specification
(https://classic.mceliece.org/mceliece-spec-20221023.pdf#page=15) and the Classic McEliece ISO draft specifi-
cation (https://classic.mceliece.org/iso-mceliece-20230419.pdf#page=13). These are the following:

Set without f/pc ~ Set with f Set with pc Set with pcf Public Key Size
mceliece348864 mceliece348864f 0.26 MB
mceliece460896 mceliece460896f 0.52 MB

mceliece6688128 mceliece6688128f mceliece6688128pc mceliece6688128pcf 1.04 MB
mceliece6960119 mceliece6960119f mceliece6960119pc mceliece6960119pcf 1.05 MB
mceliece8192128 mceliece8192128f mceliece8192128pc mceliece8192128pcf 1.36 MB

The instances with the suffix ‘f” use a faster key generation algorithm that is more consistent in runtime. The in-
stances with the suffix ‘pc’ use plaintext confirmation, which is only specified in the ISO document. The instances
mceliece348864(f) and mceliece460896(f) are only defined in the NIST round 4 submission.

8.10.14 eXtended Merkle Signature Scheme (XMSS)

Botan implements the single tree version of the eXtended Merkle Signature Scheme (XMSS) using Winternitz One
Time Signatures+ (WOTS+). The implementation is based on RFC 8391 “XMSS: eXtended Merkle Signature Scheme”
(https://tools.ietf.org/html/rfc8391).

Warning

XMSS is stateful, meaning the private key updates after each signature creation. Applications are responsible for
updating their persistent secret with the new output of Private_Key: :private_key_bits() after each signature
creation. If the same private key is ever used to generate two different signatures, then the scheme becomes insecure.
For this reason, it can be challenging to use XMSS securely.

XMSS uses the Botan interfaces for public key cryptography. The following algorithms are implemented:
1. XMSS-SHA2_10_256

XMSS-SHA2_16_256

XMSS-SHA2_20_256

XMSS-SHA2 _10_512

XMSS-SHA2_16_512

XMSS-SHA2_20_512

XMSS-SHAKE_10_256

XMSS-SHAKE_16_256

® Nk » N

106 Chapter 8. API Reference

https://classic.mceliece.org/
https://classic.mceliece.org/mceliece-spec-20221023.pdf#page=15
https://classic.mceliece.org/iso-mceliece-20230419.pdf#page=13
https://classic.mceliece.org/iso-mceliece-20230419.pdf#page=13
https://tools.ietf.org/html/rfc8391

Botan Reference Guide, Release 3.9.0

9. XMSS-SHAKE_20_256
10. XMSS-SHAKE_10_512
11. XMSS-SHAKE_16_512
12. XMSS-SHAKE_20_512

The algorithm name contains the hash function name, tree height and digest width defined by the corresponding pa-
rameter set. Choosing XMSS-SHA2_10_256 for instance will use the SHA2-256 hash function to generate a tree of
height ten.

Code Example: XMSS

The following code snippet shows a minimum example on how to create an XMSS public/private key pair and how to
use these keys to create and verify a signature:

#include <botan/auto_rng.h>
#include <botan/pubkey.h>
#include <botan/secmem.h>
#include <botan/xmss.h>

#include <iostream>
#include <vector>

int main() {
// Create a random number generator used for key generation.
Botan: :AutoSeeded_RNG rng;

// create a new public/private key pair using SHA2 256 as hash

// function and a tree height of 10.

Botan: :XMSS_PrivateKey private_key(Botan: :XMSS_Parameters::xmss_algorithm_t::XMSS_
--SHA2_10_256, rng);

const Botan: :XMSS_PublicKey& public_key(private_key);

// create Public Key Signer using the private key.
Botan: :PK_Signer signer(private_key, rng, "");

// create and sign a message using the Public Key Signer.
Botan: :secure_vector<uint8_t> msg{0x01, 0x02, 0x03, 0x04};
auto sig = signer.sign_message(msg, rng);

// create Public Key Verifier using the public key
Botan: :PK_Verifier verifier(public_key, "");

// verify the signature for the previously generated message.
if(verifier.verify message(msg, sig)) {

std: :cout << "Success.\n";

return 0;
} else {

std::cout << "Error.\n";

return 1;

8.10. Public Key Cryptography 107

Botan Reference Guide, Release 3.9.0

8.10.15 Hierarchical Signature System with Leighton-Micali Hash-Based Signatures
(HSS-LMS)

HSS-LMS is a stateful hash-based signature scheme which is defined in RFC 8554 “Leighton-Micali Hash-Based
Signatures” (https://datatracker.ietf.org/doc/html/rfc8554).

It is a multitree scheme, which is highly configurable. Multitree means, it consists of multiple layers of Merkle trees,
which can be defined individually. Moreover, the used hash function and the Winternitz Parameter of the underlying
one-time signature can be chosen for each tree layer. For a sensible selection of parameters refer to RFC 8554 Section
6.4. (https://datatracker.ietf.org/doc/html/rfc8554#section-6.4).

Warning

HSS-LMS is stateful, meaning the private key updates after each signature creation. Applications are responsible for
updating their persistent secret with the new output of Private_Key: :private_key_bits() after each signature
creation. If the same private key is ever used to generate two different signatures, then the scheme becomes insecure.
For this reason, it can be challenging to use HSS-LMS securely.

HSS-LMS uses the Botan interfaces for public key cryptography. The params argument of the HSS-LMS private key
is used to define the parameter set. The syntax of this argument must be the following:

HSS-LMS (<hash>,HW(<h>, <w>) ,HW(<h>,<w>),...)

e.g. HSS-LMS(SHA-256,HW(5,1),HW(5,1)) to use SHA-256 in a two-layer HSS instance with LMS tree height 5
and Winternitz parameter 1. This results in a private key that can be used to create up to 2°(5+5)=1024 signatures.

The following parameters are allowed (which are specified in RFC 8554 (https://datatracker.ietf.org/doc/html/rfc8554)
and and draft-fluhrer-lms-more-parm-sets-11 (https://datatracker.ietf.org/doc/html/draft-fluhrer-lms-more-parm-sets-

11)):
¢ hash: SHA-256, Truncated (SHA-256,192), SHAKE-256(256), SHAKE-256(192)
e h: 5,10, 15, 20, 25
e w:1,2,4,8

8.11 X.509 Certificates and CRLs

A certificate is a binding between some identifying information (called a subject) and a public key. This binding is
asserted by a signature on the certificate, which is placed there by some authority (the issuer) that at least claims
that it knows the subject named in the certificate really “owns” the private key corresponding to the public key in the
certificate.

The major certificate format in use today is X.509v3, used for instance in the Transport Layer Security (TLS) protocol.
A X.509 certificate is represented by the class X509_Certificate. The data of an X.509 certificate is stored as
a shared_ptr to a structure containing the decoded information. So copying X509_Certificate objects is quite
cheap.

class X509_Certificate
X509_Certificate(const std::string &filename)
Load a certificate from a file. PEM or DER is accepted.

X509_Certificate(const std::vector<uint8_t> &in)

Load a certificate from a byte string.

108 Chapter 8. API Reference

https://datatracker.ietf.org/doc/html/rfc8554
https://datatracker.ietf.org/doc/html/rfc8554
https://datatracker.ietf.org/doc/html/rfc8554#section-6.4
https://datatracker.ietf.org/doc/html/rfc8554#section-6.4
https://datatracker.ietf.org/doc/html/rfc8554
https://datatracker.ietf.org/doc/html/draft-fluhrer-lms-more-parm-sets-11

Botan Reference Guide, Release 3.9.0

X509_Certificate(DataSource &source)

Load a certificate from an abstract DataSource.

X509_DN subject_dn() const

Returns the distinguished name (DN) of the certificate’s subject. This is the primary place where infor-
mation about the subject of the certificate is stored. However “modern” information that doesn’t fit in the
X.500 framework, such as DNS name, email, IP address, or XMPP address, appears instead in the subject
alternative name.

X509 DN issuer_dn() const

Returns the distinguished name (DN) of the certificate’s issuer, ie the CA that issued this certificate.

const AlternativeName &subject_alt_name() const
Return the subjects alternative name. This is used to store values like associated URIs, DNS addresses, and
email addresses.

const AlternativeName &issuer_alt_name () const

Return alternative names for the issuer.

std::unique_ptr<Public_Key> load_subject_public_key() const

Deserialize the stored public key and return a new object. This might throw, if it happens that the public
key object stored in the certificate is malformed in some way, or in the case that the public key algorithm
used is not supported by the library.

See Serializing Public Keys for more information about what to do with the returned object. It may be any
type of key, in principle, though RSA and ECDSA are most common.

std::vector<uint8_t> subject_public_key_bits() const
Return the binary encoding of the subject public key. This value (or a hash of it) is used in various protocols,
eg for public key pinning.

AlgorithmIdentifier subject_public_key_algo() const

Return an algorithm identifier that identifies the algorithm used in the subject’s public key.

std::vector<uint8_t> serial_number () const
Return the certificates serial number. The tuple of issuer DN and serial number should be unique.
std::vector<uint8> raw_subject_dn() const
Return the binary encoding of the subject DN.
std::vector<uint8> raw_issuer_dn() const
Return the binary encoding of the issuer DN.
X509 _Time not_before() const
Returns the point in time the certificate becomes valid
X509_Time not_after() const
Returns the point in time the certificate expires
const Extensions &v3_extensions() const
Returns all extensions of this certificate. You can use this to examine any extension data associated with
the certificate, including custom extensions the library doesn’t know about.
std::vector<uint8_t> authority_key_id () const

Return the authority key id, if set. This is an arbitrary string; in the issuing certificate this will be the subject
key id.

8.11. X.509 Certificates and CRLs 109

Botan Reference Guide, Release 3.9.0

std::vector<uint8_t> subject_key_id() const
Return the subject key id, if set.

bool allowed_extended_usage (const OID &usage) const
Return true if and only if the usage OID appears in the extended key usage extension. Also will return true
if the extended key usage extension is not used in the current certificate.

std::vector<OID> extended_key_usage () const
Return the list of extended key usages. May be empty.

std::string fingerprint (const std::string &hash_fn = "SHA-1") const

Return a fingerprint for the certificate, which is basically just a hash of the binary contents. Normally
SHA-1 or SHA-256 is used, but any hash function is allowed.

Key_Constraints constraints() const
Returns a basic list of constraints which govern usage of the key embedded in this certificate.

The Key_Constraints is a class that behaves somewhat like an enum. The easiest way to use it is with its
includes method. For example:

[constraints() .includes(Key_Constraints: :DigitalSignature) J

checks if the certificate key is valid for generating digital signatures.

bool matches_dns_name (const std::string &name) const
Check if the certificate’s subject alternative name DNS fields match name. This function also handles
wildcard certificates.

std::string to_string() const

Returns a free-form human readable string describing the certificate.

std::string PEM_encode () const
Returns the PEM encoding of the certificate

std::vector<uint8_t> BER_encode () const
Returns the DER/BER encoding of the certificate

8.11.1 X.509 Distinguished Names
class X509_DN

bool has_field(const std::string &attr) const
Returns true if get_attribute or get_first_attribute will return a value.

std::vector<std::string> get_attribute(const std::string &attr) const

Return all attributes associated with a certain attribute type.

std::string get_first_attribute(const std::string &attr) const
Like get_attribute but returns just the first attribute, or empty if the DN has no attribute of the specified
type.

std::multimap<OID, std::string> get_attributes() const
Get all attributes of the DN. The OID maps to a DN component such as 2.5.4.10 (“Organization”), and the
strings are UTF-8 encoded.

std::multimap<std::string, std::string> contents () const
Similar to get_attributes, but the OIDs are decoded to strings.

110 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

void add_attribute (const std::string &Kkey, const std::string &val)
Add an attribute to a DN.

void add_attribute (const OID &oid, const std::string &val)
Add an attribute to a DN using an OID instead of string-valued attribute type.

The X509_DN type also supports iostream extraction and insertion operators, for formatted input and output.

8.11.2 X.509v3 Extensions

X.509v3 specifies a large number of possible extensions. Botan supports some, but by no means all of them. The
following listing lists which X.509v3 extensions are supported and notes areas where there may be problems with the
handling.

Key Usage and Extended Key Usage: No problems known.

Basic Constraints: No problems known. A self-signed v1 certificate is assumed to be a CA, while a v3 certificate
is marked as a CA if and only if the basic constraints extension is present and set for a CA cert.

Subject Alternative Names: Only the “rfc822Name”, “dNSName”, and “uniformResourceldentifier” and raw
IPv4 fields will be stored; all others are ignored.

Issuer Alternative Names: Same restrictions as the Subject Alternative Names extension. New certificates gen-
erated by Botan never include the issuer alternative name.

Authority Key Identifier: Only the version using Keyldentifier is supported. If the GeneralNames version is used
and the extension is critical, an exception is thrown. If both the Keyldentifier and GeneralNames versions are
present, then the Keyldentifier will be used, and the GeneralNames ignored.

Subject Key Identifier: No problems known.

Name Constraints: No problems known (though encoding is not supported).

Any unknown critical extension in a certificate will lead to an exception during path validation.

Extensions are handled by a special class taking care of encoding and decoding. It also supports encoding and decoding
of custom extensions. To do this, it internally keeps two lists of extensions. Different lookup functions are provided to
search them.

Note

Validation of custom extensions during path validation is currently not supported.

class Extensions

void add (Certificate_Extension *extn, bool critical = false)
Adds a new extension to the extensions object. If an extension of the same type already exists, extn will
replace it. If critical is true the extension will be marked as critical in the encoding.

bool add_new (Certificate_Extension *extn, bool critical = false)
Like add but an existing extension will not be replaced. Returns true if the extension was used, false if an
extension of the same type was already in place.

void replace (Certificate_Extension *extn, bool critical = false)

Adds an extension to the list or replaces it, if the same extension was already added

std::unique_ptr<Certificate_Extension> get (const OID &oid) const

Searches for an extension by OID and returns the result

8.11.

X.509 Certificates and CRLs 111

Botan Reference Guide, Release 3.9.0

template<typename T>
std::unique_ptr<7> get_raw(const OID &oid)

Searches for an extension by OID and returns the result. Only the unknown extensions, that is, extensions
types that are not listed above, are searched for by this function.

std::vector<std::pair<std::unique_ptr<Certificate_Extension>, bool>> extensions () const

Returns the list of extensions together with the corresponding criticality flag. Only contains the supported
extension types listed above.

std::map<OID, std::pair<std::vector<uint8_t>, bool>> extensions_raw() const

Returns the list of extensions as raw, encoded bytes together with the corresponding criticality flag. Contains
all extensions, known as well as unknown extensions.

8.11.3 Certificate Revocation Lists

It will occasionally happen that a certificate must be revoked before its expiration date. Examples of this happening
include the private key being compromised, or the user to which it has been assigned leaving an organization. Certificate
revocation lists are an answer to this problem (though online certificate validation techniques are starting to become
somewhat more popular). Every once in a while the CA will release a new CRL, listing all certificates that have been
revoked. Also included is various pieces of information like what time a particular certificate was revoked, and for
what reason. In most systems, it is wise to support some form of certificate revocation, and CRLs handle this easily.

For most users, processing a CRL is quite easy. All you have to do is call the constructor, which will take a filename (or
a DataSource&). The CRLs can either be in raw BER/DER, or in PEM format; the constructor will figure out which
format without any extra information. For example:

X509_CRL crlil('crll.der");

DataSource_Stream in("crl2.pem");
X509_CRL crl2(in);

After that, pass the X509_CRL object to a Certificate_Store object with
void Certificate_Store: :add_crl (const X509_CRL &crl)

and all future verifications will take into account the provided CRL.

Certificate Stores

An object of type Certificate_Store is a generalized interface to an external source for certificates (and CRLs).
Examples of such a store would be one that looked up the certificates in a SQL database, or by contacting a CGI script
running on a HTTP server. There are currently three mechanisms for looking up a certificate, and one for retrieving
CRLs. By default, most of these mechanisms will return an empty std: :optional of X509_Certificate. This
storage mechanism is only queried when doing certificate validation: it allows you to distribute only the root key with
an application, and let some online method handle getting all the other certificates that are needed to validate an end
entity certificate. In particular, the search routines will not attempt to access the external database.

The certificate lookup methods are find_cert (by Subject Distinguished Name and optional Subject Key Identifier)
and find_cert_by_pubkey_shal (by SHA-1 hash of the certificate’s public key). The Subject Distinguished Name is
given as a X509_DN, while the SKID parameter takes a std: : vector<uint8_t> containing the subject key identifier
in raw binary. Both lookup methods are mandatory to implement.

Finally, there is a method for finding a CRL, called find_crl_for, that takes an X509_Certificate object, and
returns a std: :optional of X509_CRL. The std: : optional return type makes it easy to return no CRLs by returning
nullopt (eg, if the certificate store doesn’t support retrieving CRLs). Implementing the function is optional, and by
default will return nullopt.

Certificate stores are used in the Transport Layer Security (TLS) module to store a list of trusted certificate authorities.

112 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Note

In the 2.x library, the certificate store interface relied on shared_ptr<X509_Certificate> to avoid copies. How-
ever since 2.4.0, the X509_Certificate was internally shared, and thus the outer shared_ptr was just a cause
of needless runtime overhead and API complexity. Starting in version 3.0, the certificate store interface is defined
in terms of plain X509_Certificate.

8.11.4 In Memory Certificate Store

The in memory certificate store keeps all objects in memory only. Certificates can be loaded from disk initially, but
also added later.

class Certificate_Store_In_Memory
Certificate_Store_In_Memory (const std::string &dir)
Attempt to parse all files in dir (including subdirectories) as certificates. Ignores errors.

Certificate_Store_In_Memory(const X509 Certificate &cert)

Adds given certificate to the store

Certificate_Store_In_Memory()

Create an empty store

void add_certificate(const X509_Certificate &cert)
Add a certificate to the store

void add_crl (const X509_CRL &crl)
Add a certificate revocation list (CRL) to the store.

8.11.5 System Certificate Stores

An interface to use the system provided certificate stores is available for Unix, macOS and Windows systems,
System_Certificate_Store

8.11.6 Flatfile Certificate Stores

Flatfile_Certificate_Store is an implementation of certificate store that reads certificates as files from a direc-
tory. This is also used as the implementation of the Unix/Linux system certificate store.

The constructor takes a path to the directory to read, along with an optional boolean indicating if non-CA certificates
should be ignored.

8.11.7 SQL-backed Certificate Stores

The SQL-backed certificate stores store all objects in an SQL database. They also additionally provide private key
storage and revocation of individual certificates.

class Certificate_Store_In_SQL

Certificate_Store_In_SQL(const std::shared_ptr<SQL_Database> db, const std::string &passwd,
RandomNumberGenerator &rng, const std::string &table_prefix = "")

Create or open an existing certificate store from an SQL database. The password in passwd will
be used to encrypt private keys.

8.11. X.509 Certificates and CRLs 113

Botan Reference Guide, Release 3.9.0

bool insert_cert (const X509_Certificate &cert)
Inserts cert into the store. Returns false if the certificate is already known and true if insertion was suc-
cessful.

remove_cert (const X509_Certificate &cert)
Removes cert from the store. Returns false if the certificate could not be found and zrue if removal was
successful.

std::shared_ptr<const Private_Key> find_key (const X509_Certificate&) const
Returns the private key for “cert” or an empty shared_ptr if none was found

std::vector<X509_Certificate> find_certs_for_key (const Private_Key &key) const
Returns all certificates for private key key

bool insert_key (const X509_Certificate &cert, const Private_Key &key)
Inserts key for cert into the store, returns false if the key is already known and true if insertion was
successful.

void remove_key (const Private_Key &key)
Removes key from the store

void revoke_cert (const X509_Certificate&, CRL_Code, const X509_Time &time = X509_Time())

Marks cert as revoked starting from time

void affirm_cert (const X509_Certificate&)

Reverses the revocation for cert

std::vector<X509_CRL> generate_crls() const

Generates CRLs for all certificates marked as revoked. A CRL is returned for each unique issuer DN.

The Certificate_Store_In_SQL class operates on an abstract SQL_Database object. If support for sqlite3
was enabled at build time, Botan includes an implementation of this interface for sqlite3, and a subclass of
Certificate_Store_In_SQL which creates or opens a sqlite3 database.

class Certificate_Store_In_SQLite

Certificate_Store_In_SQLite(const std::string &db_path, const std::string &passwd,
RandomNumberGenerator &rng, const std::string &table_prefix = "")

Create or open an existing certificate store from an sqlite database file. The password in passwd
will be used to encrypt private keys.

Path Validation

The process of validating a certificate chain up to a trusted root is called path validation, and in botan that operation is
handled by a set of functions in x509path.h named x509_path_validate:

Path_Validation_Result x509_path_validate (const X509_Certificate &end_cert, const
Path_Validation_Restrictions &restrictions, const Certificate_Store
&store, const std::string &hostname = "", Usage_Type usage =
Usage_Type::UNSPECIFIED,
std::chrono::system_clock::time_point validation_time =
std::chrono::system_clock::now(), std::chrono::milliseconds
ocsp_timeout = std::chrono::milliseconds(0), const
std::vector<std::optional< OCSP::Response>> &ocsp_resp =
std::vector<std::optional< OCSP::Response>>())

114 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

The last five parameters are optional. hostname specifies a hostname which is matched against the subject DN
in end_cert according to RFC 6125. An empty hostname disables hostname validation. usage specifies key
usage restrictions that are compared to the key usage fields in end_cert according to RFC 5280, if not set to
UNSPECIFIED. validation_time allows setting the time point at which all certificates are validated. This is
really only useful for testing. The default is the current system clock’s current time. ocsp_timeout sets the
timeout for OCSP requests. The default of 0 disables OCSP checks completely. ocsp_resp allows adding
additional OCSP responses retrieved from outside of the path validation. Note that OCSP online checks are done
only as long as the http_util module was compiled in. Availability of online OCSP checks can be checked using
the macro BOTAN_HAS_ONLINE_REVOCATION_CHECKS.

For the different flavors of x509_path_validate, check x509path.h.

The result of the validation is returned as a class:

class Path_Validation_Result

Specifies the result of the validation

bool successful_validation() const

Returns true if a certificate path from end_cert to a trusted root was found and all path validation checks
passed.

std::string result_string() const

Returns a descriptive string of the validation status (for instance “Verified”, “Certificate is not yet valid”,
or “Signature error”). This is the string value of the result function below.

const X509_Certificate &trust_root () const

If the validation was successful, returns the certificate which is acting as the trust root for end_cert.

const std::vector<X509_Certificate> &cert_path() const

Returns the full certificate path starting with the end entity certificate and ending in the trust root.

Certificate_Status_Code result () const
Returns the ‘worst” error that occurred during validation. For instance, we do not want an expired certificate
with an invalid signature to be reported to the user as being simply expired (a relatively innocuous and
common error) when the signature isn’t even valid.

const std::vector<std::set<Certificate_Status_Code>> &all_statuses() const
For each certificate in the chain, returns a set of status which indicate all errors which occurred during
validation. This is primarily useful for diagnostic purposes.

std::set<std::string> trusted_hashes () const

Returns the set of all cryptographic hash functions which are implicitly trusted for this validation to be
correct.

A Path_Validation_Restrictions is passed to the path validator and specifies restrictions and options for the
validation step. The two constructors are:

Path_Validation_Restrictions(bool require_rev, size_t minimum_key_strength, bool
ocsp_all_intermediates, const std::set<std::string>
&trusted_hashes)

If require_rev is true, then any path without revocation information (CRL or OCSP check) is re-
jected with the code NO_REVOCATION_DATA. The minimum_key_strength parameter specifies the
minimum strength of public key signature we will accept is. The set of hash names trusted_hashes
indicates which hash functions we’ll accept for cryptographic signatures. Any untrusted hash will
cause the error case UNTRUSTED _HASH.

8.11. X.509 Certificates and CRLs 115

Botan Reference Guide, Release 3.9.0

Path_Validation_Restrictions(bool require_rev = false, size_t minimum_key_strength = 80, bool
ocsp_all_intermediates = false)

A variant of the above with some convenient defaults. The current default minimum_key_strength of
80 roughly corresponds to 1024 bit RSA. The set of trusted hashes is set to all SHA-2 variants, and,
if minimum_key_strength is less than or equal to 80, then SHA-1 signatures will also be accepted.

Code Example

For sheer demonstrative purposes, the following code verifies an end entity certificate against a trusted Root CA cer-
tificate.

#include <botan/certstor_system.h>
#include <botan/x509cert.h>
#include <botan/x509path.h>

int main(Q) {
// Create a certificate store and add a locally trusted CA certificate
Botan::Certificate_Store_In_Memory customStore;
customStore.add_certificate(Botan: :X509_Certificate('root.crt"));

// Additionally trust all system-specific CA certificates
Botan: :System_Certificate_Store systemStore;
std: :vector<Botan: :Certificate_Store*> trusted_roots{&customStore, &systemStore};

// Load the end entity certificate and two untrusted intermediate CAs from file

std: :vector<Botan: :X509_Certificate> end_certs;

end_certs.emplace_back(Botan: :X509_Certificate("ee.crt")); // The end-entity.
—certificate, must come first

end_certs.emplace_back(Botan: :X509_Certificate("int2.crt")); // intermediate 2

end_certs.emplace_back(Botan: :X509_Certificate("intl.crt")); // intermediate 1

// Optional: Set up restrictions, e.g. min. key strength, maximum age of OCSP.
—.responses
Botan: :Path_Validation_Restrictions restrictions;

// Optional: Specify usage type, compared against the key usage in end_certs[0]
Botan: :Usage_Type usage = Botan::Usage_Type: :UNSPECIFIED;

// Optional: Specify hostname, if not empty, compared against the DNS name in end_
—certs[0]
std: :string hostname;

Botan: :Path_Validation_Result validationResult =
Botan: :x509_path_validate(end_certs, restrictions, trusted_roots, hostname, usage);

if(!validationResult.successful_validation()) {

// call validationResult.result() to get the overall status code
return -1;

return 0; // Verification succeeded

116 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Creating New Certificates

A CA is represented by the type X509_CA, which can be found in x509_ca.h. A CA always needs its own certificate,
which can either be a self-signed certificate (see below on how to create one) or one issued by another CA (see the
section on PKCS #10 requests). Creating a CA object is done by the following constructor:

X509_CA: :X509_CA(const X509_Certificate &cert, const Private_Key &key, const std::string &hash_fn,
RandomNumberGenerator &rng)

The private key is the private key corresponding to the public key in the CA’s certificate. hash_£n is the name of the
hash function to use for signing, e.g., SHA-256. rng is queried for random during signing.

There is an alternative constructor that lets you set additional options, namely the padding scheme that will be used by
the X509_CA object to sign certificates and certificate revocation lists. If the padding is not set explicitly, the CA will
use some default. The only time you need this alternate interface is for creating RSA-PSS certificates.

X509_CA: :X509_CA(const X509_Certificate &cert, const Private_Key &key, const std::string &hash_fn, const
std::string &padding_fn, RandomNumberGenerator &rng)

Requests for new certificates are supplied to a CA in the form of PKCS #10 certificate requests (called a
PKCS10_Request object in Botan). These are decoded in a similar manner to certificates/CRLs/etc. A request is vetted
by humans (who somehow verify that the name in the request corresponds to the name of the entity who requested it),
and then signed by a CA key, generating a new certificate:

X509_Certificate X509_CA: : sign_request (const PKCS10_Request &req, RandomNumberGenerator &rng, const
X509 _Time ¬_before, const X509 Time ¬_after)

If you need more control over the signing process, you can use the methods

static X509_Certificate X509_CA: :make_cert (PK_Signer &signer, RandomNumberGenerator &rng, const Biglnt
&serial_number, const AlgorithmIdentifier &sig_algo, const
std::vector<uint8_t> &pub_key, const X509_Time ¬_before,
const X509_Time ¬_after, const X509 DN &issuer_dn, const
X509_DN &subject_dn, const Extensions &extensions)

static Extensions X509_CA: : choose_extensions (const PKCS10_Request &req, const X509_Certificate
&ca_certificate, const std::string &hash_fn)

Returns the extensions that would be created by sign_request if it was used. You can call this and then modify
the extensions list before invoking X509_CA: :make_cert

8.11.8 Generating CRLs

As mentioned previously, the ability to process CRLs is highly important in many PKI systems. In fact, according to
strict X.509 rules, you must not validate any certificate if the appropriate CRLs are not available (though hardly any
systems are that strict). In any case, a CA should have a valid CRL available at all times.

Of course, you might be wondering what to do if no certificates have been revoked. Never fear; empty CRLs, which
revoke nothing at all, can be issued. To generate a new, empty CRL, just call

X509_CRL X509_CA: :new_crl (RandomNumberGenerator &rng, uint32_t next_update = 0)
This function will return a new, empty CRL. The next_update parameter is the number of seconds before the
CRL expires. If it is set to the (default) value of zero, then a reasonable default (currently 7 days) will be used.

On the other hand, you may have issued a CRL before. In that case, you will want to issue a new CRL that contains all
previously revoked certificates, along with any new ones. This is done by calling

X509_CRL X509_CA: :update_crl (const X509_CRL &last_crl, std::vector<CRL_Entry> new_entries,
RandomNumberGenerator &rng, size_t next_update = 0)

8.11. X.509 Certificates and CRLs 117

Botan Reference Guide, Release 3.9.0

Where last_crl is the last CRL this CA issued, and new_entries is a list of any newly revoked certificates.
The function returns a new X509_CRL to make available for clients.

The CRL_Entry type is a structure that contains, at a minimum, the serial number of the revoked certificate. As serial
numbers are never repeated, the pairing of an issuer and a serial number (should) distinctly identify any certificate. In
this case, we represent the serial number as a secure_vector<uint8_t> called serial. There are two additional
(optional) values, an enumeration called CRL_Code that specifies the reason for revocation (reason), and an object
that represents the time that the certificate became invalid (if this information is known).

If you wish to remove an old entry from the CRL, insert a new entry for the same cert, with a reason code of
REMOVE_FROM_CRL. For example, if a revoked certificate has expired ‘normally’, there is no reason to continue to
explicitly revoke it, since clients will reject the cert as expired in any case.

8.11.9 Self-Signed Certificates

Generating a new self-signed certificate can often be useful, for example when setting up a new root CA, or for use in
specialized protocols. The library provides a utility function for this:

X509_Certificate create_self_signed_cert (const X509_Cert_Options &opts, const Private_Key &key, const
std::string &hash_fn, RandomNumberGenerator &rng)

Where key is the private key you wish to use (the public key, used in the certificate itself is extracted from
the private key), and opts is an structure that has various bits of information that will be used in creating the
certificate (this structure, and its use, is discussed below).

8.11.10 Creating PKCS #10 Requests

Also in x509self.h, there is a function for generating new PKCS #10 certificate requests:

PKCS10_Request create_cert_req(const X509_Cert_Options &opts, const Private_Key &key, const std::string
&hash_fn, RandomNumberGenerator &rng)

This function acts quite similarly to create_self_signed_cert, except it instead returns a PKCS #10 certificate
request. After creating it, one would typically transmit it to a CA, who signs it and returns a freshly minted X.509
certificate.

PKCS10_Request PKCS10_Request: : create(const Private_Key &key, const X509_DN &subject_dn, const
Extensions &extensions, const std::string &hash_fn,
RandomNumberGenerator &rng, const std::string
&padding_scheme ="", const std::string &challenge = "")

This function (added in 2.5) is similar to create_cert_req but allows specifying all the parameters directly.
In fact create_cert_req just creates the DN and extensions from the options, then uses this call to actually
create the PKCS10_Request object.

8.11.11 Certificate Options

What is this X509_Cert_Options thing we’ve been passing around? It’s a class representing a bunch of information
that will end up being stored into the certificate. This information comes in 3 major flavors: information about the
subject (CA or end-user), the validity period of the certificate, and restrictions on the usage of the certificate. For
special cases, you can also add custom X.509v3 extensions.

First and foremost is a number of std: : string members, which contains various bits of information about the user:
common_name, serial_number, country, organization, org_unit, locality, state, email, dns_name, and
uri. As many of these as possible should be filled it (especially an email address), though the only required ones are
common_name and country.

Additionally there are a small selection of std::vector<std: :string> members, which allow space for repeating
elements: more_org_units and more_dns.

118 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

There is another value that is only useful when creating a PKCS #10 request, which is called challenge. This is a
challenge password, which you can later use to request certificate revocation (if the CA supports doing revocations in
this manner).

Then there is the validity period; these are set with not_before and not_after. Both of these functions also take a
std: :string, which specifies when the certificate should start being valid, and when it should stop being valid. If you
don’t set the starting validity period, it will automatically choose the current time. If you don’t set the ending time, it will
choose the starting time plus a default time period. The arguments to these functions specify the time in the following
format: “2002/11/27 1:50:14”. The time is in 24-hour format, and the date is encoded as year/month/day. The date
must be specified, but you can omit the time or trailing parts of it, for example “2002/11/27 1:50” or “2002/11/27.

Third, you can set constraints on a key. The one you’re mostly likely to want to use is to create (or request) a CA
certificate, which can be done by calling the member function CA_key. This should only be used when needed.

Moreover, you can specify the padding scheme to be used when digital signatures are computed by calling function
set_padding_scheme with a string representing the padding scheme. This way, you can control the padding scheme
for self-signed certificates and PKCS #10 requests. The padding scheme used by a CA when building a certificate or
a certificate revocation list can be set in the X509_CA constructor. The supported padding schemes can be found in
src/lib/pubkey/padding.cpp. Some alternative names for the padding schemes are understood, as well.

Other constraints can be set by calling the member functions add_constraints and add_ex_constraints. The
first takes a Key_Constraints value, and replaces any previously set value. If no value is set, then the certificate
key is marked as being valid for any usage. You can set it to any of the following (for more than one usage, OR
them together): DigitalSignature, NonRepudiation, KeyEncipherment, DataEncipherment, KeyAgreement,
KeyCertSign, CrlSign, EncipherOnly, or DecipherOnly. Many of these have quite special semantics, so you
should either consult the appropriate standards document (such as RFC 5280), or just not call add_constraints, in
which case the appropriate values will be chosen for you based on the key type.

The second function, add_ex_constraints, allows you to specify an OID that has some meaning with regards
to restricting the key to particular usages. You can, if you wish, specify any OID you like, but there is a set of
standard ones that other applications will be able to understand. These are the ones specified by the PKIX stan-
dard, and are named “PKIX.ServerAuth” (for TLS server authentication), “PKIX.ClientAuth” (for TLS client au-
thentication), “PKIX.CodeSigning”, “PKIX.EmailProtection” (most likely for use with S/MIME), “PKIX.IPsecUser”,
“PKIX.IPsecTunnel”, “PKIX.IPsecEndSystem”, and “PKIX.TimeStamping”. You can call “add_ex_constraints” any
number of times - each new OID will be added to the list to include in the certificate.

Lastly, you can add any X.509v3 extensions in the extensions member, which is useful if you want to encode a custom
extension, or encode an extension in a way differently from how Botan defaults.

OCSP Requests

A client makes an OCSP request to what is termed an ‘OCSP responder’. This responder returns a signed response
attesting that the certificate in question has not been revoked. The most recent OCSP specification is as of this writing
RFC 6960 (https://datatracker.ietf.org/doc/html/rfc6960.html).

Normally OCSP validation happens automatically as part of X.509 certificate validation, as long as OCSP is enabled
(by setting a non-zero ocsp_timeout in the call to x509_path_validate, or for TLS by implementing the related
tls_verify_cert_chain_ocsp_timeout callback and returning a non-zero value from that). So most applications
should not need to directly manipulate OCSP request and response objects.

For those that do, the primary ocsp interface is in ocsp. h. First a request must be formed, using information contained
in the subject certificate and in the subject’s issuing certificate.

class OCSP: :Request

OCSP: :Request (const X509_Certificate &issuer_cert, const Biglnt &subject_serial)
Create a new OCSP request

8.11. X.509 Certificates and CRLs 119

https://datatracker.ietf.org/doc/html/rfc6960.html

Botan Reference Guide, Release 3.9.0

OCSP: :Request (const X509_Certificate &issuer_cert, const X509_Certificate &subject_cert)

Variant of the above, using serial number from subject_cert.

std::vector<uint8_t> BER_encode () const

Encode the current OCSP request as a binary string.

std::string base64_encode () const
Encode the current OCSP request as a base64 string.

Then the response is parsed and validated, and if valid, can be consulted for certificate status information.

class OCSP: :Response

OCSP: :Response (const uint8_t response_bits[], size_t response_bits_len)

Attempts to parse response_bits as an OCSP response. Throws an exception if parsing fails. Note that
this does not verify that the OCSP response is valid (ie that the signature is correct), merely that the ASN.1
structure matches an OCSP response.

Certificate_Status_Code check_signature (const std::vector<Certificate_Store*> &trust_roots, const
std::vector<X509_Certificate> &cert_path = const
std::vector<X509_Certificate>()) const

Find the issuing certificate of the OCSP response, and check the signature.

If possible, pass the full certificate path being validated in the optional cert_path argument: this ad-

ditional information helps locate the OCSP signer’s certificate in some cases. If this does not return

Certificate_Status_Code: :0CSP_SIGNATURE_OK, then the request must not be be used further.
Certificate_Status_Code verify_signature(const X509_Certificate &issuing_cert) const

If the certificate that issued the OCSP response is already known (eg, because in some specific application
all the OCSP responses will always be signed by a single trusted issuer whose cert is baked into the code)
this provides an alternate version of check_signature.

Certificate_Status_Code status_for (const X509_Certificate &issuer, const X509_Certificate &subject,
std::chrono::system_clock::time_point ref_time =
std::chrono::system_clock::now()) const

Assuming the signature is valid, returns the status for the subject certificate. Make sure to get the ordering
of the issuer and subject certificates correct.

The ref_time is normally just the system clock, but can be used if validation against some other reference
time is desired (such as for testing, to verify an old previously valid OCSP response, or to use an alternate
time source such as the Roughtime protocol instead of the local client system clock).

const X509_Time &produced_at () const

Return the time this OCSP response was (claimed to be) produced at.

const X509_DN &signer_name () const

Return the distinguished name of the signer. This is used to help find the issuing certificate.
This field is optional in OCSP responses, and may not be set.

const std::vector<uint8_t> &signer_key_hash() const

Return the SHA-1 hash of the public key of the signer. This is used to help find the issuing certificate. The
Certificate_Store API find_cert_by_pubkey_shal can search on this value.

This field is optional in OCSP responses, and may not be set.

const std::vector<uint8_t> &raw_bits() const
Return the entire raw ASN.1 blob (for debugging or specialized decoding needs)

120 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

One common way of making OCSP requests is via HTTP, see RFC 2560
(https://datatracker.ietf.org/doc/html/rfc2560.html) Appendix A for details. A basic implementation of this is
the function online_check, which is available as long as the http_util module was compiled in; check by testing
for the macro BOTAN_HAS_HTTP_UTIL.

OCSP::Response online_check (const X509_Certificate &issuer, const Bigint &subject_serial, const std::string
&ocsp_responder, const Certificate_Store *trusted_roots)

Assemble a OCSP request for serial number subject_serial and attempt to request it to responder at URI
ocsp_responder over a new HTTP socket, parses and returns the response. If trusted_roots is not null, then
the response is additionally validated using OCSP response API check_signature. Otherwise, this call must
be performed later by the application.

OCSP::Response online_check (const X509_Certificate &issuer, const X509_Certificate &subject, const
Certificate_Store *trusted_roots)

Variant of the above but uses serial number and OCSP responder URI from subject.

8.12 Transport Layer Security (TLS)

Botan has client and server implementations of TLS 1.2 and 1.3. Support for older versions of the protocol was removed
with Botan 3.0.

There is also support for DTLS (currently v1.2 only), a variant of TLS adapted for operation on datagram transports
such as UDP and SCTP. DTLS support should be considered as beta quality and further testing is invited.

The TLS implementation does not know anything about sockets or the network layer. Instead, it calls a user provided
callback (hereafter output_£fn) whenever it has data that it would want to send to the other party (for instance, by
writing it to a network socket), and whenever the application receives some data from the counterparty (for instance, by
reading from a network socket) it passes that information to TLS using TLS: : Channel: :received_data. If the data
passed in results in some change in the state, such as a handshake completing, or some data or an alert being received
from the other side, then the appropriate user provided callback will be invoked.

If the reader is familiar with OpenSSL’s BIO layer, it might be analogous to saying the only way of interacting with
Botan’s TLS is via a BIO_mem 1/O abstraction. This makes the library completely agnostic to how you write your
network layer, be it blocking sockets, libevent, asio, a message queue, IwIP on RTOS, some carrier pigeons, etc.

Note that we support an optional Boost ASIO stream that is a convenient way to use Botan’s TLS implementation as
an almost drop-in replacement of ASIO’s ssl::stream. Applications that build their network layer on Boost ASIO are
advised to use this wrapper of TLS: :Client and TLS: : Server.

Application callbacks are encapsulated as the class TLS: :Callbacks with the following members. The first three
(tls_emit_data, tls_record_received, tls_alert) are mandatory for using TLS, all others are optional and
provide additional information about the connection.

void tls_emit_data(std::span<const uint8_t> data)

Mandatory. The TLS stack requests that all bytes of data be queued up to send to the counterparty.
After this function returns, the buffer containing data will be overwritten, so a copy of the input must
be made if the callback cannot send the data immediately.

As an example you could send to perform a blocking write on a socket, or append the data to a queue
managed by your application, and initiate an asynchronous write.

For TLS all writes must occur in the order requested. For DTLS this ordering is not strictly required,
but is still recommended.
void tls_record_received (uint64_t rec_no, std::span<const uint8_t> data)

Mandatory. Called once for each application_data record which is received, with the matching (TLS
level) record sequence number.

8.12. Transport Layer Security (TLS) 121

https://datatracker.ietf.org/doc/html/rfc2560.html

Botan Reference Guide, Release 3.9.0

Currently empty records are ignored and do not instigate a callback, but this may change in a future
release.

As with tls_emit_data, the array will be overwritten sometime after the callback returns,
so a copy should be made if needed.

For TLS the record number will always increase.

For DTLS, it is possible to receive records with the rec_no field out of order, or with gaps,
corresponding to reordered or lost datagrams.

void tls_alert(Alert alert)

Mandatory. Called when an alert is received from the peer. Note that alerts received before the
handshake is complete are not authenticated and could have been inserted by a MITM attacker.

void tls_session_established(const Botan::TLS::Session_Summary &session)

Optional - default implementation is a no-op Called whenever a negotiation completes. This can
happen more than once on TLS 1.2 connections, if renegotiation occurs. The session parameter
provides information about the session which was just established.

If this function wishes to cancel the handshake, it can throw an exception which will send a close
message to the counterparty and reset the connection state.

void tls_verify_cert_chain(const std::vector<X509_Certificate> &cert_chain, const
std::vector<std::shared_ptr<const OCSP::Response>>
&ocsp_responses, const std::vector<Certificate_Store*>
&trusted_roots, Usage_Type usage, std::string_view hostname, const
Policy &policy)

Optional - default implementation should work for many users. It can be overridden for implementing
extra validation routines such as public key pinning.

Verifies the certificate chain in cert_chain, assuming the leaf certificate is the first element. Throws
an exception if any error makes this certificate chain unacceptable.

If usage is Usage_Type::TLS_SERVER_AUTH, then hostname should match the information in the
server certificate. If usage is TLS_CLIENT_AUTH, then hostname specifies the host the client is
authenticating against (from SNI); the callback can use this for any special site specific auth logic.

The ocsp_responses is a possibly empty list of OCSP responses provided by the server. In the current
implementation of TLS OCSP stapling, only a single OCSP response can be returned. A existing TLS
extension allows the server to send multiple OCSP responses, this extension may be supported in the
future in which case more than one OCSP response may be given during this callback.

The trusted_roots parameter was returned by a call from the associated Credentials_Manager.

The policy provided is the policy for the TLS session which is being authenticated using this certifi-
cate chain. It can be consulted for values such as allowable signature methods and key sizes.

std::chrono::milliseconds tls_verify_cert_chain_ocsp_timeout () const

Called by default #ls_verify_cert_chain to set timeout for online OCSP requests on the certificate
chain. Return 0 to disable OCSP. Current default is O.

std::string t1s_server_choose_app_protocol (const std::vector<std::string> &client_protos)

Optional. Called by the server when a client includes a list of protocols in the ALPN extension. The
server then choose which protocol to use, or “”’ to disable sending any ALPN response. The default
implementation returns the empty string all of the time, effectively disabling ALPN responses. The
server may also throw an exception to reject the connection; this is recommended when the client
sends a list of protocols and the server does not understand any of them.

122 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Warning

The ALPN RFC requires that if the server does not understand any of the protocols offered by the
client, it should close the connection using an alert. Carrying on the connection (for example by
ignoring ALPN when the server does not understand the protocol list) can expose applications to
cross-protocol attacks.

void tls_session_activated()

Optional. By default does nothing. This is called when the session is activated, that is once it is
possible to send or receive data on the channel. In particular it is possible for an implementation of
this function to perform an initial write on the channel.

std::vector<uint8_t> tls_provide_cert_status(const std::vector<X509 Certificate> &chain, const
Certificate_Status_Request &csr)
Optional. This can return a cached OCSP response. This is only used on the server side, and only if

the client requests OCSP stapling.

std::vector<std::vector<uint8_t>> tls_provide_cert_chain_status(const
std::vector<X509_Certificate>
&chain, const
Certificate_Status_Request
&csr)

Optional. This may be called by TLS 1.3 clients or servers when OCSP stapling was negotiated. In
contrast to t1s_provide_cert_status, this allows providing OCSP responses for each certificate
in the chain.

Note that the returned list of encoded OCSP responses must be of the same length as the input list of
certificates in the chain. By default, this will call t1s_provide_cert_status to obtain an OCSP
response for the end-entity only.

std::string t1s_peer_network_identity()
Optional. Return a string that identifies the peer in some unique way (for example, by formatting
the remote IP and port into a string). This is currently used to bind DTLS cookies to the network
identity.

void tls_inspect_handshake_msg(const Handshake_Message&)
This callback is optional, and can be used to inspect all handshake messages while the session estab-
lishment occurs.

void tls_modify_extensions (Exrensions &extn, Connection_Side which_side)
This callback is optional, and can be used to modify extensions before they are sent to the peer. For
example this enables adding a custom extension, or replacing or removing an extension set by the
library.

void tls_examine_extensions (const Extensions &extn, Connection_Side which_side)

This callback is optional, and can be used to examine extensions sent by the peer.

void tls_log_error (const char *msg)
Optional logging for an error message. (Not currently used)

void tls_log_debug(const char *msg)
Optional logging for an debug message. (Not currently used)

void tls_log_debug_bin(const char *descr, const uint8_t val[], size_t len)
Optional logging for an debug value. (Not currently used)

8.12. Transport Layer Security (TLS) 123

Botan Reference Guide, Release 3.9.0

8.12.1 TLS Channels

TLS servers and clients share an interface called TLS::Channel. A TLS channel (either client or server object) has
these methods available:

class TLS: : Channel
size_t received_data(const uint8_t buf[], size_t buf_size)

size_t received_data(std::span<const uint8_t> buf)

This function is used to provide data sent by the counterparty (eg data that you read off the socket layer).
Depending on the current protocol state and the amount of data provided this may result in one or more
callback functions that were provided to the constructor being called.

The return value of received_data specifies how many more bytes of input are needed to make any
progress, unless the end of the data fell exactly on a message boundary, in which case it will return 0
instead.

void send (const uint8_t buf[], size_t buf_size)
void send(std::string_view str)

void send(std::span<const uint8_t> vec)

Create one or more new TLS application records containing the provided data and send them. This will
eventually result in at least one call to the output_£fn callback before send returns.

If the current TLS connection state is unable to transmit new application records (for example because a
handshake has not yet completed or the connection has already ended due to an error) an exception will be
thrown.

void close()

A close notification is sent to the counterparty, and the internal state is cleared.

void send_alert (const Alert &alert)

Some other alert is sent to the counterparty. If the alert is fatal, the internal state is cleared.

bool is_active()

Returns true if and only if a handshake has been completed on this connection and the connection has not
been subsequently closed.

bool is_closed()

Returns true if and only if either a close notification or a fatal alert message have been either sent or received.

bool is_closed_for_reading()

TLS 1.3 supports half-open connections. If the peer notified a connection closure, this will return true. For
TLS 1.2 this will always return the same is_closed.

bool is_closed_for_writing()
TLS 1.3 supports half-open connections. After calling close on the channel, this will return true. For TLS
1.2 this will always return the same is_closed.

bool timeout_check()

This function does nothing unless the channel represents a DTLS connection and a handshake is actively
in progress. In this case it will check the current timeout state and potentially initiate retransmission of
handshake packets. Returns true if a timeout condition occurred.

124 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

void renegotiate (bool force_full_renegotiation = false)
Initiates a renegotiation. The counterparty is allowed by the protocol to ignore this request. If a successful
renegotiation occurs, the handshake_cb callback will be called again.

Note that TLS 1.3 does not support renegotiation. This method will throw when called on a channel that
uses TLS 1.3.

If force_full_renegotiation is false, then the client will attempt to simply renew the current session - this
will refresh the symmetric keys but will not change the session master secret. Otherwise it will initiate a
completely new session.

For a server, if force_full_renegotiation is false, then a session resumption will be allowed if the client
attempts it. Otherwise the server will prevent resumption and force the creation of a new session.

void update_traffic_keys (bool request_peer_update = false)
After a successful handshake, this will update our traffic keys and may send a request to do the same to the
peer.

Note that this is a TLS 1.3 feature and invocations on a channel using TLS 1.2 will throw.

std::vector<X509_Certificate> peer_cert_chain()

Returns the certificate chain of the counterparty. When acting as a client, this value will be non-empty.
Acting as a server, this value will ordinarily be empty, unless the server requested a certificate and the
client responded with one.

std::optional<std::string> external _psk_identity() const
When this connection was established using a user-defined Preshared Key this will return the identity of

the PSK used. If no PSK was used in the establishment of the connection this will return std::nullopt.

Note that TLS 1.3 session resumption is based on PSKs internally. Neverthelees, connections that were
established using a session resumption will return std::nullopt here.

SymmetricKey key_material_export (std::string_view label, std::string_view context, size_t length)

Returns an exported key of length bytes derived from label, context, and the session’s master secret and
client and server random values. This key will be unique to this connection, and as long as the session
master secret remains secure an attacker should not be able to guess the key.

Per RFC 5705 (https://datatracker.ietf.org/doc/html/rfc5705.html), label should begin with “EXPERI-
MENTAL” unless the label has been standardized in an RFC.

8.12.2 TLS Clients
class TLS: :Client

Client (const std::shared_ptr<Callbacks> &callbacks, const std::shared_ptr<Session_Manager>
&session_manager, const std::shared_ptr<Credentials_Manager> &creds, const std::shared_ptr<const
Policy> &policy, const std::shared_ptr<RandomNumberGenerator> &rng, Server_Information
server_info = Server_Information(), Protocol_Version offer_version =
Protocol_Version::latest_tls_version(), const std::vector<std::string> &next_protocols =
std::vector<std::string>(), size_t reserved_io_buffer_size = 16 * 1024)

Initialize a new TLS client. The constructor will immediately initiate a new session.

The callbacks parameter specifies the various application callbacks which pertain to this particular client con-
nection.

The session_manager is an interface for storing TLS sessions, which allows for session resumption upon recon-
necting to a server. In the absence of a need for persistent sessions, use TLS: : Session_Manager_In_Memory

8.12. Transport Layer Security (TLS) 125

https://datatracker.ietf.org/doc/html/rfc5705.html

Botan Reference Guide, Release 3.9.0

which caches connections for the lifetime of a single process. See TLS Session Managers for more about session
managers.

The credentials_manager is an interface that will be called to retrieve any certificates, private keys, or pre-shared
keys; see Credentials Manager for more information.

Use the optional server_info to specify the DNS name of the server you are attempting to connect to, if you know
it. This helps the server select what certificate to use and helps the client validate the connection.

Note that the server name indicator name must be a FQDN. IP addresses are not allowed by RFC 6066 and may
lead to interoperability problems.

Use the optional offer_version to control the version of TLS you wish the client to offer. Normally, you’ll want to
offer the most recent version of (D)TLS that is available, however some broken servers are intolerant of certain
versions being offered, and for classes of applications that have to deal with such servers (typically web browsers)
it may be necessary to implement a version backdown strategy if the initial attempt fails.

Warning

Implementing such a backdown strategy allows an attacker to downgrade your connection to the weakest
protocol that both you and the server support.

Setting offer_version is also used to offer DTLS instead of TLS; use
TLS: :Protocol_Version::latest_dtls_version.

Optionally, the client will advertise app_protocols to the server using the ALPN extension.

The optional reserved_io_buffer_size specifies how many bytes to pre-allocate in the I/O buffers. Use this if you
want to control how much memory the channel uses initially (the buffers will be resized as needed to process
inputs). Otherwise some reasonable default is used.

Code Example: TLS Client

A minimal example of a TLS client is provided below. The full code for a TLS client using BSD sockets is in
src/cli/tls_client.cpp

#include <botan/auto_rng.h>
#include <botan/certstor.h>
#include <botan/certstor_system.h>
#include <botan/tls.h>

/:’::':
* @brief Callbacks invoked by TLS::Channel.

* Botan::TLS::Callbacks is an abstract class.
* For improved readability, only the functions that are mandatory
* to implement are listed here. See src/lib/tls/tls_callbacks.h.
*/
class Callbacks : public Botan::TLS::Callbacks {
public:
void tls_emit_data([[maybe_unused]] std::span<const uint8_t> data) override {
// send data to tls server, e.g., using BSD sockets or boost asio

}

void tls_record_received([[maybe_unused]] uint64_t seq_no,
[[maybe_unused]] std::span<const uint8_t> data) override {
(continues on next page)

126 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

// process full TLS record received by tls server, e.g.,
// by passing it to the application

}

void tls_alert([[maybe_unused]] Botan::TLS::Alert alert) override {
// handle a tls alert received from the tls server

}
};

* @brief Credentials storage for the tls client.

#* It returns a list of trusted CA certificates.
* Here we base trust on the system managed trusted CA list.
* TLS client authentication is disabled. See src/lib/tls/credentials_manager.h.

7':/

class Client_Credentials : public Botan::Credentials_Manager {

public:
std: :vector<Botan: :Certificate_Store*> trusted_certificate_authorities(

[[maybe_unused]] const std::string& type, [[maybe_unused]] const std::string&.

—,context) override {
// return a list of certificates of CAs we trust for tls server certificates

// ownership of the pointers remains with Credentials_Manager
return {&m_cert_store};

}

std: :vector<Botan: :X509_Certificate> cert_chain(
[[maybe_unused]] const std::vector<std::string>& cert_key_types,
[[maybe_unused]] const std::vector<Botan::AlgorithmIdentifier>& cert_signature_

—schemes,
[[maybe_unused]] const std::string& type,

[[maybe_unused]] const std::string& context) override {
// when using tls client authentication (optional), return
// a certificate chain being sent to the tls server,
// else an empty list
return {};
}

std: :shared_ptr<Botan: :Private_Key> private_key_for([[maybe_unused]] const.

—Botan: :X509_Certificate& cert,
[[maybe_unused]] const.

—std: :string& type,
[[maybe_unused]] const.

—.std: :string& context) override {
// when returning a chain in cert_chain(), return the private key
// associated with the leaf certificate here
return nullptr;

}
private:
Botan: :System_Certificate_Store m_cert_store;
};
(continues on next page)
127

8.12. Transport Layer Security (TLS)

Botan Reference Guide, Release 3.9.0

(continued from previous page)

int main(Q) {
// prepare all the parameters
auto callbacks = std::make_shared<Callbacks>();
auto rng = std::make_shared<Botan: :AutoSeeded_RNG>();
auto session_mgr = std::make_shared<Botan: :TLS::Session_Manager_In_Memory>(rng) ;
auto creds = std::make_shared<Client_Credentials>();
auto policy = std::make_shared<Botan::TLS::Strict_Policy>(Q);

// open the tls connection
Botan::TLS::Client client(callbacks,
session_mgr,
creds,
policy,
rng,
Botan: :TLS: :Server_Information("botan.randombit.net", 443),
Botan: :TLS: :Protocol_Version: :TLS_V12);

while(!client.is_closed()) {
// read data received from the tls server, e.g., using BSD sockets or boost asio

J/ ...

// send data to the tls server using client.send()
}
return 0;

8.12.3 TLS Servers
class TLS: :Server

Server (const std::shared_ptr<Callbacks> &callbacks, const std::shared_ptr<Session_Manager>
&session_manager, const std::shared_ptr<Credentials_Manager> &creds, const std::shared_ptr<const
Policy> &policy, const std::shared_ptr<RandomNumberGenerator> &rng, bool is_datagram = false,
size_t reserved_io_buffer_size = 16 * 1024)

The first 5 arguments as well as the final argument reserved_io_buffer_size, are treated similarly to the client.

If a client sends the ALPN extension, the callbacks function tls_server_choose_app_protocol will be called
and the result sent back to the client. If the empty string is returned, the server will not send an ALPN response. The
function can also throw an exception to abort the handshake entirely, the ALPN specification says that if this occurs
the alert should be of type NO_APPLICATION_PROTOCOL.

The optional argument is_datagram specifies if this is a TLS or DTLS server; unlike clients, which know what type of
protocol (TLS vs DTLS) they are negotiating from the start via the offer_version, servers would not until they actually
received a client hello.

Code Example: TLS Server

A minimal example of a TLS server is provided below. The full code for a TLS server using asio is in
src/cli/tls_proxy.cpp.

128 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

#include <botan/auto_rng.h>
#include <botan/certstor.h>
#include <botan/pk_keys.h>
#include <botan/pkcs8.h>
#include <botan/tls.h>

#include <memory>

/7’: W%
* @brief Callbacks invoked by TLS::Channel.

* Botan::TLS::Callbacks is an abstract class.
* For improved readability, only the functions that are mandatory
* to implement are listed here. See src/lib/tls/tls_callbacks.h.
*/
class Callbacks : public Botan::TLS::Callbacks {
public:
void tls_emit_data([[maybe_unused]] std::span<const uint8_t> data) override {
// send data to tls client, e.g., using BSD sockets or boost asio

}

void tls_record_received([[maybe_unused]] uint64_t seq_no,
[[maybe_unused]] std::span<const uint8_t> data) override {
// process full TLS record received by tls client, e.g.,
// by passing it to the application
}

void tls_alert([[maybe_unused]] Botan::TLS::Alert alert) override {
// handle a tls alert received from the tls server
}
};

/:’: *

* @brief Credentials storage for the tls server.

* It returns a certificate and the associated private key to
* authenticate the tls server to the client.
* TLS client authentication is not requested.
* See src/lib/tls/credentials_manager.h.
*/
class Server_Credentials : public Botan::Credentials_Manager {
public:
Server_Credentials() {
Botan: :DataSource_Stream in("botan.randombit.net.key");
m_key.reset(Botan: :PKCS8: :1load_key(in) .release());

}

std: :vector<Botan: :Certificate_Store*> trusted_certificate_authorities(
[[maybe_unused]] const std::string& type, [[maybe_unused]] const std::string&.
—,context) override {
// if client authentication is required, this function
// shall return a list of certificates of CAs we trust

// for tls client certificates, otherwise return an empty list
(continues on next page)

8.12. Transport Layer Security (TLS) 129

Botan Reference Guide, Release 3.9.0

(continued from previous page)

return {};

}

std: :vector<Botan: :X509_Certificate> cert_chain(

[[maybe_unused]] const std::vector<std::string>& cert_key_types,

[[maybe_unused]] const std::vector<Botan::AlgorithmIdentifier>& cert_signature_
—.schemes,

[[maybe_unused]] const std::string& type,

[[maybe_unused]] const std::string& context) override {

// return the certificate chain being sent to the tls client

// e.g., the certificate file "botan.randombit.net.crt"

return {Botan::X509_Certificate("botan.randombit.net.crt")};

}

std: :shared_ptr<Botan: :Private_Key> private_key_for([[maybe_unused]] const.
—,Botan: :X509_Certificate& cert,
[[maybe_unused]] const.
—std::string& type,
[[maybe_unused]] const.
—,std::string& context) override {
// return the private key associated with the leaf certificate,
// 1in this case the one associated with "botan.randombit.net.crt"
return m_Kkey;

}

private:
std: :shared_ptr<Botan: :Private_Key> m_key;

e

int main(Q) {
// prepare all the parameters
auto callbacks = std::make_shared<Callbacks>();
auto rng = std::make_shared<Botan: :AutoSeeded_RNG>();
auto session_mgr = std::make_shared<Botan::TLS::Session_Manager_In_Memory>(rng);
auto creds = std::make_shared<Server_Credentials>();
auto policy = std::make_shared<Botan::TLS::Strict_Policy>(Q);

// accept tls connection from client
Botan: :TLS: :Server server(callbacks, session_mgr, creds, policy, rng);

// read data received from the tls client, e.g., using BSD sockets or boost asio
// and pass it to server.received_data().

Y oo

// send data to the tls client using server.send()

/).

return 0;

130 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.12.4 TLS Sessions

TLS allows clients and servers to support session resumption, where the end point retains some information about an
established session and then reuse that information to bootstrap a new session in way that is much cheaper computa-
tionally than a full handshake.

Every time the handshake callback (TLS: :Callbacks::tls_session_established) is called, a new session has
been established, and a TLS: : Session_Summary is included that provides information about that session:

class TLS: : Session_Summary

Protocol_Version version() const

Returns the protocol version that was negotiated

Ciphersuite ciphersite() const
Returns the ciphersuite that was negotiated.

Server_Information server_info() const
Returns information that identifies the server side of the connection. This is useful for the client in that
it identifies what was originally passed to the constructor. For the server, it includes the name the client
specified in the server name indicator extension.

bool was_resumption() const
Returns true if the session resulted from a resumption of a previously established session.

std::vector<X509_Certificate> peer_certs() const
Returns the certificate chain of the peer

std::optional<std::string> external _psk_identity() const
If the session was established using a user-provided Preshared Key, its identity will be provided here. If no
PSK was used, std::nullopt will be reported.

bool psk_used () const

Returns true if the session was established using a user-provided Preshared Key.

8.12.5 TLS Session Managers

You may want sessions stored in a specific format or storage type. To do so, implement the TLS: : Session_Manager
interface and pass your implementation to the TLS: :Client or TLS: : Server constructor.

Note

The serialization format of Session is not considered stable and is allowed to change even across minor releases.
In the event of such a change, old sessions will no longer be able to be resumed.

The interface of the TLS::Session_Manager was completely redesigned with Botan 3.0 to accommodate the new
requirements of TLS 1.3. Please also see the migration guide for an outline of the differences between the Botan 2.x
and 3.x APL

In Botan 3.0 the server-side TLS: : Session_Manager gained the competency to decide whether to store sessions in a
stateful database and just return a handle to it. Or to serialize the session into an encrypted ticket and pass it back to the
client. To distinguish those use cases, Botan 3.0 introduced a TLS: : Session_Handle class that is used throughout
this APL

Below is a brief overview of the most important methods that a custom implementation must implement. There are
more methods that provide applications with full flexibility to handle session objects. More detail can be found in the
API documentation inline.

8.12. Transport Layer Security (TLS) 131

Botan Reference Guide, Release 3.9.0

class TLS: : Session_Mananger

void store(const Session &session, const Session_Handle &handle)

Attempts to save a new session. Typical implementations will use TLS::Session::encrypt,
TLS: :Session: :DER_encode or TLS: :Session: :PEM_encode to obtain an opaque and serialized ses-
sion object for storage. It is legal to simply drop an incoming session for whatever reason.

size_t remove (const Session_Handle &handle)
Remove the session identified by handle. Future attempts at resumption should fail for this session. Returns
the number of sessions actually removed.

size_t remove_all()
Empties the session storage. Returns the number of sessions actually removed.

std::optional<Session> retrieve_one (const Session_Handle &handle)
Attempts to retrieve a single session that corresponds to handle from storage. Typical implementations will
use TLS: :Session: :decrypt or the TLS: :Session constructors that deserialize a session from DER
or PEM. If no session was found for the given handle, return std::nullopt. This method is called in TLS
servers to find a specific session for a given handle.

std::vector<Session_with_Handle> £ind_some (const Server_Information &info, size_t max_sessions_hint)

Try to find some saved sessions using information about the server. TLS 1.3 clients may offer more than
one session for resumption to the server. It is okay to ignore the max_sessions_hint and just return exactly
one or no sessions at all.

recursive_mutex_type &mutex()
Derived implementations may use this mutex to serialize concurrent requests.

In Memory Session Manager

The TLS: :Session_Manager_In_Memory implementation saves sessions in memory, with an upper bound on the
maximum number of sessions and the lifetime of a session.

It is safe to share a single object across many threads as it uses a lock internally.
class TLS: : Session_Managers_In_Memory

Session_Manager_In_Memory (RandomNumberGenerator &rng, size_t max_sessions = 1000)

Limits the maximum number of saved sessions to max_sessions.

Noop Session Mananger

The TLS: : Session_Manager_Noop implementation does not save sessions at all, and thus session resumption always
fails. Its constructor has no arguments.

SQLite3 Session Manager

This session manager is only available if support for SQLite3 was enabled at build time. If the macro
BOTAN_HAS_TLS_SQLITE3_SESSION_MANAGER is defined, then botan/tls_session_manager_sqlite.h con-
tains TLS: :Session_Manager_SQLite which stores sessions persistently to a sqlite3 database. The session data
is encrypted using a passphrase, and stored in two tables, named t1s_sessions (which holds the actual session infor-
mation) and tls_sessions_metadata (which holds the PBKDF information).

Warning

The hostnames associated with the saved sessions are stored in the database in plaintext. This may be a serious
privacy risk in some applications.

132 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

class TLS: : Session_Manager_SQLite
Session_Manager_SQLite(std::string_view passphrase, const std::shared_ptr<RandomNumberGenerator>
&rng, std::string_view db_filename, size_t max_sessions = 1000)
Uses the sqlite3 database named by db_filename.

Stateless Session Manager

This session manager is useful for servers that want to implement stateless session resumption. If supported by the
client, sessions are always encoded as opaque and encrypted session tickets. Sessions are encrypted with a symmetric
secret obtained via TLS: :Credentials_Manager: :session_ticket_key().

Session_Manager_Stateless(const std::shared_ptr<Credentials_Manager> &credentials_manager,
const std::shared_ptr<RandomNumberGenerator> &rng)

Creates a stateless session manager.

Hybrid Session Manager

This is a meta-manager that combines a TLS: : Session_Manager_Stateless with any (built-in or user-provided)
stateful session manager. Typically, such a hybrid manager is useful for TLS servers that want to support both stateless
session tickets and stateful session storage.

Session_Manager_Hybrid(std::unique_ptr<Session_Manager> stateful_manager, const
std::shared_ptr<Credentials_Manager> &credentials_manager, const
std::shared_ptr<RandomNumberGenerator> &rng, bool prefer_tickets =
true)

Creates a hybrid session manager that uses stateful_manager as its storage backend when session
tickets are not supported or desired.

8.12.6 TLS Policies

TLS::Policy is how an application can control details of what will be negotiated during a handshake. The base class
acts as the default policy. There is also a Strict_Policy (which forces only secure options, reducing compatibility)
and Text_Policy which reads policy settings from a file.

class TLS: :Policy
std::vector<std::string> allowed_ciphers () const
Returns the list of ciphers we are willing to negotiate, in order of preference.

Clients send a list of ciphersuites in order of preference, servers are free to choose any of them. Some servers
will use the clients preferences, others choose from the clients list prioritizing based on its preferences.

No export key exchange mechanisms or ciphersuites are supported by botan. The null encryption cipher-
suites (which provide only authentication, sending data in cleartext) are also not supported by the imple-
mentation and cannot be negotiated.

Cipher names without an explicit mode refers to CBC+HMAC ciphersuites.
Default value: “AES-256/GCM”, “AES-128/GCM”, “ChaCha20Poly1305”

Also allowed: “AES-256", “AES-128”, “AES-256/CCM”, “AES-128/CCM”, “AES-256/CCM(8)”, “AES-
128/CCM(8)”, “Camellia-256/GCM”, “Camellia-128/GCM”, “ARIA-256/GCM”, “ARIA-128/GCM”

Also allowed (though currently experimental): “AES-256/0CB(12)”

In versions up to 2.8.0, the CBC and CCM ciphersuites “AES-256", “AES-128”, “AES-256/CCM” and
“AES-128/CCM” were enabled by default.

Also allowed (although not recommended): “3DES”

8.12. Transport Layer Security (TLS) 133

Botan Reference Guide, Release 3.9.0

Note

Before 1.11.30 only the non-standard ChaCha20Poly1305 ciphersuite was implemented. The RFC 7905
ciphersuites are supported in 1.11.30 onwards.

Note

Support for the broken RC4 cipher was removed in 1.11.17

Note

All CBC ciphersuites are deprecated and will be removed in a future release.

std::vector<std::string> allowed_macs () const

Returns the list of algorithms we are willing to use for message authentication, in order of preference.
Default: “AEAD”, “SHA-256", “SHA-384”, “SHA-1”
A plain hash function indicates HMAC

Note

SHA-256 is preferred over SHA-384 in CBC mode because the protections against the Lucky13 attack
are somewhat more effective for SHA-256 than SHA-384.

std::vector<std::string> allowed_key_exchange_methods () const
Returns the list of key exchange methods we are willing to use, in order of preference.

Default: “ECDH”, “DH”
Also allowed: “RSA”, “ECDHE_PSK”, “PSK”

Note

Static RSA ciphersuites are disabled by default since 1.11.34. In addition to not providing forward
security, any server which is willing to negotiate these ciphersuites exposes themselves to a variety of
chosen ciphertext oracle attacks which are all easily avoided by signing (as in PFS) instead of decrypting.

Note

In order to enable RSA or PSK ciphersuites one must also enable authentication method “IMPLICIT”,
see allowed_signature_methods.

std::vector<std::string> allowed_signature_hashes() const

Returns the list of hash algorithms we are willing to use for public key signatures, in order of preference.
Default: “SHA-512”, “SHA-384", “SHA-256"
Also allowed (although not recommended): “SHA-1”

134 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Note

This is only used with TLS v1.2. In earlier versions of the protocol, signatures are fixed to using only
SHA-1 (for DSA/ECDSA) or a MD5/SHA-1 pair (for RSA).

std::vector<std::string> allowed_signature_methods () const
Default: “ECDSA”, “RSA”

Also allowed (disabled by default): “IMPLICIT”

“IMPLICIT” enables ciphersuites which are authenticated not by a signature but through a side-effect of
the key exchange. In particular this setting is required to enable PSK and static RSA ciphersuites.

std::vector<Group_Params> key_exchange_groups () const
Return a list of ECC curve and DH group TLS identifiers we are willing to use, in order of preference.
Default:

Group_Params::X25519, Group_Params::SECP256R 1, Group_Params_Code::HYBRID_X25519_ML_KEM_768,
Group_Params_Code::HYBRID_SECP256R1_ML_KEM_768, Group_Params_Code::HYBRID_SECP384R1_ML_KEM_
Group_Params:: X448, Group_Params::SECP384R1, Group_Params::SECP521RI,
Group_Params::BRAINPOOL256R1, Group_Params::BRAINPOOL384R1,
Group_Params::BRAINPOOLS512R 1, Group_Params::FFDHE_2048, Group_Params::FFDHE_3072,

std::vector<Group_Param> key_exchange_groups_to_offer() const

Return a list of groups to opportunistically offer key exchange information for in the initial ClientHello
when offering TLS 1.3. This policy has no effect on TLS 1.2 connections.

bool use_ecc_point_compression() const

Prefer ECC point compression.

Signals that we prefer ECC points to be compressed when transmitted to us. The other party may not
support ECC point compression and therefore may still send points uncompressed.

Note that the certificate used during authentication must also follow the other party’s preference.

Default: false

Note

Support for EC point compression is deprecated and will be removed in a future major release.

bool acceptable_protocol_version(Protocol_Version version)
Return true if this version of the protocol is one that we are willing to negotiate.

Default: Accepts TLS v1.2 and DTLS v1.2, and rejects all older versions.

bool server_uses_own_ciphersuite_preferences() const

If this returns true, a server will pick the cipher it prefers the most out of the client’s list. Otherwise, it will
negotiate the first cipher in the client’s ciphersuite list that it supports.

Default: true

bool allow_client_initiated_renegotiation() const

If this function returns true, a server will accept a client-initiated renegotiation attempt. Otherwise it will
send the client a non-fatal no_renegotiation alert.

Default: false

8.12. Transport Layer Security (TLS) 135

Botan Reference Guide, Release 3.9.0

bool allow_server_initiated_renegotiation() const

If this function returns true, a client will accept a server-initiated renegotiation attempt. Otherwise it will
send the server a non-fatal no_renegotiation alert.

Default: false

bool abort_connection_on_undesired_renegotiation() const

If a renegotiation attempt is being rejected due to the configura-
tion of TLS::Policy::allow_client_initiated_renegotiation or
TLS::Policy::allow_server_initiated_renegotiation, and this function returns true then
the connection is closed with a fatal alert instead of the default warning alert.

Default: false

bool allow_insecure_renegotiation() const

If this function returns true, we will allow renegotiation attempts even if the counterparty does not support
the RFC 5746 extensions.

Warning

Returning true here could expose you to attacks

Default: false

size_t minimum_signature_strength() const

Return the minimum strength (as n, representing 2**n work) we will accept for a signature algorithm on
any certificate.

Use 80 to enable RSA-1024 (not recommended), or 128 to require either ECC or large (~3000 bit) RSA
keys.

Default: 110 (allowing 2048 bit RSA)

bool require_cert_revocation_info() const

If this function returns true, and a ciphersuite using certificates was negotiated, then we must have access
to a valid CRL or OCSP response in order to trust the certificate.

Warning

Returning false here could expose you to attacks

Default: true

Group_Params default_dh_group() const

For ephemeral Diffie-Hellman key exchange, the server sends a group parameter. Return the 2 Byte TLS
group identifier specifying the group parameter a server should use.

Default: 2048 bit IETF IPsec group (“modp/ietf/2048”)

size_t minimum_dh_group_size() const

Return the minimum size in bits for a Diffie-Hellman group that a client will accept. Due to the design of
the protocol the client has only two options - accept the group, or reject it with a fatal alert then attempt to
reconnect after disabling ephemeral Diffie-Hellman.

Default: 2048 bits

136

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

bool allow_t1s12() const
Return true from here to allow TLS v1.2. Returns true by default.

bool allow_t1s13() const
Return true from here to allow TLS v1.3. Returns true by default.

size_t minimum_rsa_bits() const
Minimum accepted RSA key size. Default 2048 bits.

size_t minimum_dsa_group_size() const
Minimum accepted DSA key size. Default 2048 bits.

size_t minimum_ecdsa_group_size() const
Minimum size for ECDSA keys (256 bits).

size_t minimum_ecdh_group_size() const
Minimum size for ECDH keys (255 bits).

void check_peer_key_acceptable (const Public_Key &public_key) const
Allows the policy to examine peer public keys. Throw an exception if the key should be rejected. De-
fault implementation checks against policy values minimum_dh_group_size, minimum_rsa_bits, mini-
mum_ecdsa_group_size, and minimum_ecdh_group_size.

bool hide_unknown_users () const

The PSK suites work using an identifier along with a shared secret. If this function returns true, when an
identifier that the server does not recognize is provided by a client, a random shared secret will be generated
in such a way that a client should not be able to tell the difference between the identifier not being known
and the secret being wrong. This can help protect against some username probing attacks. If it returns
false, the server will instead send an unknown_psk_identity alert when an unknown identifier is used.

Default: false

std::chrono::seconds session_ticket_lifetime() const

Return the lifetime of session tickets. Each session includes the start time. Sessions resumptions using
tickets older than session_ticket_lifetime seconds will fail, forcing a full renegotiation.

Default: 86400 seconds (1 day)

size_t new_session_tickets_upon_handshake_success() const

Return the number of session tickets a TLS 1.3 server should issue automatically

once a successful handshake was made. Alternatively, wusers may manually call
TLS: :Server::send_new_session_tickets() at any time after a successful handshake.
Default: 1

std::optional<uint16_t> record_size_limit() const

Defines the maximum TLS record length this peer is willing to receive or std::nullopt in case of no prefer-
ence (will use the maximum allowed).

This is currently implemented for TLS 1.3 only and will not be negotiated if TLS 1.2 is used or allowed.
Default: no preference (use maximum allowed by the protocol)

bool tls_13_middlebox_compatibility_mode() const
Enables middlebox compatibility mode as defined in RFC 8446 Appendix D.4.

Default: true

8.12. Transport Layer Security (TLS) 137

Botan Reference Guide, Release 3.9.0

8.12.7 TLS Ciphersuites
class TLS: :Ciphersuite
uintl6_t ciphersuite_code() const
Return the numerical code for this ciphersuite

std::string to_string () const

Return the full name of ciphersuite (for example “RSA_WITH_RC4_128_SHA” or
“ECDHE_RSA_WITH_AES_128_GCM_SHA256)

std::string kex_algo() const

Return the key exchange algorithm of this ciphersuite
std::string sig_algo() const

Return the signature algorithm of this ciphersuite
std::string cipher_algo() const

Return the cipher algorithm of this ciphersuite

std::string mac_algo() const

Return the authentication algorithm of this ciphersuite

bool acceptable_ciphersuite(const Ciphersuite &suite) const

Return true if ciphersuite is accepted by the policy.

Allows an application to reject any ciphersuites, which are undesirable for whatever reason without having
to reimplement TLS: : Ciphersuite: :ciphersuite_list

std::vector<uint16_t> ciphersuite_list (Prorocol_Version version, bool have_srp) const

Return allowed ciphersuites in order of preference

Allows an application to have full control over ciphersuites by returning desired ciphersuites in preference
order.

8.12.8 TLS Alerts

A TLS: :Alert is passed to every invocation of a channel’s alert_cb.
class TLS::Alert
is_valid() const
Return true if this alert is not a null alert

is_fatal () const

Return true if this alert is fatal. A fatal alert causes the connection to be immediately disconnected. Other-
wise, the alert is a warning and the connection remains valid.

Type type() const

Returns the type of the alert as an enum

std::string type_string ()
Returns the type of the alert as a string

8.12.9 TLS Protocol Version

TLS has several different versions with slightly different behaviors. The TLS: : Protocol_Version class represents a
specific version:

138 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

class TLS: :Protocol_Version
enum Version_Code
TLS_V10, TLS_V11, TLS_V12, DTLS_V10, DTLS_V12

Protocol_Version(Version Code named_version)

Create a specific version

uint8_t major_version() const

Returns major number of the protocol version

uint8_t minor_version() const

Returns minor number of the protocol version

std::string to_string() const

Returns string description of the version, for instance “TLS v1.1” or “DTLS v1.0”.

static Protocol _Version latest_tls_version()
Returns the latest version of the TLS protocol known to the library (currently TLS v1.2)

static Protocol _Version latest_dtls_version()
Returns the latest version of the DTLS protocol known to the library (currently DTLS v1.2)

8.12.10 Post-quantum-secure key exchange
Added in version ::: 3.2

Botan allows TLS 1.3 handshakes using both pure post-quantum secure algorithms or a hybrid key exchange that
combines a classical and a post-quantum secure algorithm. For the latter it implements the recent IETF draft-ietf-tls-
hybrid-design (https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design).

Note that post-quantum key exchanges in TLS 1.3 are not conclusively standardized. Therefore, the key exchange group
identifiers used by various TLS 1.3 implementations are not consistent. Applications that wish to enable hybrid key
exchanges must enable the hybrid algorithms in their TLS policy. Override TLS::Policy::key_exchange_groups() and
return a list of the desired exchange groups. For text-based policy configurations use the identifiers in parenthesis.

Currently, Botan supports the following post-quantum secure key exchanges:

e ML-KEM plus ECC hybrid, as deployed by Google, Cloudflare, etc and likely to be in the future standardized
by IETF

— HYBRID_SECP256R1_ML_KEM_768 (“secp256r1/ML-KEM-768”)
— HYBRID_SECP384R1_ML_KEM_1024 (“secp384r1/ML-KEM-1024")
— HYBRID_X25519_ML_KEM_768 (“x25519/ML-KEM-768")
¢ Pure ML-KEM as documented in IETF draft draft-connolly-tls-mlkem-key-agreement
— ML_KEM_512
— ML_KEM_768
— ML_KEM_1024

Code Example: Hybrid TLS Client

#include <botan/auto_rng.h>
#include <botan/certstor.h>
#include <botan/tls.h>

(continues on next page)

8.12. Transport Layer Security (TLS) 139

https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design

Botan Reference Guide, Release 3.9.0

(continued from previous page)

#* @brief Callbacks invoked by TLS::Channel.

* Botan::TLS::Callbacks is an abstract class.
* For improved readability, only the functions that are mandatory
* to implement are listed here. See src/lib/tls/tls_callbacks.h.
*/
class Callbacks : public Botan::TLS::Callbacks {
public:
void tls_emit_data([[maybe_unused]] std::span<const uint8_t> data) override {
// send data to tls server, e.g., using BSD sockets or boost asio

}

void tls_record_received([[maybe_unused]] uint64_t seq_no,
[[maybe_unused]] std::span<const uint8_t> data) override {
// process full TLS record received by tls server, e.g.,
// by passing it to the application
}

void tls_alert([[maybe_unused]] Botan::TLS::Alert alert) override {
// handle a tls alert received from the tls server
}
};

/:’: %

* @brief Credentials storage for the tls client.

#* It returns a list of trusted CA certificates from a local directory.
TLS client authentication is disabled. See src/lib/tls/credentials_manager.h.
*/
class Client_Credentials : public Botan::Credentials_Manager {
public:
std: :vector<Botan: :Certificate_Store*> trusted_certificate_authorities(
[[maybe_unused]] const std::string& type, [[maybe_unused]] const std::string&.
—,context) override {
// return a list of certificates of CAs we trust for tls server certificates,
// e.g., all the certificates in the local directory '"cas"
return {&m_cert_store};

}

private:
Botan: :Certificate_Store_In_Memory m_cert_store{"cas"};

e

class Client_Policy : public Botan::TLS::Default_Policy {
public:
// This needs to be overridden to enable the hybrid PQ/T groups
// additional to the default (classical) key exchange groups
std: :vector<Botan: :TLS: : Group_Params> key_exchange_groups() const override {
auto groups = Botan::TLS::Default_Policy: :key_exchange_groups();
groups.push_back(Botan: : TLS: : Group_Params: : HYBRID_X25519_ML_KEM_768) ;

(continues on next page)

140 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

groups.push_back(Botan: :TLS: : Group_Params: : HYBRID_SECP256R1_ML_KEM_768) ;
groups.push_back(Botan: : TLS: :Group_Params: : HYBRID_SECP384R1_ML_KEM_1024);
return groups;

}

// Define that the client should exclusively pre-offer hybrid groups
// in its initial Client Hello.
std: :vector<Botan: : TLS: : Group_Params> key_exchange_groups_to_offer() const.
—override {
return {Botan::TLS::Group_Params::HYBRID_X25519_ML_KEM_768};
}
1

int main(Q) {
// prepare all the parameters
auto rng = std::make_shared<Botan: :AutoSeeded_RNG>();
auto callbacks = std::make_shared<Callbacks>();
auto session_mgr = std::make_shared<Botan::TLS::Session_Manager_In_Memory>(rng);
auto creds = std::make_shared<Client_Credentials>();
auto policy = std::make_shared<Botan::TLS::Strict_Policy>(Q);

// open the tls connection
Botan::TLS::Client client(callbacks,
session_mgr,
creds,
policy,
rng,
Botan: :TLS: :Server_Information("botan.randombit.net", 443),
Botan: :TLS: :Protocol_Version: :TLS_V12);

while(!client.is_closed()) {
// read data received from the tls server, e.g., using BSD sockets or boost asio

/) ...

// send data to the tls server using client.send()
}
return 0;

8.12.11 TLS Custom Key Exchange Mechanisms

Applications can override the ephemeral key exchange mechanism used in TLS. This is not necessary for typical appli-
cations and might pose a serious security risk. Though, it allows the usage of custom groups or curves, offloading of
cryptographic calculations to special hardware or the addition of entirely different algorithms (e.g. for post-quantum
resilience).

From a technical point of view, the supported_groups TLS extension is used in the client hello to advertise a list of
supported elliptic curves and DH groups. The server subsequently selects one of the groups, which is supported by
both endpoints. Groups are represented by their TLS identifier. This two-byte identifier is standardized for commonly
used groups and curves. In addition, the standard reserves the identifiers OXFEOO to OXFEFF for custom groups, curves
or other algorithms.

8.12. Transport Layer Security (TLS) 141

Botan Reference Guide, Release 3.9.0

To use custom curves with the Botan TLS: :Client or TLS: : Server the following additional adjustments have to be
implemented as shown in the following code examples.

1. Registration of the custom curve

2. Implementation of TLS callbacks tls_generate_ephemeral_key and
tls_deserialize_peer_public_key

3. Adjustment of the TLS policy by allowing the custom curve

Below is a code example for a TLS client using a custom curve. For servers, it works exactly the same.

Code Example: TLS Client using Custom Curve

#include <botan/auto_rng.h>
#include <botan/certstor.h>
#include <botan/ecdh.h>
#include <botan/tls.h>

/-.':7'.-
* @brief Callbacks invoked by TLS::Channel.

* Botan::TLS::Callbacks is an abstract class.
* For improved readability, only the functions that are mandatory
* to implement are listed here. See src/lib/tls/tls_callbacks.h.
*/
class Callbacks : public Botan::TLS::Callbacks {
public:
void tls_emit_data([[maybe_unused]] std::span<const uint8_t> data) override {
// send data to tls server, e.g., using BSD sockets or boost asio

}

void tls_record_received([[maybe_unused]] uint64_t seq_no,
[[maybe_unused]] std::span<const uint8_t> data) override {
// process full TLS record received by tls server, e.g.,
// by passing it to the application
}

void tls_alert([[maybe_unused]] Botan::TLS::Alert alert) override {
// handle a tls alert received from the tls server

}

std: :unique_ptr<Botan: :PK_Key_Agreement_Key> tls_generate_ephemeral_key(
const std::variant<Botan::TLS::Group_Params, Botan::DL_Group>& group,
Botan: :RandomNumberGenerator& rng) override {
if(std::holds_alternative<Botan: :TLS: :Group_Params>(group) &&
std: :get<Botan: : TLS: : Group_Params>(group) == Botan::TLS::Group_
—Params (OxFE00)) {
// generate a private key of my custom curve
const auto ec_group = Botan::EC_Group::from_name (" 'numsp256d1");
return std::make_unique<Botan::ECDH_PrivateKey>(rng, ec_group);
} else {
// no custom curve used: up-call the default implementation
return Botan::TLS::Callbacks::tls_generate_ephemeral_key(group, rng);

(continues on next page)

142 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

}

std: :unique_ptr<Botan: :Public_Key> tls_deserialize_peer_public_key(
const std::variant<Botan: :TLS: :Group_Params, Botan::DL_Group>& group,
std: : span<const uint8_t> public_value) override {
if(std::holds_alternative<Botan: :TLS: :Group_Params>(group) &&
std: :get<Botan: : TLS: :Group_Params>(group) == Botan::TLS::Group_
—Params (O0xFE00)) {
// load the peer's public key of my custom curve
const auto ec_group = Botan::EC_Group::from_name('numsp256d1");
return std::make_unique<Botan: :ECDH_PublicKey>(ec_group, Botan::EC_
—AffinePoint (ec_group, public_value));
} else {
// no custom curve used: up-call the default implementation
return Botan::TLS::Callbacks::tls_deserialize_peer_public_key(group, public_

—value);
3
}
};
/7’::':

* @brief Credentials storage for the tls client.

* It returns a list of trusted CA certificates from a local directory.
* TLS client authentication is disabled. See src/lib/tls/credentials_manager.h.
*/
class Client_Credentials : public Botan::Credentials_Manager {
public:
std: :vector<Botan: :Certificate_Store*> trusted_certificate_authorities(
[[maybe_unused]] const std::string& type, [[maybe_unused]] const std::string&.
—,context) override {
// return a list of certificates of CAs we trust for tls server certificates,
// e.g., all the certificates in the local directory '"cas"
return {&m_cert_store};

}

private:
Botan: :Certificate_Store_In_Memory m_cert_store{"cas"};

e

class Client_Policy : public Botan::TLS::Strict_Policy {
public:
std: :vector<Botan: : TLS: : Group_Params> key_exchange_groups() const override {
// modified strict policy to allow our custom curves

// NOLINTNEXTLINE(clang-analyzer-optin.core.EnumCastOutOfRange)
return {static_cast<Botan::TLS: :Group_Params>(0xFE00)};

e

int main() {
if(!Botan: :EC_Group: : supports_application_specific_group()) {

(continues on next page)

8.12. Transport Layer Security (TLS) 143

Botan Reference Guide, Release 3.9.0

(continued from previous page)

// This build configuration does not support application specific EC groups
return 1;

}

// prepare rng
auto rng = std::make_shared<Botan: :AutoSeeded_RNG>();

// In this case we will use numsp256dl from https://datatracker.ietf.org/doc/html/
—draft-black-numscurves-02

const Botan::BigInt p(
—"OXxFF43™) ;
const Botan::BigInt a(
< "OXFF40") ;
const Botan::BigInt b("0x25581");
const Botan::BigInt n(
—"OXxFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE43C8275EA265C6020AB20294751A825™) ;

const Botan::BigInt g_x("0x01");
const Botan::BigInt g_y(
—"0x696F1853C1E466D7FC82C96CCEEEDD6BDO2C2F9375894EC10BF46306C2B56C77") ;

// This is an OID reserved in Botan's private arc for numsp256dl
// If you use some other curve you should create your own OID
const Botan::0ID oid("1.3.6.1.4.1.25258.4.1");

// create EC_Group object to register the curve
Botan: :EC_Group numsp256d1(oid, p, a, b, g_x, gy, n);

if('numsp256d1.verify_group(*rng)) {
return 1;
// Warning: if verify group returns false the curve parameters are insecure

3

// register name to specified oid
Botan: :0ID: :register_oid(oid, "numsp256d1");

// prepare all the parameters

auto callbacks = std::make_shared<Callbacks>();

auto session_mgr = std::make_shared<Botan: :TLS::Session_Manager_In_Memory>(rng);
auto creds = std::make_shared<Client_Credentials>();

auto policy = std::make_shared<Botan::TLS::Strict_Policy>(Q);

// open the tls connection
Botan::TLS::Client client(callbacks,
session_mgr,
creds,
policy,
rng,
Botan: :TLS: :Server_Information("botan.randombit.net", 443),
Botan: :TLS: :Protocol_Version: :TLS_V12);

(continues on next page)

144 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

while(!client.is_closed()) {
// read data received from the tls server, e.g., using BSD sockets or boost asio

J/ ...

// send data to the tls server using client.send()
}
return 0;

8.12.12 TLS Stream

TLS::Stream offers a Boost.Asio compatible wrapper around TLS::Client and
TLS: :Server. It can be used as an alternative to Boost.Asio’s ssl::stream
(https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/ssl__stream.html) with minor adjustments to
the using code.

To use the asio stream wrapper, a relatively recent version of boost is required. Include botan/asio_compat.h and
check that BOTAN_FOUND_COMPATIBLE_BOOST_ASIO_VERSION is defined before including botan/asio_stream.h
to be ensure compatibility at compile time of your application.

The asio Stream offers the following interface:

template<class StreamLayer, class ChannelT>
class TLS: :Stream

StreamLayer specifies the type of the stream’s next layer, for example a Boost.Asio TCP socket
(https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/ip__tcp/socket.html). ChannelT is the
type of the stream’s native handle; it defaults to TLS: : Channel and should not be specified manually.

template<typename ...Args>
explicit Stream(Context &context, Args&&... args)

Construct a new TLS stream. The context parameter will be used to initialize the underlying native handle, i.e.
the TLS::Client or TLS::Server, when handshake is called. Using code must ensure the context is kept alive for
the lifetime of the stream. The further args will be forwarded to the next layer’s constructor.

template<typename ...Args>
explicit Stream(Arg &&arg, Context &context)

Convenience constructor for boost: :asio: :ssl: :streamcompatibility. The parameters have the same mean-
ing as for the first constructor, but their order is changed and only one argument can be passed to the next layer
constructor.

void handshake (Connection_Side side, boost::system::error_code &ec)

Set up the native handle and perform the TLS handshake.
void handshake (Connection_Side side)

Overload of handshake that throws an exception if an error occurs.

template<typename HandshakeHandler>
DEDUCED async_handshake (Connection_Side side, HandshakeHandler &&handler)

Asynchronous variant of handshake. The function returns immediately and calls the handler callback function
after performing asynchronous I/O to complete the TLS handshake. The return type is an automatically deduced
specialization of boost::asio: :async_result, depending on the HandshakeHandler type.

8.12. Transport Layer Security (TLS) 145

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/ssl__stream.html
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/ip__tcp/socket.html

Botan Reference Guide, Release 3.9.0

void shutdown (boost::system::error_code &ec)

Calls TLS: : Channel: : close on the native handle and writes the TLS alert to the next layer.

void shutdown ()

Overload of shutdown that throws an exception if an error occurs.

template<typename ShutdownHandler>
void async_shutdown (ShutdownHandler &&handler)

Asynchronous variant of shutdown. The function returns immediately and calls the handler callback function
after performing asynchronous I/O to complete the TLS shutdown.

template<typename MutableBufferSequence>
std::size_t read_some (const MutableBufferSequence &buffers, boost::system::error_code &ec)

Reads encrypted data from the next layer, decrypts it, and writes it into the provided buffers. If an error occurs,
error_code is set. Returns the number of bytes read.

template<typename MutableBufferSequence>
std::size_t read_some (const MutableBufferSequence &buffers)

Overload of read_some that throws an exception if an error occurs.

template<typename MutableBufferSequence, typename ReadHandler>
DEDUCED async_read_some (const MutableBufferSequence &buffers, ReadHandler &&handler)

Asynchronous variant of read_some. The function returns immediately and calls the handler
callback function after writing the decrypted data into the provided buffers. The return type
is an automatically deduced specialization of boost::asio::async_result, depending on the
ReadHandler type. ReadHandler should suffice the requirements to a Boost.Asio read handler
(https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/ReadHandler.html).

template<typename ConstBufferSequence>
std::size_t write_some (const ConstBufferSequence &buffers, boost::system::error_code &ec)

Encrypts data from the provided buffers and writes it to the next layer. If an error occurs, error_code is set.
Returns the number of bytes written.

template<typename ConstBufferSequence>
std::size_t write_some (const ConstBufferSequence &buffers)

Overload of write_some that throws an exception rather than setting an error code.

template<typename ConstBufferSequence, typename WriteHandler>
DEDUCED async_write_some (const ConstBufferSequence &buffers, WriteHandler &&handler)

Asynchronous variant of write_some. The function returns immediately and calls the handler
callback function after writing the encrypted data to the next layer. The return type is an au-
tomatically deduced specialization of boost::asio::async_result, depending on the Write-
Handler type. WriteHandler should suffice the requirements to a Boost.Asio write handler
(https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/WriteHandler.html).

class TLS: : Context
A helper class to initialize and configure the Stream’s underlying native handle (see TLS::Client and
TLS: :Server).

Context (Credentials_Manager &credentialsManager, RandomNumberGenerator
&randomNumberGenerator, Session_Manager &sessionManager, Policy &policy,
Server_Information serverInfo = Server_Information())

146 Chapter 8. API Reference

https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/ReadHandler.html
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/reference/WriteHandler.html

Botan Reference Guide, Release 3.9.0

Constructor for TLS::Context.
void set_verify_callback(Verify_Callback_T callback)

Set a user-defined callback function for certificate chain verification. This will cause the stream to override the
default implementation of the t1s_verify_cert_chain callback.

Code Examples: HTTPS Client using Boost Beast

Starting with Botan 3.3.0 (and assuming a recent version of Boost), one may use Botan’s TLS using C++20 coroutines.
The following example implements a minimal HTTPS client using Botan’s default settings to fetch content from web
servers.

To establish trust in the server’s certificate, Botan attempts to use the system’s trust store (supported on macOS, Linux
and Windows). If that does not work, you might get an error indicating that the certificate is not trusted. In that case,
you can provide a custom trust store by subclassing the Credentials_Manager and passing it to the TLS: : Stream
as shown in this example.

Note that Botan’s default TLS policy requires servers to provide a valid CRL or OCSP response for their certificate. To
disable this, derive the default policy class TLS: :Policy, override require_cert_revocation_info accordingly
and pass an object of your policy via the TLS: : Context to the TLS: : Stream.

#include <iostream>
#include <botan/asio_compat.h>

// Boost 1.81.0 introduced support for the finalized C++20 coroutines

// in clang 14 and newer. Older versions of Boost might work with other

// compilers, though.

#1if defined(BOTAN_FOUND_COMPATIBLE_BOOST_ASIO_VERSION) && BOOST_VERSION >= 108100
#define BOOST_VERSION_IS_COMPATIBLE

#endif

#1if defined(BOOST_VERSION_IS_COMPATIBLE) && defined(BOTAN_HAS_HAS_DEFAULT_TLS_CONTEXT)

#include <botan/asio_stream.h>
#include <botan/version.h>

#include <boost/asio/awaitable.hpp>
#include <boost/asio/co_spawn.hpp>
#include <boost/asio/detached.hpp>
#include <boost/asio/use_awaitable.hpp>
#include <boost/beast/core.hpp>
#include <boost/beast/http.hpp>
#include <boost/beast/version.hpp>

namespace beast = boost::beast;
namespace http = beast::http;
namespace net = boost::asio;
namespace tls = Botan::TLS;
using tcp = boost::asio::ip::tcp;

namespace {

http: :request<http::string_body> create_GET_request(const std::string& host, const.

(continues on next page)

8.12. Transport Layer Security (TLS) 147

Botan Reference Guide, Release 3.9.0

(continued from previous page)

—std::string& target) {

http: :request<http: :string_body> req;

req.version(11);

req.methodChttp: :verb: :get);

req.target(target);

req.setChttp::field: :host, host);

req.set(http::field: :user_agent, Botan::version_string());

return req;

net::awaitable<void> request(std::string host, std::string port, std::string target) {
// Lookup host address
auto resolver = net::use_awaitable.as_default_on(tcp::resolver(co_await net::this_
—,COoro: :executor));
const auto dns_result = co_await resolver.async_resolve(host, port);

// Connect to host and establish a TLS session
auto tls_stream =
tls::Stream(tls: :Server_Information(host),
net::use_awaitable.as_default_on(beast::tcp_stream(co_await net::this_

<,COro: :executor)));

tls_stream.next_layer().expires_after(std: :chrono: :seconds(30));

co_await tls_stream.next_layer().async_connect(dns_result);

co_await tls_stream.async_handshake(tls::Connection_Side::Client);

// Send HTTP GET request
tls_stream.next_layer().expires_after(std: :chrono: :seconds(30));
co_await http::async_write(tls_stream, create_GET_request(host, target));

// Receive HTTP response and print result
beast::flat_buffer b;

http: :response<http: :dynamic_body> res;
co_await http::async_read(tls_stream, b, res);
std: :cout << res << std::endl;

// Terminate connection
co_await tls_stream.async_shutdown();
tls_stream.next_layer().close();

} // namespace

int main(int argc, char* argv[]) {
if(argc !'= 4) {
std::cerr << "Usage: tls_stream_coroutine_client <host> <port> <target>\n"
<< "Example:\n"
<< " tls_stream_coroutine_client botan.randombit.net 443 /news.html\n

return 1;

const auto host = argv[1];

(continues on next page)

148 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

const auto port = argv[2];
const auto target = argv[3];

int return_code = 0;

try {
net::io_context ioc;

net::co_spawn(ioc, request(host, port, target), [&](const std::exception_ptré&.

—eptr) {
if(eptr) {
try {
std: :rethrow_exception(eptr);
} catch(std::exception& ex) {
std::cerr << "Error: " << ex.what() << "\n";
return_code = 1;
}
1
b
ioc.run();

} catch(std::exception& e) {
std::cerr << e.what() << "\n";

}

return return_code;
}
#else

int main() {
#1if !defined(BOOST_VERSION_IS_COMPATIBLE)
std: :cout << "Your boost version is too old, sorry.\n"
<< "Or did you compile Botan without --with-boost?\n";
#endif
#1f !defined (BOTAN_HAS_HAS_DEFAULT_TLS_CONTEXT)
std: :cout << "Your system needs an auto seeded RNG and a certificate store.\n";
#endif
return 1;

}

#endif

Aside of the modern coroutines-based approach, the ASIO stream may also be used in a more traditional way, using
callback handler methods instead of coroutines.

Also, this example shows how to use a custom Credentials_MNanager and pass it to the TLS::Stream via a
TLS: :Context object.

#include <iostream>

#include <botan/asio_compat.h>
#1if defined(BOTAN_FOUND_COMPATIBLE_BOOST_ASIO_VERSION)

(continues on next page)

8.12. Transport Layer Security (TLS) 149

Botan Reference Guide, Release 3.9.0

(continued from previous page)

#include <botan/asio_stream.h>
#include <botan/auto_rng.h>
#include <botan/certstor_system.h>
#include <botan/tls.h>

#include <botan/version.h>

#include <boost/asio.hpp>
#include <boost/beast.hpp>
#include <boost/bind.hpp>

namespace http = boost::beast::http;
namespace ap = boost::asio::placeholders;

// very basic credentials manager
class Credentials_Manager : public Botan::Credentials_Manager {
public:
Credentials_Manager() = default;

std: :vector<Botan: :Certificate_Store*> trusted_certificate_authorities(const.
—std: :string& /*type®/,
const,.
—.std: :string& /*context*/) override {
return {&m_cert_store};

}

private:
Botan: :System_Certificate_Store m_cert_store;

e
// NOLINTBEGIN(*-avoid-bind)

// a simple https client based on TLS::Stream
class client {
public:
client(boost::asio::io_context& io_context,
const boost::asio::ip::tcp::resolver::results_type& endpoints,
std: :string _view host,
const http::request<http::string_body>& req)
m_request(req),
m_ctx(std: :make_shared<Botan: :TLS: :Context>(std: :make_shared<Credentials_
—Manager>Q),
std: :make_shared
—.<Botan: :AutoSeeded_RNG>(),
std: :make_shared
—.<Botan: :TLS: : Session_Manager_Noop>(),
std: :make_shared
—<Botan: :TLS: :Policy>(),
Botan: : TLS: :Server_
—InformationChost))),
m_stream(io_context, m_ctx) {
boost::asio: :async_connect(m_stream.lowest_layer(),

(continues on next page)

150 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

endpoints.begin(),

endpoints.end(),

boost: :bind(&client: :handle_connect, this,..
<,ap::error));

3

void handle_connect(const boost::system::error_code& error) {
if(error) {
std: :cout << "Connect failed:
return;

<< error.message() << '\n';

3
m_stream.async_handshake(Botan: :TLS: :Connection_Side: :Client,
boost: :bind(&client: :handle_handshake, this,..
<,ap::error));

3

void handle_handshake(const boost::system::error_code& error) {
if(error) {
std: :cout << "Handshake failed:
return;

<< error.message() << '\n';

1
http: :async_write(
m_stream, m_request, boost::bind(&client::handle_write, this, ap::error,.
—.ap: :bytes_transferred));

}

void handle_write(const boost::system::error_code& error, size_t /*unused®/) {
if(error) {
std::cout << "Write failed:
return;

<< error.message() << '\n';

1
http: :async_read(
m_stream, m_reply, m_response, boost::bind(&client::handle_read, this,..
—.ap::error, ap::bytes_transferred));

3

void handle_read(const boost::system::error_code& error, size_t /*unused®/) {
if(lerror) {

std::cout << "Reply: ";

std::cout << m_response.body() << '\n';

} else {
std::cout << "Read failed: " << error.message() << '\n';
}
}
private:

http: :request<http: :dynamic_body> m_request;
http: :response<http::string_body> m_response;
boost::beast::flat_buffer m_reply;

std: :shared_ptr<Botan: :TLS: :Context> m_ctx;
Botan: :TLS: :Stream<boost::asio::ip::tcp::socket> m_stream;

(continues on next page)

8.12. Transport Layer Security (TLS) 151

Botan Reference Guide, Release 3.9.0

(continued from previous page)

};
// NOLINTEND(*-avoid-bind)

int main(int argc, char* argv[]) {
if(argc !'= 4) {
std: :cerr << "Usage: tls_stream_client <host> <port> <target>\n"
<< "Example:\n"
<< " tls_stream_client botan.randombit.net 443 /news.html\n";
return 1;

auto* const host = argv[1l];
auto® const port = argv[2];
auto® const target = argv[3];

try {
boost::asio::io_context io_context;

boost::asio::ip::tcp::resolver resolver(io_context);
boost::asio::ip::tcp::resolver::results_type endpoints = resolver.resolve(Chost,.
—port);

http: :request<http::string_body> req;

req.version(1l1);

req.method(http: :verb: :get);

req.target(target);

req.set(http: :field: :host, host);

req.set(http::field: :user_agent, Botan::version_string());

client c(io_context, endpoints, host, req);
io_context.run();

} catch(std::exception& e) {
std::cerr << e.what(Q);

return 1;
}
return 0;
}
#else

int main() {
std::cout << "Your boost version is too old, sorry.\n"
<< "Or did you compile Botan without --with-boost?\n";
return 1;

#endif

152 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.12.13 TLS Session Encryption

A unified format is used for encrypting TLS sessions either for durable storage (on client or server) or when creating
TLS session tickets. This format is not stable even across the same major version.

The current session encryption scheme was introduced in 2.13.0, replacing the format previously used since 1.11.13.

Session encryption accepts a key of any length, though for best security a key of 256 bits should be used. This master
key is used to key an instance of HMAC using the SHA-512/256 hash.

First a “key name” or identifier is created, by HMAC’ing the fixed string “BOTAN TLS SESSION KEY NAME” and
truncating to 4 bytes. This is the initial prefix of the encrypted session, and will remain fixed as long as the same ticket
key is used. This allows quickly rejecting sessions which are encrypted using an unknown or incorrect key.

Then a key used for AES-256 in GCM mode is created by first choosing a 128 bit random seed, and HMAC’ing it
to produce a 256-bit value. This means for any one master key as many as 2'?® GCM keys can be created. This is
done because NIST recommends that when using random nonces no one GCM key be used to encrypt more than 232
messages (to avoid the possiblity of nonce reuse).

A random 96-bit nonce is created and included in the header.

AES in GCM is used to encrypt and authenticate the serialized session. The key name, key seed, and AEAD nonce are
all included as additional data.

8.13 Credentials Manager

A Credentials_Manager is a way to abstract how the application stores credentials. The main user is the Transport
Layer Security (TLS) implementation.

class Credentials_Manager

std::vector<Certificate_Store*> trusted_certificate_authorities(const std::string &type, const
std::string &context)

Return the list of certificate stores, each of which is assumed to contain (only) trusted certificate authorities.
The Credentials_Manager retains ownership of the Certificate_Store pointers.

Note

It would have been a better API to return a vector of shared_ptr here. This may change in a future
major release.

When type is “tls-client”, context will be the hostname of the server, or empty if the hostname is not known.
This allows using a different set of certificate stores in different contexts, for example using the system
certificate store unless contacting one particular server which uses a cert issued by an internal CA.

When #ype is “tls-server”, the context will again be the hostname of the server, or empty if the client did not
send a server name indicator. For TLS servers, these CAs are the ones trusted for signing of client certifi-
cates. If you do not want the TLS server to ask for a client cert, trusted_certificate_authorities
should return an empty list for fype “tls-server”.

The default implementation returns an empty list.

std::vector<X509_Certificate> find_cert_chain(const std::vector<std::string> &cert_key_types, const
std::vector<X509_DN> &acceptable_CAs, const std::string
&type, const std::string &context)

Return the certificate chain to use to identify ourselves. The acceptable_CAs parameter gives a list of
CAs the peer trusts. This may be empty.

8.13. Credentials Manager 153

Botan Reference Guide, Release 3.9.0

Warning

If this function returns a certificate that is not one of the types given in cert_key_types confusing
handshake failures will result.

std::vector<X509_Certificate> cert_chain(const std::vector<std::string> &cert_key_types, const std::string
&type, const std::string &context)

Return the certificate chain to use to identify ourselves. Starting in 2.5, prefer find_cert_chain which
additionally provides the CA list.
std::vector<X509_Certificate> cert_chain_single_type (const std::string &cert_key_type, const std::string
&type, const std::string &context)
Return the certificate chain to use to identifier ourselves, if we have one of type cert_key_type and we would
like to use a certificate in this type/context.

For servers type will be “tls-server” and the context will be the server name that the client requested via
SNI (or empty, if the client did not send SNI).

Warning

To avoid cross-protocol attacks it is recommended that if a server receives an SNI request for a name it
does not expect, it should close the connection with an alert. This can be done by throwing an exception
from the implementation of this function.

std::shared_ptr<Private_Key> private_key_for (const X509_Certificate &cert, const std::string &type,
const std::string &context)

Return a shared pointer to the private key for this certificate. The cert will be the leaf cert of a chain returned
previously by cert_chain or cert_chain_single_type.

In versions before 1.11.34, there was an additional function on Credentials_Manager

This function has been replaced by TLS::Callbacks::tls_verify_cert_chain.

8.13.1 SRP Authentication

Credentials_Manager contains the hooks used by TLS clients and servers for SRP authentication.

Note

Support for TLS-SRP is deprecated, and will be removed in a future major release. When that occurs these APIs
will be removed. Prefer instead performing a standard TLS handshake, then perform a PAKE authentication inside
of (and cryptographically bound to) the TLS channel.

bool attempt_srp(const std::string &type, const std::string &context)
Returns if we should consider using SRP for authentication

std::string srp_identifier (const std::string &type, const std::string &context)
Returns the SRP identifier we’d like to use (used by client)

std::string srp_password (const std::string &type, const std::string &context, const std::string &identifier)
Returns the password for identifier (used by client)

154 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

bool srp_verifier (const std::string &type, const std::string &context, const std::string &identifier, std::string
&group_name, Biglnt &verifier, std::vector<uint8_t> &salt, bool generate_fake_on_unknown)

Returns the SRP verifier information for identifier (used by server)

8.13.2 Preshared Keys

TLS supports the use of pre shared keys for authentication.

SymmetricKey psk(const std::string &type, const std::string &context, const std::string &identity)
Return a symmetric key for use with identity

One important special case for psk is where fype is “tls-server”, context is “session-ticket” and identity is an
empty string. If a key is returned for this case, a TLS server will offer session tickets to clients who can use
them, and the returned key will be used to encrypt the ticket. The server is allowed to change the key at any
time (though changing the key means old session tickets can no longer be used for resumption, forcing a full
re-handshake when the client next connects). One simple approach to add support for session tickets in your
server is to generate a random key the first time psk is called to retrieve the session ticket key, cache it for later
use in the Credentials_Manager, and simply let it be thrown away when the process terminates. See RFC
4507 (https://datatracker.ietf.org/doc/html/rfc4507.html) for more information about TLS session tickets.

A similar special case exists for DTLS cookie verification. In this case fype will be “tls-server” and context is
“dtls-cookie-secret”. If no key is returned, then DTLS cookies are not used. Similar to the session ticket key, the
DTLS cookie secret can be chosen during server startup and rotated at any time with no ill effect.

Warning

If DTLS cookies are not used then the server is prone to be abused as a DoS amplifier, where the attacker
sends a relatively small client hello in a UDP packet with a forged return address, and then the server replies
to the victim with several messages that are larger. This not only hides the attackers address from the victim,
but increases their effective bandwidth. This is not an issue when using DTLS over SCTP or TCP.

std::string psk_identity_hint (const std::string &type, const std::string &context)

Returns an identity hint which may be provided to the client. This can help a client understand what PSK to use.

std::string psk_identity (const std::string &type, const std::string &context, const std::string &identity_hint)

Returns the identity we would like to use given this fype and context and the optional identity_hint. Not all servers
or protocols will provide a hint.

8.14 Bigint

BigInt, in bigint.h, is an implementation of a signed magnitude multiple-precision integer, which is used to imple-
ment certain older public key algorithms such as RSA. It also appears in other contexts, for example X.509 certificate
serial numbers are technically integer values and can be quite large, and so are represented using a BigInt.

A BigInt is a sequence of smaller integers of type word; this type is defined to be either uint32_t or uint64_t,
depending on the word size of the processor.

Warning

While it is possible to use the APIs provided by BigInt as a general calculation facility, it is extremely inadvisable
that you attempt to implement a cryptographic scheme of any kind directly using BigInt. Botan internally has many
facilities for fast and side channel safe arithmetic which are not exposed to callers.

8.14. Bigint 155

https://datatracker.ietf.org/doc/html/rfc4507.html
https://datatracker.ietf.org/doc/html/rfc4507.html

Botan Reference Guide, Release 3.9.0

In general, as a library user, avoid doing anything with BigInt besides serializing or deserializing them as required
to call other interfaces. Some of the general calculation facilities of BigInt may be made internal to the library in
a future major release.

class BigInt

static BigInt BigInt: : from_string(std::string_view str)

Create a Biglnt from a string. By default decimal is expected. With an Ox prefix, instead it is treated as

hexadecimal. A - prefix to indicate negative numbers is also accepted.

static BigInt: : from_bytes (std::span<const uint8_t> buf)

Create a BigInt from a binary array (big-endian encoding). The result of this function will always be
positive; there is no support for a sign bit, 2s complement encoding, or similar methods for indicating a

negative value.

void serialize_to(std::span<uint8_t> buf)

Encode this BigInt as a big-endian integer. The sign is ignored.

There must be sufficient space to encode the entire integer in buf. If buf is larger than
zero bytes will be prefixed.

size_t bytes () const
Return number of bytes needed to represent value of *this

size_t bits() const
Return number of bits needed to represent value of *this
std::string to_dec_string() const
Encode the integer as a decimal string.
std::string to_hex_string() const
Encode the integer as a hexadecimal string, with “0x” prefix
BigInt::zero()
Create a BigInt with value zero
BigInt::from_u64 (uint64 t n)
Create a BigInt with value n
Bigint operator+(const Bigint &x, const Bigint &y)
Add x and y and return result.
Bigint operator+(const Bigint &x, word y)
Add x and y and return result.
BigInt operator+(word x, const Bigint &y)
Add x and y and return result.
BigInt operator-(const Big/nt &x, const Bigint &y)

Subtract y from x and return result.

BigInt operator-(const Bigint &x, word y)
Subtract y from x and return result.

BigInt operator* (const Biglnt &x, const Bigint &y)

Multiply x and y and return result.

required, sufficient

156

Chapter 8

. API Reference

Botan Reference Guide, Release 3.9.0

BigInt operator/ (const Bigint &x, const Bigint &y)

Divide x by y and return result.

BigInt operator%(const Biglnt &x, const Bigint &y)

Divide x by y and return remainder.

word operator¥% (const Bigint &x, word y)

Divide x by y and return remainder.

word operator<<(const Bigint &x, size_t n)
Left shift x by n and return result.

word operator>>(const Bigint &x, size_t n)
Right shift x by n and return result.

Bigint &operator+=(const Bigint &y)
Addy to *this
Biglnt &operator+=(word y)
Addy to *this
Bigint &operator-=(const Biglnt &y)
Subtract y from *this
Biglnt &operator-=(word y)
Subtract y from *this
Bigint &operator*=(const Bigint &y)
Multiply *this with y
Bigint &operator*=(word y)
Multiply *this with y
BigInt &operator/=(const Bigint &y)
Divide *this by y
Bigint &operator¥=_const Bigint &y)
Divide *this by y and set *this to the remainder.
word operator%=_(word y)
Divide *this by y and set *this to the remainder.
word operator<<=(size_t shift)
Left shift *this by shift bits
word operator>>=(size_t shift)
Right shift *this by shift bits
Bigint &operator++()
Increment *this by 1
Bigint &operator--()
Decrement *this by 1
BigInt operator++(int)

Postfix increment *this by 1

8.14. Bigint 157

Botan Reference Guide, Release 3.9.0

BigInt operator--(int)
Postfix decrement *this by 1

BigInt operator-() const

Negation operator

bool operator! () const

Return true unless *this is zero

void clear ()

Set *this to zero

uint32_t to_u32bit () const
Return value of *this as a 32-bit integer, if possible. If the integer is negative or not in range, an exception
is thrown.

bool is_even() const
Return true if *this is even

bool is_odd () const
Return true if *this is odd

bool is_nonzero() const
Return true if *this is not zero

bool is_zero() const
Return true if *this is zero

bool is_negative() const
Return true if *this is less than zero

bool is_positive() const
Return true if *this is greater than or equal to zero

Biglnt abs() const
Return absolute value of *this

8.15 Key Derivation Functions (KDF)

Key derivation functions are used to turn some amount of shared secret material into uniform random keys suitable
for use with symmetric algorithms. An example of an input which is useful for a KDF is a shared secret created using
Diffie-Hellman key agreement.

Typically a KDF is also used with a salt and a label. The salt should be some random information which is available
to all of the parties that would need to use the KDF; this could be performed by setting the salt to some kind of session
identifier, or by having one of the parties generate a random salt and including it in a message.

The label is used to bind the KDF output to some specific context. For instance if you were using the KDF to derive
a specific key referred to as the “message key” in the protocol description, you might use a label of “FooProtocol v2
MessageKey”. This labeling ensures that if you accidentally use the same input key and salt in some other context, you
still use different keys in the two contexts.

class KDF

std::unique_ptr<KDF> KDF: : create (const std::string &algo)

Create a new KDF object. Returns nullptr if the named key derivation function was not available

158 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

std::unique_ptr<KDF> KDF : : create_or_throw(const std::string &algo)

Create a new KDF object. Throws an exception if the named key derivation function was not available

void KDF: : derive_key (std::span<uint8_t> key, std::span<const uint8_t> secret, std::span<const uint8_t>
salt, std::span<const uint8_t> label) const

Performs a key derivation using secret as secret input, and salt, and label as deversifiers. The passed
key buffer is fully filled with key material derived from the inputs.

template<concepts::resizable_byte_buffer T = secure_vector<uint8_t>>
T KDF: :derive_key(size_t key_len, std::span<const uint8_t> secret, std::span<const uint8_t> salt,
std::span<const uint8_t> label) const

This version is parameterized to the output buffer type, so it can be used to return a std: :vector, a
secure_vector, or anything else satisfying the resizable_byte_buffer concept.

template<size_t key_len>
std::array<uint8_t, key_len> KDF : :derive_key (std::span<const uint8_t> secret, std::span<const uint8_t>
salt, std::span<const uint8_t> label) const

This version returns the key material as a std::array<> of key_len bytes.

All variations on the same theme. Deterministically creates a uniform random value from secret, salt, and
label, whose meaning is described above.

8.15.1 Code Example

An example demonstrating using the API to hash a secret using HKDF

#include <botan/hex.h>
#include <botan/kdf.h>
#include <iostream>

int main() {
// Replicate a test from RFC 5869
// https://www.rfc-editor.org/rfc/rfc5869#appendix-A.1
const Botan::secure_vector<uint8_t> input_secret(22, 0x0b);
const std::vector<uint8_t> salt = Botan::hex_decode("000102030405060708090a0b0c™);
const std::vector<uint8_t> label = Botan::hex_decode("f0f1f2f3f4f5f6£7£f8£f9");
const size_t derived_key_len = 42;

auto kdf = Botan: :KDF::create_or_throw("HKDF (SHA-256)");
auto derived_key = kdf->derive_key(derived_key_len, input_secret, salt, label);

// OKM = 0x3cb25f25faacd57a904341f64d0362f2a. ..
std::cout << Botan::hex_encode(derived_key) << '\n';

8.15.2 Available KDFs

Botan includes many different KDFs simply because different protocols and. standards have created subtly different
approaches to this problem. For new code, use HKDF which is conservative, well studied, widely implemented and
NIST approved. There is no technical reason (besides compatibility) to choose any other KDF.

8.15. Key Derivation Functions (KDF) 159

Botan Reference Guide, Release 3.9.0

HKDF

Defined in RFC 5869, HKDF uses HMAC to process inputs. Also available are variants HKDF-Extract and HKDF-
Expand. HKDF is the combined Extract+Expand operation. Use the combined HKDF unless you need compatibility
with some other system.

Auvailable if BOTAN_HAS_HKDF is defined.

Algorithm specification names:
» HKDF (<MessageAuthenticationCode |HashFunction>), e.g. HKDF (HMAC(SHA-256))
e HKDF-Extract(<MessageAuthenticationCode|HashFunction>)
¢ HKDF-Expand(<MessageAuthenticationCode |HashFunction>)

If a HashFunction is provided as an argument, it will create HMAC(HashFunction) as the
MessageAuthenticationCode. I.e. HKDF (SHA-256) will result in HKDF (HMAC (SHA-256)).

KDF1-18033
KDF1 from ISO 18033-2. Very similar to (but incompatible with) KDF2.

Available if BOTAN_HAS_KDF1_18033 is defined.
Algorithm specification name: KDF1-18033 (<HashFunction>), e.g. KDF1-18033 (SHA-512)

KDF1

KDF1 from IEEE 1363. It can only produce an output at most the length of the hash function used.
Available if BOTAN_HAS_KDF1 is defined.

Algorithm specification name: KDF1(<HashFunction>), e.g. KDF1(SHA-512)

KDF2

KDF2 comes from IEEE 1363. It uses a hash function.

Available if BOTAN_HAS_KDF2 is defined.

Algorithm specification name: KDF2 (<HashFunction>), e.g. KDF2 (SHA-512)

X9.42 PRF

A KDF from ANSI X9.42. Sometimes used for Diffie-Hellman. However it is overly complicated and is fixed to use
only SHA-1.

Available if BOTAN_HAS_X942_PRF is defined.

Warning

X9.42 PRF is deprecated and will be removed in a future major release.

Algorithm specification name: X9.42-PRF(<0ID>), e.g. X9.42-PRF(KeyWrap.TripleDES), X9.42-PRF(1.2.
840.113549.1.9.16.3.7)

160 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

SP800-56A

KDF from NIST SP 800-56Ar2 or One-Step KDF of SP 800-56Cr2.

Auvailable if BOTAN_HAS_SP800_56A is defined.

Algorithm specification names:
* SP800-56A(<HashFunction>), e.g. SP800-56A(SHA-256)
e SP800-56A(HMAC(<HashFunction>)), e.g. SP800-56A(HMAC(SHA-256))
* SP80O-56A(KMAC-128) or SP8OO-56A(KMAC-256)

SP800-56C
Two-Step KDF from NIST SP 800-56Cr2.
Available if BOTAN_HAS_SP800_56C is defined.

Algorithm specification name: SP800-56C(<MessageAuthenticationCode|HashFunction>), e.g.
SP800-56C(HMAC(SHA-256))

If a HashFunction is provided as an argument, it will create HMAC(HashFunction) as the
MessageAuthenticationCode. I.e. SP800-56C(SHA-256) will result in SP800-56C(HMAC(SHA-256)).

SP800-108

KDFs from NIST SP 800-108. Variants include “SP800-108-Counter”, “SP800-108-Feedback” and “SP800-108-
Pipeline”.

SP800-108 does not explicitly specify the encoding width of the internally used counter and output length values. As
those values are incorporated into the key derivation, applications can optionally specify their encoding bit lengths as
of Botan 3.7.0. Values of 8, 16, 24, and 32 are supported and Botan will always encode in big-endian byte order. If not
otherwise specified, both fields are encoded using 32 bits.

Available if BOTAN_HAS_SP800_108 is defined.
Algorithm specification names:

e SP800-108-Counter(<MessageAuthenticationCode |HashFunction>[,<counter bit length>[,
<output length bit length>]]),e.g. SP800-108-Counter (HMAC(SHA-256),8,24)

e SP800-108-Feedback(<MessageAuthenticationCode |HashFunction>[,<counter bit length>[,
<output length bit length>]]1)

e SP800-108-Pipeline(<MessageAuthenticationCode|HashFunction>[,<counter bit length>[,
<output length bit length>]]1)

If a HashFunction is provided as an argument, it will create HMAC(HashFunction) as the
MessageAuthenticationCode. If no field encoding lengths are specified, both are defaulted to 32 bits. Le.
SP800-108-Counter (SHA-256) will result in SP800-108-Counter (HMAC(SHA-256),32,32).

TLS 1.2 PRF
Implementation of the Pseudo-Random Function as used in TLS 1.2.
Auvailable if BOTAN_HAS_TLS_V12_PREF is defined.

Algorithm specification name: TLS-12-PRF (<MessageAuthenticationCode |HashFunction>), e.g.
TLS-12-PRF (HMAC(SHA-256))

If a HashFunction is provided as an argument, it will create HMAC(HashFunction) as the
MessageAuthenticationCode. l.e. TLS-12-PRF (SHA-256) will result in TLS-12-PRF (HMAC(SHA-256)).

8.15. Key Derivation Functions (KDF) 161

Botan Reference Guide, Release 3.9.0

8.16 Password Based Key Derivation

Often one needs to convert a human readable password into a cryptographic key. It is useful to slow down the com-
putation of these computations in order to reduce the speed of brute force search, thus they are parameterized in some
way which allows their required computation to be tuned.

8.16.1 PasswordHash
Added in version 2.8.0.

This API, declared in pwdhash.h, has two classes, PasswordHashFamily representing the general algorithm, such as
“PBKDF2(SHA-256)", or “Scrypt”, and PasswordHash representing a specific instance of the problem which is fully
specified with all parameters (say “Scrypt” with N = 8192, r = 64, and p = 8) and which can be used to derive keys.

class PasswordHash

void hash (std::span<uint8_t> out, std::string_view password, std::span<uint8> salt)

Derive a key from the specified password and salt, placing it into out.

void hash (std::span<uint8_t> out, std::string_view password, std::span<const uint8> salt, std::span<const
uint8> ad, std::span<const uint8> key)

Derive a key from the specified password, salt, associated data (ad), and secret key, placing it into out. The
ad and key are both allowed to be empty. Currently non-empty AD/key is only supported with Argon2.

void derive_key (uint8_t out[], size_t out_len, const char *password, const size_t password_len, const uint8_t
salt[], size_t salt_len) const

Same functionality as the 3 argument variant of PasswordHash: :hash.

void derive_key (uint8_t out[], size_t out_len, const char *password, const size_t password_len, const uint8_t
salt[], size_t salt_len, const uint8_t ad[], size_t ad_len, const uint8_t key[], size_t key_len)
const

Same functionality as the 5 argument variant of PasswordHash: :hash.
std::string to_string() const

Return a descriptive string including the parameters (iteration count, etc)
size_t iterations() const

Return the iteration parameter
size_t memory_param() const

Return the memory usage parameter, or 0 if the algorithm does not offer a memory usage option.
size_t parallelism() const

Returns the parallelism parameter, or O if the algorithm does not offer a parallelism option.
size_t total_memory_usage() const

Return a guesstimate of the total number of bytes of memory consumed when running this algorithm. If the
function is not intended to be memory-hard and uses an effictively fixed amount of memory when running,
this function returns O.

bool supports_keyed_operation() const

Returns true if this password hash supports supplying a secret key to PasswordHash: :hash.

bool supports_associated_data() const

Returns true if this password hash supports supplying associated data to PasswordHash: :hash.

The PasswordHashFamily creates specific instances of PasswordHash:

162 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

class PasswordHashFamily

static std::unique_ptr<PasswordHashFamily> create (const std::string &what)

For example “PBKDF2(SHA-256)”, “Scrypt”, “Argon2id”. Returns null if the algorithm is not available.

std::unique_ptr<PasswordHash> default_params () const

Create a default instance of the password hashing algorithm. Be warned the value returned here may change
from release to release.

std::unique_ptr<PasswordHash> tune (size_t output_len, std::chrono::milliseconds msec, size_t

max_memory_usage_mb = 0, std::chrono::milliseconds tuning_msec =
std::chrono::milliseconds(10)) const

Return a password hash instance tuned to run for approximately msec milliseconds when producing an
output of length output_len. (Accuracy may vary, use the command line utility botan pbkdf_tune to
check.)

The parameters will be selected to use at most max_memory_usage_mb megabytes of memory, or if left as
zero any size is allowed.

This function works by runing a short tuning loop to estimate the performance of the algorithm, then scaling
the parameters appropriately to hit the target size. The length of time the tuning loop runs can be controlled
using the tuning_msec parameter.

std::unique_ptr<PasswordHash> from_params (size_t il, size_t i2 = 0, size_t i3 = 0) const

Create a password hash using some scheme specific format. Parameters are as follows:
» For PBKDF2, PGP-S2K, and Berypt-PBKDF, i1 is iterations
e Scryptusesil==N,i2==r,and i3==p
* Argon2 family uses il==M, i2 ==t,and i3 ==

All unneeded parameters should be set to O or left blank.

8.16.2 Code Examples

An example demonstrating using the API to hash a password using Argon2i:

#include
#include
#include
#include
#include

<botan/hex.h>

<botan/pwdhash.h>
<botan/system_rng.h>
<array>

<iostream>

int main() {
// You can change this to "PBKDF2(SHA-512)" or "Scrypt" or "Argon2id" or ...
std: :string_view pbkdf_algo = "Argon2i";
auto pbkdf_runtime = std::chrono::milliseconds(300);
constexpr size_t output_hash = 32;
constexpr size_t salt_len = 32;
constexpr size_t max_pbkdf mb = 128;

auto pwd_fam = Botan::PasswordHashFamily: :create_or_throw(pbkdf_algo);

auto pwdhash

std::cout << "Using params

pwd_fam->tune(output_hash, pbkdf_runtime, max_pbkdf mb);

<< pwdhash->to_string() << '\n';

(continues on next page)

8.16. Password Based Key Derivation 163

Botan Reference Guide, Release 3.9.0

(continued from previous page)

const auto salt = Botan::system_rng().random_array<salt_len>();

std::string_view password = "tell no one";

std: :array<uint8_t, output_hash> key{};
pwdhash->hash(key, password, salt);

std: :cout << Botan::hex_encode(key) << '\n';

return 0;

Combining a password based key derivation with an authenticated cipher yields an application that can encrypt and
decrypt data using a password. Note that this example does not incorporate any “associated data” into the AEAD. For
instance, a real application might want to include a version number of their file format as associated data. See AEAD

Mode for more information.

#include <botan/aead.h>
#include <botan/auto_rng.h>
#include <botan/hex.h>
#include <botan/pwdhash.h>

#include <iostream>

namespace {

template <typename OutT = std::vector<uint8_t>, typename...

OutT concat(const Ts&... buffers) {
OutT out;
out.reserve((buffers.size() + ... + 0));
(out.insert(out.end(), buffers.begin(), buffers.end()),
return out;

}

template <typename Out, typename In>
Out as(const In& data) {
return Out(data.data(), data.data() + data.size());

}

constexpr size_t salt_length = 16;

Ts>

Botan: :secure_vector<uint8_t> derive_key_material(std::string_view password,
std: :span<const uint8_t> salt,
size_t output_length) {

// Here, we use statically defined password hash parameters. Alternatively
// you could use Botan::PasswordHashFamily: :tune() to automatically select
// parameters based on your desired runtime and memory usage.

/7

// Defining those parameters highly depends on your use case and the
// available compute and memory resources on your target platform.

const std::string pbkdf_algo = "Argon2id";

(continues on next page)

164

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

constexpr size_t M = 256 * 1024; // kiB
constexpr size_t t = 4; // iterations
constexpr size_t p = 2; // parallelism

auto pbkdf = Botan::PasswordHashFamily: :create_or_throw(pbkdf_algo)->from_params(M, t,
—~ P);
// create_or_throw always either throws or returns a non-null pointer

Botan: :secure_vector<uint8_t> key(output_length);
pbkdf->hash(key, password, salt);

return key;

}

std: :unique_ptr<Botan: :AEAD_Mode> prepare_aead(std::string_view password,
std: : span<const uint8_t> salt,
Botan: :Cipher_Dir direction) {
auto aead = Botan: :AEAD_Mode: :create_or_throw("AES-256/GCM", direction);

const size_t key_length = aead->key_spec() .maximum_keylength();
const size_t nonce_length = aead->default_nonce_length();

// Stretch the password into enough cryptographically strong key material
// to initialize the AEAD with a key and nonce (aka. initialization vector).
const auto keydata = derive_key_material (password, salt, key_length + nonce_length);

// The function always returns the requested length but lets check to make sure
if(keydata.size() != key_length + nonce_length) {
throw std::runtime_error("Unexpected output from derive_key_material™);

}

const auto key = std::span{keydata}.first(key_length);
const auto nonce = std::span{keydata}.last(nonce_length);

aead->set_key(key);
aead->start(nonce) ;

return aead;

* Encrypts the data in @ plaintext using the given @p password.

* To resist offline brute-force attacks we stretch the password into key
* material using a password-based key derivation function (PBKDF). The key
* material is then used to initialize an AEAD for encryption and authentication
* of the plaintext. This ensures that on-one can read or manipulate the data
* without knowledge of the password.
*/
std: :vector<uint8_t> encrypt_by_password(std: :string_view password,
Botan: :RandomNumberGenerator& rng,
std: :span<const uint8_t> plaintext) {

(continues on next page)

8.16. Password Based Key Derivation 165

Botan Reference Guide, Release 3.9.0

(continued from previous page)

const auto kdf_salt = rng.random_array<salt_length>(Q);
auto aead = prepare_aead(password, kdf salt, Botan::Cipher_Dir::Encryption);

Botan: :secure_vector<uint8_t> out(plaintext.begin(), plaintext.end());
aead->finish(out);

// The random salt used by the key derivation function is not secret and is
// therefore prepended to the ciphertext.
return concat(kdf_salt, out);

Vi

* Decrypts the output of ‘encrypt_by_password given the correct @ password

* or throws an exception if decryption is not possible.

*/
Botan: :secure_vector<uint8_t> decrypt_by_password(std::string_view password, std::span
—.<const uint8_t> wrapped_data) {

if (wrapped_data.size() < salt_length) {
throw std::runtime_error("Encrypted data is too short");

}

const auto kdf _salt = wrapped_data.first<salt_length>Q);
auto aead = prepare_aead(password, kdf salt, Botan::Cipher_Dir: :Decryption);

const auto ciphertext = wrapped_data.subspan(salt_length);
Botan: :secure_vector<uint8_t> out(ciphertext.begin(), ciphertext.end());

try {
aead->finish(out);
} catch(const Botan::Invalid_Authentication_Tag&) {
throw std::runtime_error("Failed to decrypt, wrong password?");

}

return out;

}
} // namespace

int main(Q) {
Botan: :AutoSeeded_RNG rng;

// Note: For simplicity we omit the authentication of any associated data.

// If your use case would benefit from it, you should add it. Perhaps
// to both the password hashing and the AEAD.

std: :string_view password = "geheimnis";

std::string_view message = "Attack at dawn!";

try {

const auto ciphertext = encrypt_by_password(password, rng, as<Botan::secure_vector
—<uint8_t>>(message));
std::cout << "Ciphertext:

<< Botan: :hex_encode(ciphertext) << "\n";

(continues on next page)

166 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

const auto decrypted_message = decrypt_by_password(password, ciphertext);

std: :cout << "Decrypted message: " << as<std::string>(decrypted_message) << "\n";
} catch(const std::exception& ex) {

std::cerr << "Something went wrong:

return 1;

<< ex.what() << "\n";

3

return 0;

8.16.3 Available Schemes

General Recommendations

If you need wide interoperability use PBKDF2 with HMAC-SHA256 and at least 50K iterations. If you don’t, use
Argon2id with p=1, t=3 and M as large as you can reasonably set (say 1 gigabyte).

You can test how long a particular PBKDF takes to execute using the cli tool pbkdf_tune:

$./botan pbkdf_tune --algo=Argon2id 500 --max-mem=192 --check
For 500 ms selected Argon2id(196608,3,1) using 192 MiB took 413.159 msec to compute

This returns the parameters chosen by the fast auto-tuning algorithm, and because --check was supplied the hash is
also executed with the full set of parameters and timed.

PBKDF2

PBKDF2 is the “standard” password derivation scheme, widely implemented in many different libraries. It uses HMAC
internally and requires choosing a hash function to use. (If in doubt use SHA-256 or SHA-512). It also requires choosing
an iteration count, which makes brute force attacks more expensive. Use at least 50000 and preferably much more.
Using 250,000 would not be unreasonable.

Algorithm specification name: PBKDF2 (<MessageAuthenticationCode |HashFunction>), e.g.
PBKDF2 (HMAC(SHA-256))

If a HashFunction is provided as an argument, it will create HMAC(HashFunction) as the
MessageAuthenticationCode. I.e. PBKDF2 (SHA-256) will result in PBKDF2 (HMAC (SHA-256)).

Scrypt
Added in version 2.7.0.

Scrypt is a relatively newer design which is “memory hard” - in addition to requiring large amounts of CPU power it
uses a large block of memory to compute the hash. This makes brute force attacks using ASICs substantially more
expensive.

Scrypt has three parameters, usually termed N, r, and p. N is the primary control of the workfactor, and must be a power
of 2. For interactive logins use 32768, for protection of secret keys or backups use 1048576.

The r parameter controls how ‘wide’ the internal hashing operation is. It also increases the amount of memory that is
used. Values from 1 to 8 are reasonable.

Setting p parameter to greater than 1 splits up the work in a way that up to p processors can work in parallel.
As a general recommendation, use N = 32768, r=8,p=1

Algorithm specification name: Scrypt

8.16. Password Based Key Derivation 167

Botan Reference Guide, Release 3.9.0

Argon2
Added in version 2.11.0.

Argon? is the winner of the PHC (Password Hashing Competition) and provides a tunable memory hard PBKDF. There
are three minor variants of Argon2 - Argon2d, Argon2i, and Argon2id. All three are implemented.

Algorithm specification names:
e Argon2d
e Argon2i

e Argon2id

Berypt
Added in version 2.11.0.

Berypt-PBKDEF is a variant of the well known bcrypt password hashing function. Like bcrypt it is based around
using Blowfish for the key expansion, which requires 4 KiB of fast random access memory, making hardware based
attacks more expensive. Unlike Argon2 or Scrypt, the memory usage is not tunable.

This function is relatively obscure but is used for example in OpenSSH. Prefer Argon2 or Scrypt in new systems.

Algorithm specification name: Bcrypt-PBKDF

OpenPGP S2K

Warning

The OpenPGP algorithm is weak and strange, and should be avoided unless implementing OpenPGP.

There are some oddities about OpenPGP’s S2K algorithms that are documented here. For one thing, it uses the iteration
count in a strange manner; instead of specifying how many times to iterate the hash, it tells how many bytes should be
hashed in total (including the salt). So the exact iteration count will depend on the size of the salt (which is fixed at 8
bytes by the OpenPGP standard, though the implementation will allow any salt size) and the size of the passphrase.

To get what OpenPGP calls “Simple S2K”, set iterations to 0, and do not specify a salt. To get “Salted S2K”, again
leave the iteration count at 0, but give an 8-byte salt. “Salted and Iterated S2K” requires an 8-byte salt and some
iteration count (this should be significantly larger than the size of the longest passphrase that might reasonably be used;
somewhere from 1024 to 65536 would probably be about right). Using both a reasonably sized salt and a large iteration
count is highly recommended to prevent password guessing attempts.

Algorithm specification name: OpenPGP-S2K (<HashFunction>), e.g. OpenPGP-S2K(SHA-384)

8.16.4 PBKDF

PBKDF is the older API for this functionality, presented in header pbkdf.h. It only supports PBKDF2 and the PGP S2K
algorithm, not Scrypt, Argon2, or berypt. This interface is deprecated and will be removed in a future major release.

In addition, this API requires the passphrase be entered as a std: :string, which means the secret will be stored in
memory that will not be zeroed.

class PBKDF

static std::unique_ptr<PBKDF> create(const std::string &algo_spec, const std::string &provider = "")

Return a newly created PBKDF object. The name should be in the format “PBKDF2(HASHNAME)”,
“PBKDF2(HMAC(HASHNAME))”, or “OpenPGP-S2K”. Returns null if the algorithm is not available.

168 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

void pbkdf_iterations (uint8_t out[], size_t out_len, const std::string &passphrase, const uint8_t salt[],
size_t salt_len, size_t iterations) const

Run the PBKDF algorithm for the specified number of iterations, with the given salt, and write output to
the buffer.

void pbkdf_timed (uint8_t out[], size_t out_len, const std::string &passphrase, const uint8_t salt[], size_t
salt_len, std::chrono::milliseconds msec, size_t &iterations) const

Choose (via short run-time benchmark) how many iterations to perform in order to run for roughly msec
milliseconds. Writes the number of iterations used to reference argument.

OctetString derive_key (size_t output_len, const std::string &passphrase, const uint8_t *salt, size_t salt_len,
size t iterations) const

Computes a key from passphrase and the salt (of length salt_len bytes) using an algorithm-specific interpretation
of iterations, producing a key of length output_len.

Use an iteration count of at least 10000. The salt should be randomly chosen by a good random number generator
(see Random Number Generators for how), or at the very least unique to this usage of the passphrase.

If you call this function again with the same parameters, you will get the same key.

8.17 AES Key Wrapping

NIST specifies two mechanisms for wrapping (encrypting) symmetric keys using another key. The first (and older,
more widely supported) method requires the input be a multiple of 8 bytes long. The other allows any length input,
though only up to 2**32 bytes.

These algorithms are described in NIST SP 800-38F, and RFCs 3394 and 5649.
This API, defined in nist_keywrap.h, first became available in version 2.4.0

These functions take an arbitrary 128-bit block cipher object, which must already have been keyed with the key encryp-
tion key. NIST only allows these functions with AES, but any 128-bit cipher will do and some other implementations
(such as in OpenSSL) do also allow other ciphers. Use AES for best interop.

std::vector<uint8_t> nist_key_wrap (const uint8_t input[], size_t input_len, const BlockCipher &bc)
This performs KW (key wrap) mode. The input must be a multiple of 8 bytes long.
secure_vector<uint8_t> nist_key_unwrap (const uint8_t input[], size_t input_len, const BlockCipher &bc)
This unwraps the result of nist_key_wrap, or throw Invalid_Authentication_Tag on error.
std::vector<uint8_t> nist_key_wrap_padded(const uint8_t input[], size_t input_len, const BlockCipher &bc)
This performs KWP (key wrap with padding) mode. The input can be any length.

secure_vector<uint8_t> nist_key_unwrap_padded (const uint8_t input[], size_t input_len, const BlockCipher
&bc)

This unwraps the result of nist_key_wrap_padded, or throws Invalid_Authentication_Tag on error.

8.17.1 RFC 3394 Interface

This is an older interface that was first available (with slight changes) in 1.10, and available in its current form since
2.0 release. It uses a 128-bit, 192-bit, or 256-bit key to encrypt an input key. AES is always used. The input must be a
multiple of 8 bytes; if not an exception is thrown.

This interface is defined in rfc3394.h.

8.17. AES Key Wrapping 169

Botan Reference Guide, Release 3.9.0

secure_vector<uint8_t> rfc3394_keywrap (const secure_vector<uint8_t> &key, const SymmetricKey &kek)

Wrap the input key using kek (the key encryption key), and return the result. It will be 8 bytes longer than the
input key.

secure_vector<uint8_t> rfc3394_keyunwrap (const secure_vector<uint8_t> &key, const SymmetricKey &kek)
Unwrap a key wrapped with rfc3394_keywrap.

8.18 Password Hashing

Storing passwords for user authentication purposes in plaintext is the simplest but least secure method; when an attacker
compromises the database in which the passwords are stored, they immediately gain access to all of them. Often
passwords are reused among multiple services or machines, meaning once a password to a single service is known an
attacker has a substantial head start on attacking other machines.

The general approach is to store, instead of the password, the output of a one way function of the password. Upon
receiving an authentication request, the authenticating party can recompute the one way function and compare the
value just computed with the one that was stored. If they match, then the authentication request succeeds. But when
an attacker gains access to the database, they only have the output of the one way function, not the original password.

Common hash functions such as SHA-256 are one way, but used alone they have problems for this purpose. What an
attacker can do, upon gaining access to such a stored password database, is hash common dictionary words and other
possible passwords, storing them in a list. Then he can search through his list; if a stored hash and an entry in his list
match, then he has found the password. Even worse, this can happen offfine: an attacker can begin hashing common
passwords days, months, or years before ever gaining access to the database. In addition, if two users choose the same
password, the one way function output will be the same for both of them, which will be visible upon inspection of the
database.

There are two solutions to these problems: salting and iteration. Salting refers to including, along with the password, a
randomly chosen value which perturbs the one way function. Salting can reduce the effectiveness of offline dictionary
generation, because for each potential password, an attacker would have to compute the one way function output for all
possible salts. It also prevents the same password from producing the same output, as long as the salts do not collide.
Choosing n-bit salts randomly, salt collisions become likely only after about 2:sup:(n/2) salts have been generated.
Choosing a large salt (say 80 to 128 bits) ensures this is very unlikely. Note that in password hashing salt collisions are
unfortunate, but not fatal - it simply allows the attacker to attack those two passwords in parallel easier than they would
otherwise be able to.

The other approach, iteration, refers to the general technique of forcing multiple one way function evaluations when
computing the output, to slow down the operation. For instance if hashing a single password requires running SHA-256
100,000 times instead of just once, that will slow down user authentication by a factor of 100,000, but user authentication
happens quite rarely, and usually there are more expensive operations that need to occur anyway (network and database
I/0, etc). On the other hand, an attacker who is attempting to break a database full of stolen password hashes will be
seriously inconvenienced by a factor of 100,000 slowdown; they will be able to only test at a rate of .0001% of what
they would without iterations (or, equivalently, will require 100,000 times as many zombie botnet hosts).

Memory usage while checking a password is also a consideration; if the computation requires using a certain minimum
amount of memory, then an attacker can become memory-bound, which may in particular make customized cracking
hardware more expensive. Some password hashing designs, such as scrypt, explicitly attempt to provide this. The
berypt approach requires over 4 KiB of RAM (for the Blowfish key schedule) and may also make some hardware
attacks more expensive.

Botan provides three techniques for password hashing: Argon2, berypt, and passhash9 (based on PBKDF2).

170 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.18.1 Argon2
Added in version 2.11.0.

Argon? is the winner of the PHC (Password Hashing Competition) and provides a tunable memory hard password hash.
It has a standard string encoding, which looks like:

[" $argon2i$v=19$m=8192, t=10, p=3$YWFhYWFhYWE$i tkWB90DqTd85wUsoib7pfpVINGMOu®ZJanlod125V8"]

Argon?2 has three tunable parameters: M, p, and t. M gives the total memory consumption of the algorithm in kilobytes.
Increasing p increases the available parallelism of the computation. The t parameter gives the number of passes which
are made over the data.

There are three variants of Argon2, namely Argon2d, Argon2i and Argon2id. Argon2d uses data dependent table
lookups with may leak information about the password via side channel attacks, and is not recommended for password
hashing. Argon2i uses data independent table lookups and is immune to these attacks, but at the cost of requiring
higher t for security. Argon2id uses a hybrid approach which is thought to be highly secure. The algorithm designers
recommend using Argon2id with t and p both equal to 1 and M set to the largest amount of memory usable in your
environment.

std::string argon2_generate_pwhash (const char *password, size_t password_len, RandomNumberGenerator
&rng, size_t p, size_t M, size_t t, size_t y = 2, size_t salt_len = 16, size_t
output_len = 32)

Generate an Argon2 hash of the specified password. The y parameter specifies the variant: O for Argon2d, 1 for
Argon2i, and 2 for Argon2id.

bool argon2_check_pwhash (const char *password, size_t password_len, const std::string &hash)

Verify an Argon2 password hash against the provided password. Returns false if the input hash seems malformed
or if the computed hash does not match.

8.18.2 Bcrypt

Berypt (https://www.usenix.org/legacy/event/usenix99/provos/provos.pdf) is a password hashing scheme originally de-
signed for use in OpenBSD, but numerous other implementations exist. It is made available by including bcrypt.h.

It has the advantage that it requires a small amount (4K) of fast RAM to compute, which can make hardware password
cracking somewhat more expensive.

Berypt provides outputs that look like this:

["$2a$12$7KIYdyv8Bp32WAvc. 7YVI.wvRlyVnOHP/EhPmmOyMQA4YKXINOOp2" J

Note

Due to the design of berypt, the password is effectively truncated at 72 characters; further characters are ignored
and do not change the hash. To support longer passwords, one common approach is to pre-hash the password
with SHA-256, then run berypt using the hex or base64 encoding of the hash as the password. (Many bcrypt
implementations truncate the password at the first NULL character, so hashing the raw binary SHA-256 may cause
problems. Botan’s berypt implementation will hash whatever values are given in the std: : string including any
embedded NULLs so this is not an issue, but might cause interop problems if another library needs to validate the
password hashes.)

std::string generate_bcrypt (const std::string &password, RandomNumberGenerator &rng, uint16_t work_factor =
12, char berypt_version = "a")

Takes the password to hash, a rng, and a work factor. The resulting password hash is returned as a string.

8.18. Password Hashing 171

https://www.usenix.org/legacy/event/usenix99/provos/provos.pdf

Botan Reference Guide, Release 3.9.0

Higher work factors increase the amount of time the algorithm runs, increasing the cost of cracking attempts.
The increase is exponential, so a work factor of 12 takes roughly twice as long as work factor 11. The default
work factor was set to 10 up until the 2.8.0 release.

It is recommended to set the work factor as high as your system can tolerate (from a performance and latency
perspective) since higher work factors greatly improve the security against GPU-based attacks. For example,
for protecting high value administrator passwords, consider using work factor 15 or 16; at these work factors
each berypt computation takes several seconds. Since admin logins will be relatively uncommon, it might be
acceptable for each login attempt to take some time. As of 2018, a good password cracking rig (with 8§ NVIDIA
1080 cards) can attempt about 1 billion berypt computations per month for work factor 13. For work factor 12,
it can do twice as many. For work factor 15, it can do only one quarter as many attempts.

Due to bugs affecting various implementations of berypt, several different variants of the algorithm are defined.
As of 2.7.0 Botan supports generating (or checking) the 2a, 2b, and 2y variants. Since Botan has never been
affected by any of the bugs which necessitated these version upgrades, all three versions are identical beyond the
version identifier. Which variant to use is controlled by the bcrypt_version argument.

The berypt work factor must be at least 4 (though at this work factor berypt is not very secure). The berypt format
allows up to 31, but Botan currently rejects all work factors greater than 18 since even that work factor requires
roughly 15 seconds of computation on a fast machine.

bool check_bcrypt (const std::string &password, const std::string &hash)

Takes a password and a berypt output and returns true if the password is the same as the one that was used to
generate the berypt hash.

8.18.3 Passhash9

Botan also provides a password hashing technique called passhash9, in passhash9.h, which is based on PBKDF2.
Passhash9 hashes look like:

["9AAAKXWMGNPSAPkOKJSO7Xutm3+1Cr3ytmbnk jO6L jHzCMcMQXvcT" J

This function should be secure with the proper parameters, and will remain in the library for the foreseeable future, but
it is specific to Botan rather than being a widely used password hash. Prefer berypt or Argon?2.

Warning

This password format string (“9”) conflicts with the format used for scrypt password hashes on Cisco systems.

std::string generate_passhash9(const std::string &password, RandomNumberGenerator &rng, uint16_t
work_factor = 15, uint8_t alg_id = 4)

Functions much like generate_bcrypt. The last parameter, alg_id, specifies which PRF to use. Currently
defined values are 0: HMAC(SHA-1), 1: HMAC(SHA-256), 2: CMAC(Blowfish), 3: HMAC(SHA-384), 4:
HMAC(SHA-512)

The work factor must be greater than zero and less than 512. This performs 10000 * work_factor PBKDF2
iterations, using 96 bits of salt taken from rng. Using work factor of 10 or more is recommended.

bool check_passhash9 (const std::string &password, const std::string &hash)
Functions much like check_bcrypt

172 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.19 Cryptobox

8.19.1 Encryption using a passphrase
Added in version 1.8.6.
Deprecated since version 3.0.

This is a set of simple routines that encrypt some data using a passphrase. There are defined in the header cryptobox.h,
inside namespace Botan::CryptoBox.

It generates cipher and MAC keys using 8192 iterations of PBKDF2 with HMAC(SHA-512), then encrypts using
Serpent in CTR mode and authenticates using a HMAC(SHA-512) mac of the ciphertext, truncated to 160 bits.

std::string encrypt (const uint8_t input[], size_t input_len, const std::string &passphrase,
RandomNumberGenerator &rng)
Encrypt the contents using passphrase.
std::string decrypt (const uint8_t input[], size_t input_len, const std::string &passphrase)
Decrypts something encrypted with encrypt.
std::string decrypt (const std::string &input, const std::string &passphrase)
Decrypts something encrypted with encrypt.

8.20 Secure Remote Password

The library contains an implementation of the SRP6-a (http://srp.stanford.edu/design.html) password authenticated key
exchange protocol in srp6.h.

A SRP client provides what is called a SRP verifier to the server. This verifier is based on a password, but the password
cannot be easily derived from the verifier (however brute force attacks are possible). Later, the client and server can
perform an SRP exchange, which results in a shared secret key. This key can be used for mutual authentication and/or
encryption.

SRP works in a discrete logarithm group. Special parameter sets for SRP6 are defined, denoted in the library as
“modp/srp/<size>”, for example “modp/srp/2048”.

Warning

While knowledge of the verifier does not easily allow an attacker to get the raw password, they could still use the
verifier to impersonate the server to the client, so verifiers should be protected as carefully as a plaintext password
would be.

BigInt generate_srp6_verifier (const std::string &username, const std::string &password, const
std::vector<uint8_t> &salt, const std::string &group_id, const std::string
&hash_id)

Generates a new verifier using the specified password and salt. This is stored by the server. The salt must also
be stored. Later, the given username and password are used to by the client during the key agreement step.

std::string srp6_group_identifier (const Biglnt &N, const Bigint &g)
class SRP6_Server_Session

Biglnt stepl(const Biglnt &v, const std::string &group_id, const std::string &hash_id,
RandomNumberGenerator &rng)

8.19. Cryptobox 173

http://srp.stanford.edu/design.html

Botan Reference Guide, Release 3.9.0

Takes a verifier (generated by generate_srp6_verifier) along with the group_id, and output a value B which
is provided to the client.
SymmetricKey step2 (const Biglnt &A)
Takes the parameter A generated by srp6_client_agree, and return the shared secret key.
In the event of an impersonation attack (or wrong username/password, etc) no error occurs, but the key

returned will be different on the two sides. The two sides must verify each other, for example by using the
shared secret to key an HMAC and then exchanging authenticated messages.

std::pair<Biglnt, SymmetricKey> srp6_client_agree (const std::string &username, const std::string &password,

const std::string &group_id, const std::string &hash_id,
const std::vector<uint8_t> &salt, const Biglnt &B,
RandomNumberGenerator &rng)

The client receives these parameters from the server, except for the username and password which are provided
by the user. The parameter B is the output of step.

The client agreement step outputs a shared symmetric key along with the parameter A which is returned to the
server (and allows it the compute the shared key).

8.21 PSK Database

Added in version 2.4.0.

Many applications need to store pre-shared keys (hereafter PSKs) for authentication purposes.

An abstract interface to PSK stores, along with some implementations of same, are provided in psk_db.h

class PSK_Database

bool is_encrypted() const

Returns true if (at least) the PSKs themselves are encrypted. Returns false if PSKs are stored in plaintext.

std::set<std::string> 1ist_names () const

Return the set of valid names stored in the database, ie values for which get will return a value.

void set (const std::string &name, const uint8_t psk[], size_t psk_len)

Save a PSK. If name already exists, the current value will be overwritten.

secure_vector<uint8_t> get (const std::string &name) const

Return a value saved with set. Throws an exception if name doesn’t exist.

void remove (const std::string &name)

Remove name from the database. If name doesn’t exist, ignores the request.
void set_str(const std::string &name, const std::string &psk)

Like set but accepts the psk as a string (eg for a password).

template<typename Alloc>
void set_vec(const std::string &name, const std::vector<uint8_t, Alloc> &psk)

Like set but accepting a vector.

The same header also provides a specific instantiation of PSK_Database which encrypts both names and PSKs. It
must be subclassed to provide the storage.

class Encrypted_PSK_Database : public PSK_Database

174

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Encrypted_PSK_Database (const secure_vector<uint8_t> &master_key)

Initializes or opens a PSK database. The master key is used the secure the contents. It may be of any length.
If encrypting PSKs under a passphrase, use a suitable key derivation scheme (such as PBKDF2) to derive
the secret key. If the master key is lost, all PSKs stored are unrecoverable.

Both names and values are encrypted using NIST key wrapping (see NIST SP800-38F) with AES-256. First
the master key is used with HMAC(SHA-256) to derive two 256-bit keys, one for encrypting all names and
the other to key an instance of HMAC(SHA-256). Values are each encrypted under an individual key
created by hashing the encrypted name with HMAC. This associates the encrypted key with the name, and
prevents an attacker with write access to the data store from taking an encrypted key associated with one
entity and copying it to another entity.

Names and PSKSs are both padded to the next multiple of 8 bytes, providing some obfuscation of the length.

One artifact of the names being encrypted is that is is possible to use multiple different master keys with
the same underlying storage. Each master key will be responsible for a subset of the keys. An attacker who
knows one of the keys will be able to tell there are other values encrypted under another key, but will not
be able to tell how many other master keys are in use.

virtual void kv_set (const std::string &index, const std::string &value) = 0

Save an encrypted value. Both index and value will be non-empty base64 encoded strings.

virtual std::string kv_get (const std::string &index) const =0
Return a value saved with kv_set, or return the empty string.
virtual void kv_del (const std::string &index) =0
Remove a value saved with kv_set.

virtual std::set<std::string> kv_get_all() const =0

Return all active names (ie values for which kv_get will return a non-empty string).
A subclass of Encrypted_PSK_Database which stores data in a SQL database is also available.

class Encrypted_PSK_Database_SQL : public Encrypted_PSK_Database

Encrypted_PSK_Database_SQL (const secure_vector<uint8_t> &master_key,
std::shared_ptr<SQL_Database> db, const std::string &table_name)

Creates or uses the named table in db. The SQL schema of the table is (psk_name TEXT PRIMARY KEY,
psk_value TEXT).

8.22 Pipe/Filter Message Processing

Note

The system described below provides a message processing system with a straightforward API. However it makes
many extra memory copies and allocations than would otherwise be required, and also tends to make applications
using it somewhat opaque because it is not obvious what this or that Pipe& object actually does (type of operation,
number of messages output (if any!), and so on), whereas using say a HashFunction or AEAD_Mode provides a
much better idea in the code of what operation is occurring.

This filter interface is no longer used within the library itself (outside a few dusty corners) and will likely not see
any further major development. However it will remain included because the API is often convenient and many
applications use it.

Many common uses of cryptography involve processing one or more streams of data. Botan provides services that
make setting up data flows through various operations, such as compression, encryption, and base64 encoding. Each

8.22. Pipe/Filter Message Processing 175

Botan Reference Guide, Release 3.9.0

of these operations is implemented in what are called filfers in Botan. A set of filters are created and placed into a pipe,
and information “flows” through the pipe until it reaches the end, where the output is collected for retrieval. If you're
familiar with the Unix shell environment, this design will sound quite familiar.

Here is an example that uses a pipe to base64 encode some strings:

Pipe pipe(new Base64_Encoder); // pipe owns the pointer
pipe.start_msgQ);

pipe.write("message 1");

pipe.end _msg(); // flushes buffers, increments message number

// process_msg(x) is start_msg() && write(x) && end_msg()
pipe.process_msg(''message2");

std::string ml = pipe.read_all_as_string(0); // "messagel”
std::string m2 = pipe.read_all_as_string(l); // "message2”

Byte streams in the pipe are grouped into messages; blocks of data that are processed in an identical fashion (ie, with
the same sequence of filter operations). Messages are delimited by calls to start_msg and end_msg. Each message
in a pipe has its own identifier, which currently is an integer that increments up from zero.

The Base64_Encoder was allocated using new; but where was it deallocated? When a filter object is passed to a Pipe,
the pipe takes ownership of the object, and will deallocate it when it is no longer needed.

There are two different ways to make use of messages. One is to send several messages through a Pipe without changing
the Pipe configuration, so you end up with a sequence of messages; one use of this would be to send a sequence of
identically encrypted UDP packets, for example (note that the data need not be identical; it is just that each is encrypted,
encoded, signed, etc in an identical fashion). Another is to change the filters that are used in the Pipe between each
message, by adding or removing filters; functions that let you do this are documented in the Pipe API section.

Botan has about 40 filters that perform different operations on data. Here’s code that uses one of them to encrypt a
string with AES:

AutoSeeded_RNG rng,
SymmetricKey key(rng, 16); // a random 128-bit key
InitializationVector iv(rng, 16); // a random 128-bit IV

// The algorithm we want is specified by a string
Pipe pipe(get_cipher("AES-128/CBC", key, iv, Cipher_Dir::Encryption));

pipe.process_msg('secrets');
pipe.process_msg(''more secrets");

secure_vector<uint8_t> cl1 = pipe.read_all(0);
uint8_t c2[4096] = { O };

size_t got_out = pipe.read(c2, sizeof(c2), 1);
// use c2[0...got_out]

Note the use of AutoSeeded_RNG, which is a random number generator. If you want to, you can explicitly set up the
random number generators and entropy sources you want to, however for 99% of cases AutoSeeded_RNG is preferable.

Pipe also has convenience methods for dealing with std: :iostream. Here is an example of this, using the bzip2
compression filter:

176 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

std::ifstream in("data.bin", std::ios::binary)
std: :ofstream out('data.bin.bz2", std::ios::binary)

Pipe pipe(new Compression_Filter("bzip2", 9));

pipe.start_msg(Q);
in >> pipe;
pipe.end_msg(Q);
out << pipe;

However there is a hitch to the code above; the complete contents of the compressed data will be held in memory until
the entire message has been compressed, at which time the statement out << pipe is executed, and the data is freed as
it is read from the pipe and written to the file. But if the file is very large, we might not have enough physical memory
(or even enough virtual memory!) for that to be practical. So instead of storing the compressed data in the pipe for
reading it out later, we divert it directly to the file:

std::ifstream in("data.bin", std::ios::binary)
std: :ofstream out("data.bin.bz2", std::ios::binary)

Pipe pipe(new Compression_Filter("bzip2", 9), new DataSink_Stream(out));
pipe.start_msgQ);

in >> pipe;
pipe.end_msg(Q);

This is the first code we’ve seen so far that uses more than one filter in a pipe. The output of the compressor is sent
to the DataSink_Stream. Anything written to a DataSink_Stream is written to a file; the filter produces no output.
As soon as the compression algorithm finishes up a block of data, it will send it along to the sink filter, which will
immediately write it to the stream; if you were to call pipe.read_all() after pipe.end_msg(), you’d get an empty
vector out. This is particularly useful for cases where you are processing a large amount of data, as it means you don’t
have to store everything in memory at once.

Here’s an example using two computational filters:

AutoSeeded_RNG rng,
SymmetricKey key(rng, 32);
InitializationVector iv(rng, 16);

Pipe encryptor(get_cipher("AES/CBC/PKCS7", key, iv, Cipher_Dir::Encryption),
new Base64_Encoder);

encryptor.start_msg();

file >> encryptor;

encryptor.end_msg(); // flush buffers, complete computations
std: :cout << encryptor;

You can read from a pipe while you are still writing to it, which allows you to bound the amount of memory that is in
use at any one time. A common idiom for this is:

pipe.start_msgQ);
std: :vector<uint8_t> buffer(4096); // arbitrary size
while(infile.good())

{

infile.read((char*)&buffer[0], buffer.size());

(continues on next page)

8.22. Pipe/Filter Message Processing 177

Botan Reference Guide, Release 3.9.0

(continued from previous page)

const size_t got_from_infile = infile.gcount();
pipe.write(buffer, got_from_infile);

if(infile.eof())
pipe.end_msg();

while(pipe.remaining() > 0)
{
const size_t buffered = pipe.read(buffer, buffer.size());
outfile.write((const char*)&buffer[0], buffered);
}

}

if(infile.bad() || (infile.fail(Q) && !infile.eof()))
throw Some_Exception();

8.22.1 Fork

It is common that you might receive some data and want to perform more than one operation on it (ie, encrypt it with
Serpent and calculate the SHA-256 hash of the plaintext at the same time). That’s where Fork comes in. Fork is a
filter that takes input and passes it on to one or more filters that are attached to it. Fork changes the nature of the pipe
system completely: instead of being a linked list, it becomes a tree or acyclic graph.

Each filter in the fork is given its own output buffer, and thus its own message. For example, if you had previously
written two messages into a pipe, then you start a new one with a fork that has three paths of filter’s inside it, you add
three new messages to the pipe. The data you put into the pipe is duplicated and sent into each set of filter and the
eventual output is placed into a dedicated message slot in the pipe.

Messages in the pipe are allocated in a depth-first manner. This is only interesting if you are using more than one fork
in a single pipe. As an example, consider the following:

Pipe pipe(new Fork(

new Fork(
new Base64_Encoder,
new Fork(
NULL,
new Base64_Encoder
)
),
new Hex_Encoder
)

DE

In this case, message 0 will be the output of the first Base64_Encoder, message 1 will be a copy of the input (see
below for how fork interprets NULL pointers), message 2 will be the output of the second Base64_Encoder, and
message 3 will be the output of the Hex_Encoder. This results in message numbers being allocated in a top to bottom
fashion, when looked at on the screen. However, note that there could be potential for bugs if this is not anticipated. For
example, if your code is passed a filter, and you assume it is a “normal” one that only uses one message, your message
offsets would be wrong, leading to some confusion during output.

If Fork’s first argument is a null pointer, but a later argument is not, then Fork will feed a copy of its input directly
through. Here’s a case where that is useful:

// have std::string ciphertext, auth_code, key, iv, mac_key;

(continues on next page)

178 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

Pipe pipe(new Base64_Decoder,
get_cipher("AES-128", key, iv, Cipher_Dir::Decryption),
new Fork(
0, // this message gets plaintext
new MAC_Filter("HMAC(SHA-1)", mac_key)

s
pipe.process_msg(ciphertext);
std::string plaintext = pipe.read_all_as_string(0);

secure_vector<uint8_t> mac = pipe.read_all(l);

if(mac != auth_code)
error();

Here we wanted to not only decrypt the message, but send the decrypted text through an additional computation, in
order to compute the authentication code.

Any filters that are attached to the pipe after the fork are implicitly attached onto the first branch created by the fork.
For example, let’s say you created this pipe:

Pipe pipe(new Fork(new Hash_Filter("SHA-256"),
new Hash_Filter("SHA-512")),
new Hex_Encoder);

And then called start_msg, inserted some data, then end_msg. Then pipe would contain two messages. The first one
(message number 0) would contain the SHA-256 sum of the input in hex encoded form, and the other would contain
the SHA-512 sum of the input in raw binary. In many situations you’ll want to perform a sequence of operations on
multiple branches of the fork; in which case, use the filter described in Chain.

There is also a Threaded_Fork which acts the same as Fork, except it runs each of the filters in its own thread.

8.22.2 Chain

A Chain filter creates a chain of filters and encapsulates them inside a single filter (itself). This allows a sequence of
filters to become a single filter, to be passed into or out of a function, or to a Fork constructor.

You can call Chain’s constructor with up to four Filter pointers (they will be added in order), or with an array of
filter pointers and a size_t that tells Chain how many filters are in the array (again, they will be attached in order).
Here’s the example from the last section, using chain instead of relying on the implicit pass through the other version
used:

Pipe pipe(new Fork(
new Chain(new Hash_Filter("SHA-256"), new Hex_Encoder),
new Hash_Filter("SHA-512")
)
DN

8.22.3 Sources and Sinks

Data Sources

A DataSource is a simple abstraction for a thing that stores bytes. This type is used heavily in the areas of the API
related to ASN.1 encoding/decoding. The following types are DataSource: Pipe, SecureQueue, and a couple of
special purpose ones: DataSource_Memory and DataSource_Stream.

8.22. Pipe/Filter Message Processing 179

Botan Reference Guide, Release 3.9.0

You can create a DataSource_Memory with an array of bytes and a length field. The object will make a copy of the
data, so you don’t have to worry about keeping that memory allocated. This is mostly for internal use, but if it comes
in handy, feel free to use it.

A DataSource_Stream is probably more useful than the memory based one. Its constructors take either a
std::istream or a std::string. If it’s a stream, the data source will use the istream to satisfy read requests
(this is particularly useful to use with std: :cin). If the string version is used, it will attempt to open up a file with
that name and read from it.

Data Sinks

A DataSink (in data_snk.h) is a Filter that takes arbitrary amounts of input, and produces no output. This
means it’s doing something with the data outside the realm of what Filter/Pipe can handle, for example, writing
it to a file (which is what the DataSink_Stream does). There is no need for DataSink™ "s that write to a
*std::string or memory buffer, because Pipe can handle that by itself.

Here’s a quick example of using a DataSink, which encrypts in.txt and sends the output to out.txt. There is no
explicit output operation; the writing of out. txt is implicit:

DataSource_Stream in("in.txt");

Pipe pipe(get_cipher("AES-128/CTR-BE", key, iv),
new DataSink_Stream("out.txt"));

pipe.process_msg(in);

A real advantage of this is that even if “in.txt” is large, only as much memory is needed for internal I/O buffers will be
used.

8.22.4 The Pipe API
Initializing Pipe

By default, Pipe will do nothing at all; any input placed into the Pipe will be read back unchanged. Obviously, this
has limited utility, and presumably you want to use one or more filters to somehow process the data. First, you can
choose a set of filters to initialize the Pipe via the constructor. You can pass it either a set of up to four filter pointers,
or a pre-defined array and a length:

Pipe pipel(new Filterl(/*args®*/), new Filter2(/*args®/),
new Filter3(/*args*/), new Filter4(/*args*/));
Pipe pipe2(new Filterl(/*args*/), new Filter2(/*args®/));

Filter® filters[5] = {
new Filterl(/*args*/), new Filter2(/*args*/), new Filter3(/*args*/),
new Filter4(/*args*/), new Filter5(/*args*/) /* more if desired... */
s
Pipe pipe3(filters, 5);

This is by far the most common way to initialize a Pipe. However, occasionally a more flexible initialization strategy
is necessary; this is supported by 4 member functions. These functions may only be used while the pipe in question is
not in use; that is, either before calling start_msg, or after end_msg has been called (and no new calls to start_msg
have been made yet).

void Pipe: : prepend (Filter *filter)

Calling prepend will put the passed filter first in the list of transformations. For example, if you prepend a filter
implementing encryption, and the pipe already had a filter that hex encoded the input, then the next message
processed would be first encrypted, and then hex encoded.

180 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

void Pipe: : append (Filter *filter)

Like prepend, but places the filter at the end of the message flow. This doesn’t always do what you expect if
there is a fork.

void Pipe: :pop()
Removes the first filter in the flow.

void Pipe: :reset()

Removes all the filters that the pipe currently holds - it is reset to an empty/no-op state. Any data that is being
retained by the pipe is retained after a reset, and reset does not affect message numbers (discussed later).

Giving Data to a Pipe

Input to a Pipe is delimited into messages, which can be read from independently (ie, you can read 5 bytes from one
message, and then all of another message, without either read affecting any other messages).

void Pipe: :start_msg()

Starts a new message; if a message was already running, an exception is thrown. After this function returns, you
can call write.

void Pipe: :write(const uint8_t *input, size_t length)
void Pipe: :write(const std::vector<uint8_t> &input)
void Pipe: :write(const std::string &input)

void Pipe: :write(DataSource &input)

void Pipe: :write(uint8_t input)
All versions of write write the input into the filter sequence. If a message is not currently active, an exception
is thrown.

void Pipe: :end_msg()
End the currently active message

Sometimes, you may want to do only a single write per message. In this case, you can use the process_msg series of

functions, which start a message, write their argument into the pipe, and then end the message. In this case you would
not make any explicit calls to start_msg/end_msg.

Pipes can also be used with the >> operator, and will accept a std: : istream, or on Unix systems with the £d_unix
module, a Unix file descriptor. In either case, the entire contents of the file will be read into the pipe.

Getting Output from a Pipe

Retrieving the processed data from a pipe is a bit more complicated, for various reasons. The pipe will sepa-
rate each message into a separate buffer, and you have to retrieve data from each message independently. Each
of the reader functions has a final parameter that specifies what message to read from. If this parameter is set to
Pipe: :DEFAULT_MESSAGE, it will read the current default message (DEFAULT_MESSAGE is also the default value of
this parameter).

Functions in Pipe related to reading include:
size_t Pipe: :read (uint8_t *out, size_t len)

Reads up to len bytes into out, and returns the number of bytes actually read.
size_t Pipe: :peek (uint8_t *out, size_t len)

Acts exactly like read, except the data is not actually read; the next read will return the same data.

8.22. Pipe/Filter Message Processing 181

Botan Reference Guide, Release 3.9.0

secure_vector<uint8_t> Pipe: :read_all()

Reads the entire message into a buffer and returns it

std::string Pipe: :read_all_as_string()
Like read_all, but it returns the data as a std: :string. No encoding is done; if the message contains raw
binary, so will the string.

size_t Pipe::remaining()

Returns how many bytes are left in the message

Pipe::message_id Pipe: :default_msg()
Returns the current default message number

Pipe::message_id Pipe: :message_count ()
Returns the total number of messages currently in the pipe

Pipe: :set_default_msg(Pipe::message_id msgno)
Sets the default message number (which must be a valid message number for that pipe). The ability to set
the default message number is particularly important in the case of using the file output operations (<< with a
std: :ostream or Unix file descriptor), because there is no way to specify the message explicitly when using
the output operator.

Pipe 1/O for Unix File Descriptors

This is a minor feature, but it comes in handy sometimes. In all installations of the library, Botan’s Pipe object overloads
the << and >> operators for C++ iostream objects, which is usually more than sufficient for doing I/O.

However, there are cases where the iostream hierarchy does not map well to local ‘file types’, so there is also the ability
to do I/O directly with Unix file descriptors. This is most useful when you want to read from or write to something like
a TCP or Unix-domain socket, or a pipe, since for simple file access it’s usually easier to just use C++’s file streams.

If BOTAN_EXT_PIPE_UNIXFD_IO is defined, then you can use the overloaded I/O operators with Unix file descriptors.
For an example of this, check out the hash_£fd example, included in the Botan distribution.

8.22.5 Filter Catalog

This section documents most of the useful filters included in the library.

Keyed Filters

A few sections ago, it was mentioned that Pipe can process multiple messages, treating each of them the same. Well,
that was a bit of a lie. There are some algorithms (in particular, block ciphers not in ECB mode, and all stream ciphers)
that change their state as data is put through them.

Naturally, you might well want to reset the keys or (in the case of block cipher modes) IVs used by such filters, so
multiple messages can be processed using completely different keys, or new IVs, or new keys and IVs, or whatever.
And in fact, even for a MAC or an ECB block cipher, you might well want to change the key used from message to
message.

Enter Keyed_Filter, which acts as an abstract interface for any filter that is uses keys: block cipher modes, stream
ciphers, MACs, and so on. It has two functions, set_key and set_iv. Calling set_key will set (or reset) the key used
by the algorithm. Setting the IV only makes sense in certain algorithms — a call to set_iv on an object that doesn’t
support IVs will cause an exception. You must call set_key before calling set_iv.

Here’s a example:

182 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Keyed_Filter *aes, *hmac;
Pipe pipe(new Base64_Decoder,
// Note the assignments to the cast and hmac variables
aes = get_cipher("AES-128/CBC", aes_key, iv),
new Fork(
0, // Read the section 'Fork' to understand this
new Chain(
hmac = new MAC_Filter("HMAC(SHA-1)", mac_key, 12),
new Base64_Encoder
)
)
D
pipe.start_msg(Q);
// use pipe for a while, decrypt some stuff, derive new keys and IVs
pipe.end_msgQ);

aes->set_key(aes_key2);
aes->set_iv(iv2);
hmac->set_key(mac_key2);

pipe.start_msg(Q);
// use pipe for some other things
pipe.end_msgQ);

There are some requirements to using Keyed_Filter that you must follow. If you call set_key or set_iv on a filter
that is owned by a Pipe, you must do so while the Pipe is “unlocked”. This refers to the times when no messages
are being processed by Pipe — either before Pipe’s start_msg is called, or after end_msg is called (and no new call
to start_msg has happened yet). Doing otherwise will result in undefined behavior, probably silently getting invalid
output.

And remember: if you're resetting both values, reset the key first.

Cipher Filters

Getting a hold of a Filter implementing a cipher is very easy. Make sure you’re including the header lookup.h,
and then call get_cipher. You will pass the return value directly into a Pipe. There are a couple different functions
which do varying levels of initialization:

Keyed_Filter *get_cipher (std::string cipher_spec, SymmetricKey key, InitializationVector iv, Cipher_Dir dir)
Keyed_Filter *get_cipher (std::string cipher_spec, SymmetricKey key, Cipher_Dir dir)

The version that doesn’t take an I'V is useful for things that don’t use them, like block ciphers in ECB mode, or most
stream ciphers. If you specify a cipher spec that does want a IV, and you use the version that doesn’t take one, an ex-
ception will be thrown. The dir argument can be either Cipher_Dir: :Encryption or Cipher_Dir: :Decryption.

The cipher_spec is a string that specifies what cipher is to be used. The general syntax for “cipher_spec” is
“STREAM_CIPHER”, “BLOCK_CIPHER/MODE”, or “BLOCK_CIPHER/MODE/PADDING”. In the case of
stream ciphers, no mode is necessary, so just the name is sufficient. A block cipher requires a mode of some sort,
which can be “ECB”, “CBC”, “CFB(n)”, “OFB”, “CTR-BE”, or “EAX(n)”. The argument to CFB mode is how many
bits of feedback should be used. If you just use “CFB” with no argument, it will default to using a feedback equal to
the block size of the cipher. EAX mode also takes an optional bit argument, which tells EAX how large a tag size to
use~—~generally this is the size of the block size of the cipher, which is the default if you don’t specify any argument.

In the case of the ECB and CBC modes, a padding method can also be specified. If it is not supplied, ECB defaults
to not padding, and CBC defaults to using PKCS #5/#7 compatible padding. The padding methods currently available

8.22. Pipe/Filter Message Processing 183

Botan Reference Guide, Release 3.9.0

are “NoPadding”, “PKCS7”, “OneAndZeros”, and “CTS”. CTS padding is currently only available for CBC mode, but
the others can also be used in ECB mode.

Some example “cipher_spec arguments are: “AES-128/CBC”, “Blowfish/CTR-BE”, “Serpent/XTS”, and “AES-
256/EAX”.

“CTR-BE” refers to counter mode where the counter is incremented as if it were a big-endian encoded integer. This is
compatible with most other implementations, but it is possible some will use the incompatible little endian convention.
This version would be denoted as “CTR-LE” if it were supported.

“EAX” is a new cipher mode designed by Wagner, Rogaway, and Bellare. It is an authenticated cipher mode (that is,
no separate authentication is needed), has provable security, and is free from patent entanglements. It runs about half
as fast as most of the other cipher modes (like CBC, OFB, or CTR), which is not bad considering you don’t need to use
an authentication code.

Hashes and MACs

Hash functions and MACs don’t need anything special when it comes to filters. Both just take their input and produce
no output until end_msg is called, at which time they complete the hash or MAC and send that as output.

These filters take a string naming the type to be used. If for some reason you name something that doesn’t exist, an
exception will be thrown.

Hash_Filter: :Hash_Filter(std::string hash, size_t outlen = 0)

This constructor creates a filter that hashes its input with hash. When end_msg is called on the owning pipe,
the hash is completed and the digest is sent on to the next filter in the pipeline. The parameter outlen specifies
how many bytes of the hash output will be passed along to the next filter when end_msg is called. By default, it
will pass the entire hash.

Examples of names for Hash_Filter are “SHA-1" and “Whirlpool”.

MAC_Filter: :MAC_Filter (std::string mac, SymmetricKey key, size_t outlen = 0)

This constructor takes a name for a mac, such as “HMAC(SHA-1)” or “CMAC(AES-128)”, along with a key to
use. The optional outlen works the same as in Hash_Filter.

Encoders

Often you want your data to be in some form of text (for sending over channels that aren’t 8-bit clean, printing it, etc).
The filters Hex_Encoder and Base64_Encoder will convert arbitrary binary data into hex or base64 formats. Not
surprisingly, you can use Hex_Decoder and Base64_Decoder to convert it back into its original form.

Both of the encoders can take a few options about how the data should be formatted (all of which have defaults). The
first is a bool which says if the encoder should insert line breaks. This defaults to false. Line breaks don’t matter either
way to the decoder, but it makes the output a bit more appealing to the human eye, and a few transport mechanisms
(notably some email systems) limit the maximum line length.

The second encoder option is an integer specifying how long such lines will be (obviously this will be ignored if line-
breaking isn’t being used). The default tends to be in the range of 60-80 characters, but is not specified. If you want a
specific value, set it. Otherwise the default should be fine.

Lastly, Hex_Encoder takes an argument of type Case, which can be Uppercase or Lowercase (default is Uppercase).
This specifies what case the characters A-F should be output as. The base64 encoder has no such option, because it
uses both upper and lower case letters for its output.

You can find the declarations for these types in hex_filt.h and b64_£filt.h.

184 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.22.6 Writing New Filters

The system of filters and pipes was designed in an attempt to make it as simple as possible to write new filter types.
There are four functions that need to be implemented by a class deriving from Filter:

std::string Filter: :name() const

This should just return a useful decription of the filter object.

void Filter: :write(const uint8_t *input, size_t length)

This function is what is called when a filter receives input for it to process. The filter is not required to process
the data right away; many filters buffer their input before producing any output. A filter will usually have write
called many times during its lifetime.

void Filter: : send (uint8_t *output, size_t length)
Eventually, a filter will want to produce some output to send along to the next filter in the pipeline. It does so
by calling send with whatever it wants to send along to the next filter. There is also a version of send taking a
single byte argument, as a convenience.

Note

Normally a filter does not need to override send, though it can for special handling. It does however need to
call this function whenever it wants to produce output.

void Filter: :start_msg()

Implementing this function is optional. Implement it if your filter would like to do some processing or setup at
the start of each message, such as allocating a data structure.

void Filter: :end_msg()

Implementing this function is optional. It is called when it has been requested that filters finish up their com-
putations. The filter should finish up with whatever computation it is working on (for example, a compressing
filter would flush the compressor and send the final block), and empty any buffers in preparation for processing
a fresh new set of input.

Additionally, if necessary, filters can define a constructor that takes any needed arguments, and a destructor to deal with
deallocating memory, closing files, etc.

8.23 Format Preserving Encryption

Format preserving encryption (FPE) refers to a set of techniques for encrypting data such that the ciphertext has the
same format as the plaintext. For instance, you can use FPE to encrypt credit card numbers with valid checksums such
that the ciphertext is also an credit card number with a valid checksum, or similarly for bank account numbers, US
Social Security numbers, or even more general mappings like English words onto other English words.

The scheme currently implemented in botan is called FE1, and described in the paper Format Preserving Encryption
(https://eprint.iacr.org/2009/251) by Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. FPE is an
area of ongoing standardization and it is likely that other schemes will be included in the future.

To encrypt an arbitrary value using FE1, you need to use a ranking method. Basically, the idea is to assign an integer
to every value you might encrypt. For instance, a 16 digit credit card number consists of a 15 digit code plus a 1
digit checksum. So to encrypt a credit card number, you first remove the checksum, encrypt the 15 digit value modulo
10", and then calculate what the checksum is for the new (ciphertext) number. Or, if you were encrypting words in a
dictionary, you could rank the words by their lexicographical order, and choose the modulus to be the number of words
in the dictionary.

The interfaces for FE1 are defined in the header fpe_fel.h:

8.23. Format Preserving Encryption 185

https://eprint.iacr.org/2009/251

Botan Reference Guide, Release 3.9.0

Added in version 2.5.0.
class FPE_FE1

FPE_FE1 (const Biglnt &n, size_t rounds = 5, bool compat_mode = false, std::string mac_algo =
"HMAC(SHA-256)")

Initialize an FPE operation to encrypt/decrypt integers less than . It is expected that n is trivially factorable
into small integers. Common usage would be n to be a power of 10.

Note that the default parameters to this constructor are incompatible with the fel_encrypt and
fel_decrypt function originally added in 1.9.17. For compatibility, use 3 rounds and set compat_mode
to true.

Bigint encrypt (const Bigint &X, const uint8_t tweak[], size_t tweak_len) const

Encrypts the value x modulo the value n using the key and tweak specified. Returns an integer less than n.
The tweak is a value that does not need to be secret that parameterizes the encryption function. For instance,
if you were encrypting a database column with a single key, you could use a per-row-unique integer index
value as the tweak. The same tweak value must be used during decryption.

Biglnt decrypt (const Bigint &x, const uint8_t tweak([], size_t tweak_len) const
Decrypts an FEI ciphertext. The tweak must be the same as that provided to the encryption function.
Returns the plaintext integer.

Note that there is not any implicit authentication or checking of data in FE1, so if you provide an incorrect
key or tweak the result is simply a random integer.

BigInt encrypt (const Biglnt &X, uint64_t tweak)

Convenience version of encrypt taking an integer tweak.

BigInt decrypt (const Biglnt &x, uint64_t tweak)
Convenience version of decrypt taking an integer tweak.
There are two functions that handle the entire FE1 encrypt/decrypt operation. These are the original interface to FE1,

first added in 1.9.17. However because they do the entire setup cost for each operation, they are significantly slower
than the class-based API presented above.

Warning

These functions are hardcoded to use 3 rounds, which may be insufficient depending on the chosen modulus.

Bigint FPE: : fel_encrypt (const Biglnt &n, const Bigint &X, const SymmetricKey &key, const
std::vector<uint8_t> &tweak)

This creates an FPE_FEI object, sets the key, and encrypts X using the provided tweak.

Biglnt FPE: : fel_decrypt (const Bigint &n, const Bigint &X, const SymmetricKey &key, const
std::vector<uint8_t> &tweak)

This creates an FPE_FE1 object, sets the key, and decrypts X using the provided tweak.
This example encrypts a credit card number with a valid Luhn checksum

(https://fen.wikipedia.org/wiki/Luhn_algorithm) to another number with the same format, including a correct
checksum.

/:’:
* (C) 2014,2015 Jack Lloyd

* Botan is released under the Simplified BSD License (see license.txt)

(continues on next page)

186 Chapter 8. API Reference

https://en.wikipedia.org/wiki/Luhn_algorithm

Botan Reference Guide, Release 3.9.0

(continued from previous page)

:':/

#include '"cli.h"
#include <botan/hex.h>

#if defined(BOTAN_HAS_FPE_FE1) && defined(BOTAN_HAS_PBKDF)
#include <botan/fpe_fel.h>
#include <botan/pbkdf.h>
#include <botan/symkey.h>

namespace Botan_CLI {

namespace {

uint8_t luhn_checksum(uint64_t cc_number) {
uint8_t sum = 0;

bool alt = false;
while(cc_number > 0) {
uint8_t digit = cc_number % 10;

if(alt) {
digit *= 2;
if(digit > 9) {
digit -= 9;
}
}

sum += digit;

cc_number /= 10;
alt = lalt;
}

return (sum % 10);

}

bool luhn_check(uint64_t cc_number) {
return (luhn_checksum(cc_number) == 0);

¥

uint64_t cc_rank(uint64_t cc_number) {
// Remove Luhn checksum
return cc_number / 10;

¥

uint64_t cc_derank(uint64_t cc_number) {
for(size_t 1 = 0; i != 10; ++i) {
if(luhn_check(cc_number * 10 + 1)) {
return (cc_number * 10 + i);

}

(continues on next page)

8.23. Format Preserving Encryption 187

Botan Reference Guide, Release 3.9.0

(continued from previous page)

return 0;

}

uint64_t encrypt_cc_number(uint64_t cc_number, const Botan::SymmetricKey& key, const.
—std: :vector<uint8_t>& tweak) {
const Botan::BigInt n(1000000000000000) ;

const Botan::BigInt c = Botan::FPE::fel_encrypt(n, Botan::BigInt::from_u64(cc_rank(cc_
—number)), key, tweak);

if(c.bits() > 50) {
throw Botan::Internal_Error("FPE produced a number too large");

}

uint64_t enc_cc = 0;
for(size_t i = 0; i !'= 7; ++i) {
enc_cc = (enc_cc << 8) | c.byte_at(6 - i);

}

return cc_derank(enc_cc);

}

uint64_t decrypt_cc_number(uint64_t enc_cc, const Botan::SymmetricKey& key, const.
—,std: :vector<uint8_t>& tweak) {
const Botan::BigInt n(1000000000000000) ;

const Botan::BigInt c = Botan::FPE::fel_decrypt(n, Botan::BigInt::from u64(cc_
—rank(enc_cc)), key, tweak);

if(c.bits() > 50) {
throw CLI_Error("FPE produced a number too large");

}

uint64_t dec_cc = 0;
for(size_t i = 0; i != 7; ++i) {

dec_cc = (dec_cc << 8) | c.byte_at(6 - i);
}

return cc_derank(dec_cc);

}
} // namespace
class CC_Encrypt final : public Command {
public:
CC_Encrypt() : Command("cc_encrypt CC passphrase --tweak=") {}

std::string group() const override { return "misc"; }

std: :string description() const override {
return "Encrypt the passed valid credit card number using FPE encryption";

}

(continues on next page)

188 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)
void go() override {
const uint64_t cc_number = std::stoull(get_arg("CC"));
const std::vector<uint8_t> tweak = Botan::hex_decode(get_arg("tweak™"));
const std::string pass = get_arg('passphrase™);

auto pbkdf = Botan: :PBKDF::create("PBKDF2(SHA-256)");
if(!pbkdf) {

throw CLI_Error_Unsupported("PBKDF", "PBKDF2(SHA-256)");
}

auto key = Botan::SymmetricKey(pbkdf->pbkdf iterations(32, pass, tweak.data(Q),.
—tweak.size(), 100000));

output() << encrypt_cc_number(cc_number, key, tweak) << "\n";
};
BOTAN_REGISTER_COMMAND("cc_encrypt", CC_Encrypt);

class CC_Decrypt final : public Command {
public:
CC_Decrypt() : Command("cc_decrypt CC passphrase --tweak=") {}

std::string group() const override { return "misc"; }

std::string description() const override {

return "Decrypt the passed valid ciphertext credit card number using FPE.
—decryption";

}

void go() override {
const uint64_t cc_number = std::stoull(get_arg("CC"));
const std::vector<uint8_t> tweak = Botan::hex_decode(get_arg("tweak"));
const std::string pass = get_arg('passphrase");

auto pbkdf = Botan: :PBKDF::create("PBKDF2(SHA-256)");
if(!pbkdf) {

throw CLI_Error_Unsupported("'PBKDF", "PBKDF2(SHA-256)");
1

auto key = Botan::SymmetricKey(pbkdf->pbkdf_iterations(32, pass, tweak.data(Q),.
—tweak.size(), 100000));

output() << decrypt_cc_number(cc_number, key, tweak) << "\n";
};
BOTAN_REGISTER_COMMAND("cc_decrypt", CC_Decrypt);

} // namespace Botan_CLI

#endif // FPE && PBKDF

8.23. Format Preserving Encryption 189

Botan Reference Guide, Release 3.9.0

This example encrypts a string of dictionary words onto another string of dictionary words:

#include <botan/fpe_fel.h>
#include <botan/hex.h>
#include <algorithm>
#include <fstream>
#include <iostream>

class Dictionary {
public:
explicit Dictionary(const std::string& filename) {
std::ifstream in(filename);

while(in.good()) {
std: :string word;
std: :getline(in, word);
m_dict.push_back(word) ;
}

std::sort(m_dict.begin(), m_dict.end());
}

size_t rank(const std::string& word) const {
auto i = std::lower_bound(m_dict.begin(), m_dict.end(), word);

size_t r = 1 - m_dict.beginQ);

if(m_dict[r] !'= word) {
throw std::runtime_error('The word " + word + " does not appear in the,
—dictionary");

}

return r;

}
std: :string derank(size_t rank) const { return m_dict.at(rank); }
size_t size() const { return m_dict.size(); }

private:
std: :vector<std::string> m_dict;

e

int main(int argc, char®* argv[]) {
if(argc <= 4) {
std: :cerr << "Usage:
—key> words...\n";
return 1;

<< argv[0] << " <encrypt|decrypt> <dictionary file> <hex_

}

try {
const bool encrypt = [=]1() {
const std::string argl(argv[1l]);
(continues on next page)

190 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

if(argl == "encrypt") {
return true;
} else if(argl == "decrypt") {
return false;
} else {
throw std::invalid_argument("Expected 'encrypt' or 'decrypt' not " + argl);
}
10;

const Dictionary dict(argv[2]);
const auto key = Botan::hex_decode(argv[3]);

Botan: :FPE_FE1 fpe(Botan::BigInt::from_u64(dict.size()));
fpe.set_key(key);

for(size_t i = 4; argv[i] != nullptr; ++i) {
/7':
* The tweak ensures that even if the same input is encrypted more than
* once it produces a different output. The same tweak must be used for
* decryption. Commonly this is available, eg a database row id. If not
* available then the tweak can be set to a constant.
7':/

const uint64_t tweak = static_cast<uint64_t>(i - 4);

auto z = Botan::BigInt(dict.rank(std::string(argv[i])));
auto enc_z = encrypt ? fpe.encrypt(z, tweak) : fpe.decrypt(z, tweak);
auto enc_word = dict.derank(enc_z.word_at(0));

std::cout << enc_word << ;

}
std::cout << "\n";
return 0;

} catch(std::exception& e) {
std::cout << e.what() << "\n";
return 2;

8.24 Threshold Secret Sharing

Added in version 1.9.1.

Threshold secret sharing allows splitting a secret into N shares such that M (for specified M <= N) is sufficient to recover
the secret, but an attacker with M - 1 shares cannot derive any information about the secret.

The implementation in Botan follows an expired Internet draft “draft-mcgrew-tss-03”. Several other implementations
of this TSS format exist.

class RTSS_Share

static std::vector<RTSS_Share> split (uint8_t M, uint8_t N, const uint8_t secret[], uint16_t secret_len, const
std::vector<uint8_t> &identifier, const std::string &hash_fn,
RandomNumberGenerator &rng)

Split a secret. The identifier is an optional key identifier which may be up to 16 bytes long. Shorter
identifiers are padded with zeros.

8.24. Threshold Secret Sharing 191

Botan Reference Guide, Release 3.9.0

The hash function must be either “SHA-1”, “SHA-256", or “None” to disable the checksum.
This will return a vector of length N, any M of these shares is sufficient to reconstruct the data.

static secure_vector<uint8_t> reconstruct (const std::vector<R7SS_Share> &shares)

Given a sufficient number of shares, reconstruct a secret.

RTSS_Share(const uint8_t data[], size_t len)

Read a TSS share as a sequence of bytes.

const secure_vector<uint8> &data() const

Return the data of this share.

uint8_t share_id () const
Return the share ID which will be in the range 1...255

8.25 EC_Group

This class represents a set of elliptic curve parameters. Only curves over prime fields are supported.

class EC_Group

static bool EC_Group: : supports_named_group (std::string_view name)
Check if the named group is supported.
static bool EC_Group: : supports_application_specific_group()
Check if application specific groups are supported.
EC_Group: : from_0ID(const OID &oid)
Initialize an EC_Group using an OID referencing the curve parameters.
EC_Group: : from_name (std::string_view name)
Initialize an EC_Group using a name (such as “secp256r1”)

The curve may not be available, based on the build configuration. If this is the case this function will throw
Not_Implemented.

EC_Group: : from_PEM(std::string_view pem)
Initialize an EC_Group using a PEM encoded parameter block

EC_Group (const OID &oid, const Bigint &p, const Bigint &a, const Bigint &b, const Biglnt &base_x, const
Bigint &base_y, const Bigint &order)

Create an application specific elliptic curve.

Warning

Using application specific curves may be hazardous to your health.

This constructor imposes the following restrictions:
* The prime must be between 192 and 512 bits, and a multiple of 32 bits.

* As a special extension regarding the above restriction, the prime may alternately be 521 bits, in which
case it must be exactly 2**521-1. It can also be 239 bits, in which case it must be the X9.63 239-bit
prime.

* The prime must be congruent to 3 modulo 4

192 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

* The group order must have identical bitlength to the prime
* No cofactor is allowed
* An object identifier must be specified

EC_Group (const Bigint &p, const Bigint &a, const Bigint &b, const Bigint &base_x, const Biglnt &base_y,
const Bigint &order, const Bigint &cofactor, const OID &oid = OID())

This is a deprecated alternative interface for creating application specific elliptic curves.

This does not impose the same restrictions regarding use of arbitrary sized groups, use of a cofactor, etc,
and the object identifier is optional.

Warning

If you are using this constructor, and cannot use the non-deprecated constructor due to the restrictions it
places on the curve parameters, be aware that this constructor will be dropped in Botan 4. Please open
an issue on Github describing your usecase.

EC_Group (std::span<const uint8_t> ber_encoding)
Initialize an EC_Group by decoding a DER encoded parameter block.

std::vector<uint8_t> DER_encode () const
Return the DER encoding of this group.

std::vector<uint8_t> DER_encode (EC_Group_Encoding form) const
Return the DER encoding of this group. This variant is deprecated, but allows the curve to be encoded
using the explicit (vs OID) encoding. All support for explicitly encoded elliptic curves is deprecated and
will be removed in Botan4.

std::string PEM_encode () const
Return the PEM encoding of this group (base64 of DER encoding plus header/trailer).

const Bigint &get_p() const

Return the prime modulus as a BigInt

const Bigint &get_a() const

Return the a parameter of the elliptic curve equation as a BigInt

const Bigint &get_b() const

Return the b parameter of the elliptic curve equation as a BigInt

const Bigint &get_g_x() const
Return the x coordinate of the base point element as a BigInt

const Bigint &get_g_y () const
Return the y coordinate of the base point element as a BigInt

const Bigint &get_order () const
Return the order of the group generated by the base point as a BigInt

const Bigint &get_cofactor() const
Return the cofactor of the curve. In most cases this will be 1.

8.25. EC_Group 193

Botan Reference Guide, Release 3.9.0

Warning

In Botan4 all support for elliptic curves group with a cofactor > 1 will be removed.

const OID &get_curve_oid() const
Return the OID used to identify this curve. May be empty.

Note

Botan4 will remove the ability to create elliptic curves without an object identifier.

bool verify_group (RandomNumberGenerator &rng, bool strong = false) const

Attempt to verify the group seems valid.

static const std::set<std::string> &known_named_groups ()

Return a list of known groups, ie groups for which EC_Group: : from_name (name) will succeed.

8.26 Elliptic Curve Operations

In addition to high level operations for signatures, key agreement, and message encryption using elliptic curve cryptog-
raphy, the library contains lower level interfaces for performing operations such as elliptic curve point multiplication.

All operations described here are constant time (avoiding timing/cache based side channels) unless otherwise docu-
mented. Usually this is denoted by including vartime in the name.

Note

Prior to 3.6.0, Botan used BigInt to represent scalar values, and EC_Point for elliptic curve points in Jacobian
projective form. EC_Point still exists, but is intentionally undocumented, and will be removed in Botan4.

Warning

The following interfaces are used to implement the elliptic curve signature and key agreement schemes within the
library. They are exposed to applications to allow creating custom protocols, such as for example a threshold sig-
nature scheme or a PAKE. Ordinary users do not need to use these, outside of perhaps something like deserializing
a EC_Scalar and passing it to a constructor.

class EC_Scalar
An elliptic curve scalar; that is, an integer in the range [0,n) where n is size of the prime order subgroup
generated by the standard group generator.

Note that while zero is a representable value, some of the deserialization functions reject zero.

static std::optional<EC_Scalar> deserialize(const EC_Group &group, std::span<const uint8_t> buf)
Deserialize a scalar. The bytestring must be exactly the length of the group order; neither inputs with excess
leading zero bytes nor short encodings are accepted.

Returns nullopt if the length is incorrect or if the integer is not within the range [1,n) where n is the
group order.

194 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

static EC_Scalar from_bytes_with_trunc(const EC_Group &group, std::span<const uint8_t> buf)
Convert a bytestring to a scalar using the ECDSA truncation rules. This can return zero.

static EC_Scalar from_bytes_mod_order (const EC_Group &group, std::span<const uint8_t> buf)

Treating the input as the big-endian encoding of an integer, reduce that integer modulo n.
The encoded integer should be no greater than n**2.

static EC_Scalar random(const EC_Group &group, RandomNumberGenerator &rng)
Return a random non-zero scalar value

static EC_Scalar gk_x_mod_order (const EC_Scalar &k, RandomNumberGenerator &rng)

Compute the elliptic curve scalar multiplication (g*k) where g is the standard base point on the curve. Then
extract the x coordinate of the resulting point, and reduce it modulo the group order.

If k is zero (resulting in the scalar multiplication producing the identity element) then this function returns
ZEero.

static EC_Scalar hash(const EC_Group &group, std::string_view hash_fn, std::span<const uint8_t> input,
std::span<const uint8_t> domain_sep)

Hash to scalar following RFC 9380.

This deterministically and portably hashes the provided input and domain separator into an integer modulo
the group order.

This function is supported for all groups.
size_t bytes () const
Return the byte length of the scalar
void serialize_to(std::span<uint8_t> buf) const
Serialize the scalar to the provided span. It must have length exactly equal to the value returned by bytes.
bool is_zero() const
Returns true if this scalar value is zero
bool is_nonzero() const
Returns true if this scalar value is not zero
EC _Scalar invert () const

Return the multiplicative inverse, or zero if *this is zero

EC Scalar invert_vartime() const

Same as EC_Scalar: :invert, except that the inversion is allowed to leak the value of the scalar to side
channels.

EC_Scalar negate () const
Return the additive inverse

EC_Scalar operator+(const EC_Scalar &X, const EC_Scalar &y)
Addition modulo n

EC_Scalar operator-(const EC_Scalar &X, const EC_Scalar &y)
Subtraction modulo n

EC_Scalar operator* (const EC_Scalar &X, const EC_Scalar &y)

Multiplication modulo n

8.26. Elliptic Curve Operations 195

Botan Reference Guide, Release 3.9.0

bool operator==(const £EC_Scalar &x, const EC_Scalar &y)
Equality test
class EC_AffinePoint
A point on the elliptic curve.
static EC_AffinePoint: :generator (const EC_Group &group)
Return the standard generator of the group
static EC_AffinePoint: :identity(const EC_Group &group)
Return the identity element of the group (aka the point at infinity)
EC_AffinePoint (const EC_Group &group, std::span<const uint8_t> bytes)

Point deserialization. Throws if invalid, including if the point is not on the curve.
This accepts SEC1 compressed or uncompressed formats

static std::optional< EC_AffinePoint> deserialize (const EC_Group &group, std::span<const uint8_t> bytes)
Point deserialization. Returns nullopt if invalid, including if the point is not on the curve.

This accepts SEC1 compressed or uncompressed formats

bool is_identity() const
Return true if this point is the identity element.

EC_AffinePoint mul (const EC_Scalar &scalar, RandomNumberGenerator &rng) const
Variable base scalar multiplication. Constant time. If the rng object is seeded, also uses blinding and point
rerandomization.

static EC_AffinePoint g_mul (const EC_Scalar &scalar, RandomNumberGenerator &rng)
Fixed base scalar multiplication. Constant time. If the rng object is seeded, also uses blinding and point

rerandomization.

static std::optional<EC_AffinePoint> mul _px_qy (const EC_AffinePoint &p, const EC_Scalar &x, const
EC_AffinePoint &q, const EC_Scalar &y,
RandomNumberGenerator &rng)

Constant time 2-ary multiscalar multiplication. Returns p*x + q*y, or nullopt if the resulting point was the
identity element.

static EC_AffinePoint add(const EC_AffinePoint &p, const EC_AffinePoint &q)
Elliptic curve point addition.

Note

This point addition operation is relatively quite expensive since it must convert the point directly from
projective to affine coordinates, which requires an expensive field inversion. This is, however, sufficient
for protocols which just require a small number of point additions. In the future a public type for
projective coordinate points may also be added, to better handle protocols which require many point
additions. If you are implementing such a protocol using this interface please open an issue on Github.

EC_AffinePoint negate () const
Return the negation of this point.
static EC_AffinePoint hash_to_curve_ro(const EC_Group &group, std::string_view hash_fn,

std::span<const uint8_t> input, std::span<const uint8_t>
domain_sep)

196 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Hash to curve (RFC 9380), random oracle variant.
This is currently only supported for a few curves.

static EC_AffinePoint hash_to_curve_nu(const EC_Group &group, std::string_view hash_fn,
std::span<const uint8_t> input, std::span<const uint8_t>
domain_sep)

Hash to curve (RFC 9380), non-uniform variant.
This is currently only supported for a few curves.

size_t field_element_bytes () const
Return the size of the x and y coordinates, in bytes.
void serialize_x_to(std::span<uint8_t> bytes) const
Serialize the x coordinate to the output span, which must be exactly of the expected size (1 field element)
void serialize_y_to(std::span<uint8_t> bytes) const
Serialize the y coordinate to the output span, which must be exactly of the expected size (1 field element)
void serialize_xy_to(std::span<uint8_t> bytes) const
Serialize the x and y coordinates to the output span, which must be exactly of the expected size (2 field
elements)
void serialize_compressed_to(std::span<uint8_t> bytes) const
Serialize the compressed SEC1 encoding to the output span, which must be exactly of the expected size (1
field element plus 1 byte)
void serialize_uncompressed_to(std::span<uint§_t> bytes) const
Serialize the uncompressed SEC1 encoding to the output span, which must be exactly of the expected size
(2 field elements plus 1 byte)
class EC_Group: :Mul2Table

This class stores precomputed tables for variable time 2-ary multiplications. These are commonly used when
verifying elliptic curve signatures.

Mul2Table(const EC_AffinePoint &h)
Set up a table for computing g*x + h*y where g is the group generator.
std::optional<EC_AffinePoint>mul2_vartime (const EC_Scalar &x, const EC_Scalar &y) const
Return g*x + h*y, where it allowed to leak the values of x and y to side channels.
This returns nullopt if the product was the point at infinity.

bool mul2_vartime_x_mod_order_eq(const EC_Scalar &v, const EC_Scalar &x, const EC_Scalar &y)
const

Compute g*x + h*y, then extract the x coordinate of that point. Reduce the x coordinate modulo the
group order, then check if that value equals v.

This is faster that using EC_Group: :Mul2Table: :mul2_vartime for this process, because this function
can avoid converting the point out of projective coordinates.

8.27 Lossless Data Compression

Some lossless data compression algorithms are available in botan, currently all via third party libraries - these include
zlib (including deflate and gzip formats), bzip2, and Izma. Support for these must be enabled at build time; you can
check for them using the macros BOTAN_HAS_ZLIB, BOTAN_HAS_BZIP2, and BOTAN_HAS_LZMA.

8.27. Lossless Data Compression 197

Botan Reference Guide, Release 3.9.0

Note

You should always compress before you encrypt, because encryption seeks to hide the redundancy that compression
is supposed to try to find and remove.

Compression is done through the Compression_Algorithm and Decompression_Algorithm classes, both defined
in compression.h

Compression and decompression both work in three stages: starting a message (start), continuing to process it
(update), and then finally completing processing the stream (finish).

class Compression_Algorithm

void start(size_t level)

Initialize the compression engine. This must be done before calling update or finish. The meaning
of the level parameter varies by the algorithm but generally takes a value between 1 and 9, with higher
values implying typically better compression from and more memory and/or CPU time consumed by the
compression process. The decompressor can always handle input from any compressor.

void update (secure_vector<uint8_t> &buf, size_t offset = 0, bool flush = false)
Compress the material in the in/out parameter buf. The leading offset bytes of buf are ignored
and remain untouched; this can be useful for ignoring packet headers. If flush is true, the com-

pression state is flushed, allowing the decompressor to recover the entire message up to this point
without having the see the rest of the compressed stream.

class Decompression_Algorithm

void start()

Initialize the decompression engine. This must be done before calling update or finish. No level is
provided here; the decompressor can accept input generated by any compression parameters.

void update (secure_vector<uint8_t> &buf, size_t offset = 0)

Decompress the material in the in/out parameter buf. The leading offset bytes of buf are
ignored and remain untouched; this can be useful for ignoring packet headers.

This function may throw if the data seems to be invalid.

The easiest way to get a compressor is via the functions Compression_Algorithm::create and
Decompression_Algorithm::create which both accept a string argument which can take values include
zIlib (raw zlib with no checksum), deflate (z1ib’s deflate format), gzip, bz2, and Izma. A null pointer will be returned if
the algorithm is unavailable.

Two older functions for this are

Compression_Algorithm *make_compressor (std::string type)
Decompression_Algorithm *make_decompressor (std::string type)

which call the relevant create function and then release the returned unique_ptr. Avoid these in new code.

To use a compression algorithm in a Pipe use the adapter types Compression_Filter and Decompression_Filter
from comp_filter.h. The constructors of both filters take a std::string argument (passed to make_compressor or
make_decompressor), the compression filter also takes a level parameter. Finally both constructors have a parame-
ter buf_sz which specifies the size of the internal buffer that will be used - inputs will be broken into blocks of this size.
The default is 4096.

198 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.28 External Providers

Botan ships with a variety of cryptographic algorithms in both pure software as well as with support from hardware
acceleration.

Additionally, Botan allows to use external implementations to provide algorithms (“providers”).

8.28.1 Integrated Providers

PKCSi#11

PKCS#11 is a standard API for accessing cryptographic hardware. Botan ships a PKCS#11 provider for interacting
with PKCS#11 devices which provide cryptographic algorithms. It is enabled by default.

TPM 1.2

The TPM 1.2 standard is a specification for a hardware device which provides cryptographic algorithms. Botan ships
a TPM provider for interacting with TPM devices. It is disabled by default.

TPM 2.0

Botan ships a TPM 2.0 provider for interacting with TPM 2.0 devices. Access to the TPM is implemented via the
TPM Software Stack (TSS) and is tested using the open source tpm2-tss implementation (https://github.com/tpm2-
software/tpm?2-tss). Botan allows to hook into the crypto callbacks of tpm?2-tss (requires 4.0 or later) to avoid pulling
in another crypto library as a transitive dependency. This provider is disabled by default.

CommonCrypto

CommonCrypto is a library provided by Apple for accessing cryptographic algorithms. Botan ships a CommonCrypto
provider for interacting with CommonCrypto. It is disabled by default.

The CommonCrypto provider supports the following algorithms:
* SHA-1, SHA-256, SHA-384, SHA-512
e AES-128, AES-192, AES-256, DES, TDES, Blowfish, CAST-128
* CBC, CTR, OFB

8.28.2 Provider Interfaces

Symmetric Algorithms
The following interfaces can be used to implement providers for symmetric algorithms:
e AEAD_Mode
¢ BlockCipher
¢ Cipher_Mode
e Hash
* KDF
e MAC
¢ PasswordHashFamily
* PBKDF

e StreamCipher

8.28. External Providers 199

https://github.com/tpm2-software/tpm2-tss

Botan Reference Guide, Release 3.9.0

* XOF

Each of the interfaces provide a factory method which takes string arguments and returns an object implementing the
interface. The strings are the name of the algorithm to be instantiated and the provider to be used. For example, the
following code creates a SHA-256 hash object using the CommonCrypto provider:

#include <botan/hash.h>
auto hash = Botan::HashFunction::create_or_throw("SHA-256", "CommonCrypto");

hash->update("Hello");
hash->update(" ");
hash->update("World");

auto digest = hash->final(Q);

// query the provider currently used
std: :string provider = hash->provider(); // "CommonCrypto"

Omitting the provider string or leaving it empty means the default provider is used. The default provider is the first
provider which supports the requested algorithm. Depending on how Botan was configured at build time, the default
provider may be a pure software implementation, a hardware accelerated implementation or an implementation using
an integrated provider, e.g., CommonCrypto.

The following rules apply:

1. If Botan was built with an integrated provider that is hooked into the T: :create()/T: :create_or_throw()
factory methods (currently only CommonCrypto is), the default provider is the integrated provider.

2. If Botan was not built with an integrated provider as in (1), but with hardware acceleration support, e.g., AES-NI,
and the hardware acceleration is available at runtime, the default provider is the hardware accelerated provider.

3. If Botan was not built with an integrated provider as in (1) and not built with hardware acceleration support, the
default provider is the pure software implementation.

Regardless of the default provider, a specific provider can always be requested by passing the provider name as the
second argument to T: :create()/T::create_or_throw(). Specifically, the special provider name "base" can
always be used to request the hardware accelerated (preferred, if available at runtime) or pure software implementation
(last fallback).

Public Key Algorithms

The following interfaces support using providers for public key algorithms. The interfaces are used in a similar way as
the interfaces for symmetric algorithms described above.

e PK_Signer

e PK_Verifier

¢ PK_Key_Agreement
¢ PK_Encryptor_EME
e PK_Decryptor_EME
¢ PK_KEM_Encryptor
e PK_KEM_Decryptor

Each of the interfaces provides a constructor which takes a key object, optional parameters, and a string specifying
the provider to be used. For example, the following code signs a message using an RSA key with the CommonCrypto
provider:

200 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Note

No integrated provider currently supports using any public key algorithm in the way described above, so the example
is purely for illustrative purposes.

#include <botan/auto_rng.h>
#include <botan/pk_algs.h>
#include <botan/pubkey.h>

Botan: :AutoSeeded_RNG rng;
auto key = Botan::create_private_key("RSA", rng, "3072");

Botan: :PK_Signer signer(key, rng, "PKCS1v15(SHA-256)", Botan::Signature_Format::Standard,
< "CommonCrypto");

signer.update("Hello");

signer.update(" ");
signer.update("World");

auto signature = signer.signature(rng);

To create a key object, use Botan: :create_private_key(), which takes a string specifying the algorithm and the
provider to be used. For example, to create a 3072 bit RSA key with the CommonCrypto provider:

Note

No integrated provider currently supports creating any private key in the way described above, so the example is
purely for illustrative purposes.

#include <botan/auto_rng.h>
#include <botan/pk_algs.h>

Botan: : AutoSeeded_RNG rng;

auto key = Botan::create_private_key("RSA", rng, "3072", "CommonCrypto");

Another way to implement a provider for public key algorithms is to implement the Private_Key and Public_Key
interfaces. This allows for different use cases, e.g., to use a key stored in a hardware security module, handled by a
different operating system process (to avoid leaking the key material), or even implement an algorithm not supported
by Botan. The resulting key class can be stored outside Botan and still be used with the PK_Signer, PK_Verifier,
PK_Key_Agreement, PK_Encryptor_EME, PK_Decryptor_EME, PK_KEM_Encryptor, and PK_KEM_Decryptor in-
terfaces.

8.29 PKCS#11

Added in version 1.11.31.

PKCS#11 is a platform-independent interface for accessing smart cards and hardware security modules (HSM). Vendors

8.29. PKCS#11 201

Botan Reference Guide, Release 3.9.0

of PKCS#11 compatible devices usually provide a so called middleware or “PKCS#11 module” which implements the
PKCS#11 standard. This middleware translates calls from the platform-independent PKCS#11 API to device specific
calls. So application developers don’t have to write smart card or HSM specific code for each device they want to
support.

Note

The Botan PKCS#11 interface is implemented against version v2.40 of the standard.

Botan wraps the C PKCS#11 API to provide a C++ PKCS#11 interface. This is done in two levels of abstraction: a
low level API (see Low Level API) and a high level API (see High Level API). The low level API provides access to all
functions that are specified by the standard. The high level API represents an object oriented approach to use PKCS#11
compatible devices but only provides a subset of the functions described in the standard.

To use the PKCS#11 implementation the pkcs11 module has to be enabled.

Note

Both PKCS#11 APIs live in the namespace Botan: : PKCS11

8.29.1 Low Level API

The PKCS#11 standards committee provides header files (pkcs11.h, pkcs11f.h and pkcs11t.h) which define the
PKCS#11 API in the C programming language. These header files could be used directly to access PKCS#11 com-
patible smart cards or HSMs. The external header files are shipped with Botan in version v2.4 of the standard. The
PKCS#11 low level API wraps the original PKCS#11 API, but still allows to access all functions described in the
standard and has the advantage that it is a C++ interface with features like RAII, exceptions and automatic memory
management.

The low level API is implemented by the LowLevel class and can be accessed by including the header botan/p11.h.

Preface

All constants that belong together in the PKCS#11 standard are grouped into C++ enum classes. For example the
different user types are grouped in the UserType enumeration:

enum class UserType : CK_USER_TYPE
enumerator UserType: : S0 = CKU_SO
enumerator UserType: :User = CKU_USER
enumerator UserType: :ContextSpecific = CKU_CONTEXT_SPECIFIC

Additionally, all types that are used by the low or high level API are mapped by type aliases to more C++ like names.
For instance:

using FunctionListPtr = CK_FUNCTION_LIST_PTR

C-API Wrapping

There is at least one method in the LowLevel class that corresponds to a PKCS#11 function. For example the
C_GetSlotList method in the LowLevel class is defined as follows:

class LowLevel

202 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

bool C_GetSlotList (Bbool token_present, Slotld *slot_list_ptr, Ulong *count_ptr, ReturnValue
*return_value = ThrowException) const

The LowLevel class calls the PKCS#11 function from the function list of the PKCS#11 module:

CK_DEFINE_FUNCTION(CK_RV, C_GetSlotList)(CK_BBOOL tokenPresent, CK_SLOT_ID_
—PTR pSlotList,
CK_ULONG_PTR pulCount)

Where it makes sense there is also an overload of the LowLevel method to make usage easier and safer:

bool C_GetSlotList (bool token_present, std::vector<Slotld> &slot_ids, ReturnValue *return_value =
ThrowException) const

With this overload the user of this API just has to pass a vector of S1otId instead of pointers to preallocated memory
for the slot list and the number of elements. Additionally, there is no need to call the method twice in order to determine
the number of elements first.

Another example is the C_InitPIN overload:

template<typename Talloc>
bool C_InitPIN(SessionHandle session, const std::vector<uint8_t, TAlloc> &pin, ReturnValue
*return_value = ThrowException) const

The templated pin parameter allows to pass the PIN as a std: : vector<uint8_t> or a secure_vector<uint8_t>.
If used with a secure_vector it is assured that the memory is securely erased when the pin object is no longer needed.

Error Handling

All possible PKCS#11 return values are represented by the enum class:

enum class ReturnValue : CK_RV

All methods of the LowLevel class have a default parameter ReturnValue* return_value = ThrowException.
This parameter controls the error handling of all LowLevel methods. The default behavior return_value =
ThrowException is to throw an exception if the method does not complete successfully. If a non-NULL pointer is
passed, return_value receives the return value of the PKCS#11 function and no exception is thrown. In case nullptr
is passed as return_value, the exact return value is ignored and the method just returns true if the function succeeds
and false otherwise.

Getting started

An object of this class can be accessed by the Module: :operator->() method.

Code Example:

#include <botan/pll.h>
#include <botan/pll_types.h>

#include <vector>

int main(Q) {
Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.dl1l");

// C_Initialize is automatically called by the constructor of the Module

(continues on next page)

8.29. PKCS#11 203

Botan Reference Guide, Release 3.9.0

(continued from previous page)

// work with the token

std: :vector<Botan: :PKCS11::SlotId> slot_ids;
[[maybe_unused]] bool success = module->C_GetSlotList(true, slot_ids);

// C_Finalize is automatically called by the destructor of the Module

return 0;

8.29.2 High Level API

The high level API provides access to the most commonly used PKCS#11 functionality in an object oriented manner.
Functionality of the high level API includes:

* Loading/unloading of PKCS#11 modules

* Initialization of tokens

* Change of PIN/SO-PIN

* Session management

* Random number generation

* Enumeration of objects on the token (certificates, public keys, private keys)

» Import/export/deletion of certificates

* Generation/import/export/deletion of RSA and EC public and private keys

* Encryption/decryption using RSA with support for OAEP and PKCS1-v1_5 (and raw)
 Signature generation/verification using RSA with support for PSS and PKCS1-v1_5 (and raw)
* Signature generation/verification using ECDSA

* Key derivation using ECDH

Module
The Module class represents a PKCS#11 shared library (module) and is defined in botan/p11_module.h.
It is constructed from a a file path to a PKCS#11 module and optional C_InitializeArgs:

class Module

Module(const std::string& file_path, C_InitializeArgs init_args =
{ nullptr, nullptr, nullptr, nullptr, static_cast<CK_FLAGS>(Flag: :0sLockingOk),..
—~nullptr })

It loads the shared library and calls C_Initialize with the provided C_InitializeArgs. On destruction of
the object C_Finalize is called.

There are two more methods in this class. One is for reloading the shared library and reinitializing the PKCS#11
module:

void reload(C_InitializeArgs init_args =
{ nullptr, nullptr, nullptr, nullptr, static_cast< CK_FLAGS >
—»(Flag: :0sLockingOk), nullptr });

204 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

The other one is for getting general information about the PKCS#11 module:

Info get_info () const
This function calls C_GetInfo internally.

Code example:

#include <botan/pll.h>
#include <botan/pll_types.h>

#include <iostream>
#include <string>

int main() {
Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.dl1l");

// Sometimes useful if a newly connected token is not detected by the PKCS#11 module
module.reload();

Botan: :PKCS11::Info info = module.get_info();
// print library version

std::cout << std::to_string(info.libraryVersion.major) <<
—libraryVersion.minor) << '\n';

<< std::to_string(info.

return 0;

Slot
The Slot class represents a PKCS#11 slot and is defined in botan/p11_slot.h.
A PKCS#11 slot is usually a smart card reader that potentially contains a token.
class Slot
Slot (Module &module, Slotld slot_id)
To instantiate this class a reference to a Module object and a slot_id have to be passed to the constructor.

static std::vector<Slotld> get_available_slots(Module &module, bool token_present)

Retrieve available slot ids by calling this static method.

The parameter token_present controls whether all slots or only slots with a token attached are returned
by this method. This method calls C_GetSlotList.

SlotInfo get_slot_info() const
Returns information about the slot. Calls C_GetSlotInfo.

TokenInfo get_token_info() const
Obtains information about a particular token in the system. Calls C_GetTokenInfo.

std::vector<MechanismType> get_mechanism_list() const
Obtains a list of mechanism types supported by the slot. Calls C_GetMechanismList.

8.29. PKCS#11 205

Botan Reference Guide, Release 3.9.0

MechanismInfo get_mechanism_info(MechanismType mechanism_type) const

Obtains information about a particular mechanism possibly supported by a slot. Calls
C_GetMechanismInfo.

void initialize (const std::string &label, const secure_string &so_pin) const

Calls C_InitToken to initialize the token. The 1label must not exceed 32 bytes. The current PIN of the
security officer must be passed in so_pin if the token is reinitialized or if it’s a factory new token, the
so_pin that is passed will initially be set.

Code example:

#include
#include

#include
#include
#include

<botan/pl11.h>
<botan/pll_types.h>

<iostream>
<string>
<vector>

int main(Q) {

Botan:

:PKCS11: :Module module("C:\\pkcsll-middleware\\library.d11");

// only slots with connected token
std: :vector<Botan: :PKCS11::SlotId> slots = Botan::PKCS11l::Slot::get_available_
—slots(module, true);

// use first slot

Botan:

:PKCS11::Slot slot(module, slots.at(0));

// print firmware version of the slot

Botan:
std::cout << std::to_string(slot_info.firmwareVersion.major) <<

:PKCS11::SlotInfo slot_info = slot.get_slot_info();

<< std::to_string(slot_info.firmwareVersion.minor) << '\n';

// print firmware version of the token

Botan:

:PKCS11: :TokenInfo token_info = slot.get_token_info();

std: :cout << std::to_string(token_info.firmwareVersion.major) << "."

<< std::to_string(token_info.firmwareVersion.minor) << '\n';

// retrieve all mechanisms supported by the token
std: :vector<Botan: :PKCS11: :MechanismType> mechanisms = slot.get_mechanism_list();

// retrieve information about a particular mechanism

Botan:

:PKCS11: :MechanismInfo mech_info = slot.get_mechanism_

—info(Botan: :PKCS11: :MechanismType: :RsaPkcsOaep) ;

// maximum RSA key length supported:
std: :cout << mech_info.ulMaxKeySize << '\n';

// initialize the token

Botan:

:PKCS11::secure_string so_pin(8, '0');

slot.initialize("Botan PKCS11 documentation test label", so_pin);

(continues on next page)

206

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

return 0;

Session

The Session class represents a PKCS#11 session and is defined in botan/p11_session.h.

A session is a logical connection between an application and a token.

The session is passed to most other PKCS#11 operations, and must remain alive as long as any other PKCS#11 object
which the session was passed to is still alive, otherwise errors or even an application crash are possible. In the future,
the API may change to using shared_ptr to remove this problem.

class Session

There are two constructors to create a new session and one constructor to take ownership of an existing session.
The destructor calls C_Logout if a user is logged in to this session and always C_CloseSession.

Session(S/or &slot, bool read_only)

To initialize a session object a S1ot has to be specified on which the session should operate. read_only
specifies whether the session should be read only or read write. Calls C_OpenSession.

Session(Slor &slot, Flags flags, VoidPtr callback_data, Notify notify_callback)

Creates a new session by passing a S1ot, session flags, callback_dataand anotify_callback. Calls
C_OpenSession.

Session(Slot &slot, SessionHandle handle)
Takes ownership of an existing session by passing SI1ot and a session handle.
SessionHandle release()
Returns the released SessionHandle
void login(UserType userType, const secure_string &pin)
Login to this session by passing UserType and pin. Calls C_Login.
void logoff ()

Logout from this session. Not mandatory because on destruction of the Session object this is done auto-
matically.

SessionInfo get_info () const

Returns information about this session. Calls C_GetSessionInfo.

void set_pin(const secure_string &old_pin, const secure_string &new_pin) const
Calls C_SetPIN to change the PIN of the logged in user using the old_pin.
void init_pin(const secure_string &new_pin)
Calls C_InitPIN to change or initialize the PIN using the SO_PIN (requires a logged in session).

Code example:

#include
#include

#include
#include

<botan/p11.h>
<botan/pl1_types.h>

<iostream>
<vector>

(continues on next page)

8.29. PKCS#11 207

Botan Reference Guide, Release 3.9.0

(continued from previous page)

int main(Q) {

Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.d11");

// use first slot with connected token

std: :vector<Botan: :PKCS11::SlotId> slots = Botan::PKCS11::Slot::get_available_
—slots(module, true);

Botan: :PKCS11::Slot slot(module, slots.at(0));

// open read only session
{ Botan::PKCS11::Session read_only_session(slot, true); }

// open read write session
{ Botan::PKCS11::Session read_write_session(slot, false); }

// open read write session by passing flags
{
Botan: :PKCS11::Flags flags =
Botan: :PKCS11::flags(Botan: :PKCS11::Flag::SerialSession |.
—.Botan: :PKCS11::Flag: :RwSession);

Botan: :PKCS11::Session read_write_session(slot, flags, nullptr, nullptr);

}

// move ownership of a session

! Botan: :PKCS11::Session session(slot, false);
Botan: :PKCS11::SessionHandle handle = session.release();
Botan: :PKCS11::Session session2(slot, handle);

}

Botan: :PKCS11::Session session(slot, false);

// get session info
Botan: :PKCS11::SessionInfo info = session.get_info(Q);
std: :cout << info.slotID << '\n';

// login
Botan: :PKCS11::secure_string pin = {'1", '2"', '3', "4"', '5') '6'};
session.login(Botan: :PKCS11: :UserType: :User, pin);

// set pin
Botan: :PKCS11::secure_string new_pin = {'6', '5', "'4"', '3', '2', "1'};
session.set_pin(pin, new_pin);

// logoff
session.logoff();

// log in as security officer
Botan: :PKCS11::secure_string so_pin = {'0', '0', '0"', '@', '0', '0', '0', '0'};
session.login(Botan: :PKCS11: :UserType::SO, so_pin);

(continues on next page)

208 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

// change pin to old pin
session.init_pin(pin);

return 0;

Objects

PKCS#11 objects consist of various attributes (CK_ATTRIBUTE). For example CKA_TOKEN describes if a PKCS#11
object is a session object or a token object. The helper class AttributeContainer helps with storing these attributes.
The class is defined in botan/pll_object.h.

class AttributeContainer

Attributes can be set in an AttributeContainer by various add_ methods:

void add_class (ObjectClass object_class)
Add a class attribute (CKA_CLASS / AttributeType: :Class)
void add_string (AttributeType attribute, const std::string &value)
Add a string attribute (e.g. CKA_LABEL / AttributeType: :Label).

void AttributeContainer: :add_binary (AttributeType attribute, const uint8_t *value, size_t
length)

Add a binary attribute (e.g. CKA_ID / AttributeType: :1d).

template<typename TAlloc>
void AttributeContainer: :add_binary (AttributeType attribute, const std::vector<uint8_t, TAlloc>
&binary)

Add a binary attribute by passing a vector/secure_vector (e.g. CKA_ID/AttributeType: :I1d).

void AttributeContainer: :add_bool (AttributeType attribute, bool value)
Add a bool attribute (e.g. CKA_SENSITIVE / AttributeType::Sensitive).

template<typename T>
void AttributeContainer: :add_numeric (AttributeType attribute, 7" value)

Add a numeric attribute (e.g. CKA_MODULUS_BITS / AttributeType: :ModulusBits).

Object Properties

The PKCS#11 standard defines the mandatory and optional attributes for each object class. The mandatory and optional
attribute requirements are mapped in so called property classes. Mandatory attributes are set in the constructor, optional
attributes can be set via set_ methods.

In the top hierarchy is the ObjectProperties class which inherits from the AttributeContainer. This class
represents the common attributes of all PKCS#11 objects.

class ObjectProperties : public AtributeContainer

The constructor is defined as follows:

ObjectProperties: :0bjectProperties(ObjectClass object_class)
Every PKCS#11 object needs an object class attribute.

The next level defines the StorageObjectProperties class which inherits from ObjectProperties.

8.29. PKCS#11 209

Botan Reference Guide, Release 3.9.0

class StorageObjectProperties : public ObjectProperties

The only mandatory attribute is the object class, so the constructor is defined as follows:

StorageObjectProperties: :StorageObjectProperties(ObjectClass object_class)

But in contrast to the ObjectProperties class there are various setter methods. For example to set the
AttributeType: :Label:

void set_label (const std::string &label)
Sets the label description of the object (RFC2279 string).

The remaining hierarchy is defined as follows:
¢ DataObjectProperties inherits from StorageObjectProperties
e CertificateProperties inherits from StorageObjectProperties
¢ DomainParameterProperties inherits from StorageObjectProperties
¢ KeyProperties inherits from StorageObjectProperties
¢ PublicKeyProperties inherits from KeyProperties
e PrivateKeyProperties inherits from KeyProperties
e SecretKeyProperties inherits from KeyProperties
PKCS#11 objects themselves are represented by the Object class.

class Object

Following constructors are defined:

Object::0bject(Session &session, ObjectHandle handle)

Takes ownership over an existing object.

Object::0bject(Session &session, const ObjectProperties &obj_props)
Creates a new object with the ObjectProperties provided in obj_props.

The other methods are:

secure_vector<uint8_t> get_attribute_value (AttributeType attribute) const
Returns the value of the given attribute (using C_GetAttributeValue)

void set_attribute_value (AttributeType attribute, const secure_vector<uint8_t> &value) const
Sets the given value for the attribute (using C_SetAttributeValue)

void destroy () const
Destroys the object.

ObjectHandle copy (const Attribute Container &modified_attributes) const
Allows to copy the object with modified attributes.

And static methods to search for objects:

template<typename T>
static std::vector<7'> search(Session &session, const std::vector<Attribute> &search_template)

Searches for all objects of the given type that match search_template.

template<typename T>

210 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

static std::vector<7'> search(Session &session, const std::string &label)
Searches for all objects of the given type using the label (CKA_LABEL).

template<typename T>
static std::vector<7'> search(Session &session, const std::vector<uint8_t> &id)

Searches for all objects of the given type using the id (CKA_ID).

template<typename T>
static std::vector<7'> search(Session &session, const std::string &label, const std::vector<uint8_t>
&id)
Searches for all objects of the given type using the label (CKA_LABEL) and id (CKA_ID).

template<typename T>
static std::vector<7> search(Session &session)

Searches for all objects of the given type.

The ObjectFinder

Another way for searching objects is to use the ObjectFinder class. This class manages calls to the C_FindObjects*
functions: C_FindObjectsInit, C_FindObjects and C_FindObjectsFinal.

class ObjectFinder

The constructor has the following signature:
ObjectFinder: :0ObjectFinder (Session &session, const std::vector<Attribute> &search_template)
A search can be prepared with an ObjectSearcher by passing a Session and a search_template.
The actual search operation is started by calling the £ind method:

std::vector<ObjectHandle> find (std::uint32_t max_count = 100) const
Starts or continues a search for token and session objects that match a template. max_count specifies
the maximum number of search results (object handles) that are returned.

void finish()

Finishes the search operation manually to allow a new ObjectFinder to exist. Otherwise the search
is finished by the destructor.

Code example:

#include <botan/der_enc.h>
#include <botan/pll.h>
#include <botan/pll_object.h>
#include <botan/pll_types.h>
#include <botan/secmem.h>

#include <cstddef>
#include <string>
#include <vector>

int main(Q) {
Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.dl1l");
// open write session to first slot with connected token
std: :vector<Botan: :PKCS11::S1lotId> slots = Botan::PKCS11l::Slot::get_available_
—slots(module, true);
(continues on next page)

8.29. PKCS#11 211

Botan Reference Guide, Release 3.9.0

(continued from previous page)

Botan: :PKCS11::Slot slot(module, slots.at(0));
Botan: :PKCS11::Session session(slot, false);

// create an simple data object

Botan: :secure_vector<uint8_t> value = {0x00, 0x01, 0x02, 0x03};
std::size_t id = 1337;

std: :string label = "test data object";

// set properties of the new object

Botan: :PKCS11::DataObjectProperties data_obj_props;
data_obj_props.set_label(label);
data_obj_props.set_value(value);
data_obj_props.set_token(true);
data_obj_props.set_modifiable(true);

std: :vector<uint8_t> encoded_id;

Botan: :DER_Encoder (encoded_id) .encode(id);
data_obj_props.set_object_id(encoded_id);

// create the object
Botan: :PKCS11::0bject data_obj(session, data_obj_props);

// get label of this object
Botan: :PKCS11::secure_string retrieved_label = data_obj.get_attribute_
—»value(Botan: :PKCS11::AttributeType: :Label);

// set a new label
Botan: :PKCS11::secure_string new_label = {'B', 'o', 't', 'a', 'n'};
data_obj.set_attribute_value(Botan: :PKCS11::AttributeType: :Label, new_label);

// copy the object

Botan: :PKCS11::AttributeContainer copy_attributes;

copy_attributes.add_string(Botan: :PKCS11::AttributeType: :Label, "copied object");

[[maybe_unused]] Botan::PKCS11::0ObjectHandle copied_obj_handle = data_obj.copy(copy_
—attributes);

// search for an object

Botan: :PKCS11::AttributeContainer search_template;

search_template.add_string(Botan: :PKCS11::AttributeType::Label, "Botan");

auto found_objs = Botan::PKCS11::0Object::search<Botan::PKCS11::0bject>(session,..
-»search_template.attributes());

// destroy the object
data_obj.destroy();

return 0;

212 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

RSA
PKCS#11 RSA support is implemented in <botan/pl1_rsa.h>.

RSA Public Keys

PKCS#11 RSA public keys are provided by the class PKCS11_RSA_PublicKey. This class inherits from
RSA_PublicKey and Object. Furthermore there are two property classes defined to generate and import RSA pub-
lic keys analogous to the other property classes described before: RSA_PublicKeyGenerationProperties and
RSA_PublicKeyImportProperties.

class PKCS11_RSA_PublicKey : public RSA_PublicKey, public Object

PKCS11_RSA_PublicKey (Session &session, ObjectHandle handle)
Existing PKCS#11 RSA public keys can be used by providing an ObjectHandle to the constructor.

PKCS11_RSA_PublicKey (Session &session, const RSA_PublicKeylmportProperties &pubkey_props)

This constructor can be used to import an existing RSA public key with the
RSA_PublicKeyImportProperties passed in pubkey_props to the token.

RSA Private Keys

The support for PKCS#11 RSA private keys is implemented in a similar way. There are two prop-
erty classes: RSA_PrivateKeyGenerationProperties and RSA_PrivateKeyImportProperties. The
PKCS11_RSA_PrivateKey class implements the actual support for PKCS#11 RSA private keys. This class inher-
its from Private_Key, RSA_PublicKey and Object. In contrast to the public key class there is a third constructor to
generate private keys directly on the token or in the session and one method to export private keys.

class PKCS11_RSA_PrivateKey : public Private_Key, public RSA_PublicKey, public Object

PKCS11_RSA_PrivateKey (Session &session, ObjectHandle handle)
Existing PKCS#11 RSA private keys can be used by providing an ObjectHandle to the constructor.

PKCS11_RSA_PrivateKey (Session &session, const RSA_PrivateKeyImportProperties &priv_key_props)
This constructor can be used to import an existing RSA private key with the
RSA_PrivateKeyImportProperties passed in priv_key_props to the token.

PKCS11_RSA_PrivateKey (Session &session, uint32_t bits, const RSA_PrivateKeyGenerationProperties

&priv_key_props)
Generates a new PKCS#11 RSA private key with bit length provided in bits and the
RSA_PrivateKeyGenerationProperties passed in priv_key_props.

RSA_PrivateKey export_key () const

Returns the exported RSA_PrivateKey.

PKCS#11 RSA key pairs can be generated with the following free function:

PKCS11_RSA_KeyPair PKCS11: :generate_rsa_keypair(Session &session, const
RSA_PublicKeyGenerationProperties
&pub_props, const
RSA_PrivateKeyGenerationProperties
&priv_props)

Code example:

8.29. PKCS#11 213

Botan Reference Guide, Release 3.9.0

#include <botan/auto_rng.h>
#include <botan/pll.h>
#include <botan/pll_rsa.h>
#include <botan/pll_types.h>
#include <botan/pubkey.h>
#include <botan/rsa.h>

#include <vector>

int main() {

Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.dl1l");

// open write session to first slot with connected token

std: :vector<Botan: :PKCS11::S1lotId> slots = Botan::PKCS11::Slot::get_available_
—slots(module, true);

Botan: :PKCS11::Slot slot(module, slots.at(0®));

Botan: :PKCS11::Session session(slot, false);

Botan::PKCS11::secure_string pin = {'1', '2', '"3", "4', '5', '6'};
session.login(Botan: :PKCS11: :UserType: :User, pin);

/:’:7'::’::1-:'.-:1-7%:’::'.-:’.-:1-7? import RSA prlvate key :’::'::'.-:1-7%:?:'.-:1-:%7?:?:’.-:1-/

// create private key in software
Botan: :AutoSeeded_RNG rng;
Botan: :RSA_PrivateKey priv_key_sw(rng, 2048);

// set the private key import properties
Botan: :PKCS11::RSA_PrivateKeyImportProperties priv_import_props(priv_key_sw.get_n(),.
—priv_key_sw.get_d(Q));

priv_import_props.set_pub_exponent (priv_key_sw.get_e());
priv_import_props.set_prime_1(priv_key_sw.get_p());
priv_import_props.set_prime_2(priv_key_sw.get_q());
priv_import_props.set_coefficient(priv_key_sw.get_c());
priv_import_props.set_exponent_1(priv_key_sw.get_d1(Q));
priv_import_props.set_exponent_2(priv_key_sw.get_d2());

priv_import_props.set_token(true);
priv_import_props.set_private(true);
priv_import_props.set_decrypt(true);
priv_import_props.set_sign(true);

// import
Botan: :PKCS11::PKCS11_RSA_PrivateKey priv_key(session, priv_import_props);

/************ eXpOrt PKCS#11 RSA private key *************/
Botan: :RSA_PrivateKey exported = priv_key.export_key(Q);

/************ import RSA public key *************/

// set the public key import properties
Botan: :PKCS11: :RSA_PublicKeyImportProperties pub_import_props(priv_key.get_n(), priv_
—key.get_e());

(continues on next page)

214 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

pub_import_props.se
pub_import_props.se
pub_import_props.se

// import
Botan: :PKCS11: :PKCS

ot

/:': *

Botan: :PKCS11::RSA_
priv_generate_props.
priv_generate_props.
priv_generate_props.
priv_generate_props.
priv_generate_props.

Botan: :PKCS11: :PKCS

/:'::l‘:h':*:’::?:

Botan: :PKCS11: :RSA_

pub_generate_props.
pub_generate_props.
pub_generate_props.
pub_generate_props.
pub_generate_props.
pub_generate_props.

Botan: :PKCS11: :PKCS
Botan: :PKCS11::g

—props) ;

/:’: E

Botan: :secure_vecto
Botan: :PK_Encryptor
auto ciphertext = e

/:’: *

generate RSA private key **#*#*%*

SRR generate RSA key pair FoR kR

F ek RSA eHCrypt T ek

S RSA deCrypt T T e

(continued from previous page)

t_token(true);
t_encrypt(true);
t_private(false);

11_RSA_PublicKey public_key(session, pub_import_props);

:!—/

PrivateKeyGenerationProperties priv_generate_props;
set_token(true);

set_private(true);

set_sign(true);

set_decrypt(true);

set_label ("BOTAN_TEST_RSA_PRIV_KEY");

11_RSA_PrivateKey private_key2(session, 2048, priv_generate_props);
* :':/

PublicKeyGenerationProperties pub_generate_props(2048UL);
set_pub_exponent();

set_label ("BOTAN_TEST_RSA_PUB_KEY");

set_token(true);
set_encrypt(true);
set_verify(true);
set_private(false);
11_RSA_KeyPair rsa_keypair =
enerate_rsa_keypair(session, pub_generate_props, priv_generate_

’:':/
r<uint8_t> plaintext = {0x00, 0x01, 0x02, 0x03};
_EME encryptor(rsa_keypair.first, rng, "Raw");
ncryptor.encrypt(plaintext, rng);

r:':/

Botan: :PK_Decryptor_EME decryptor(rsa_keypair.second, rng, "Raw");
plaintext = decryptor.decrypt(ciphertext);

/:’::'::’::1':'.':1':%:1‘:'.‘:’.‘:1‘:’.‘ RSA Sign :’::'::'::'::’::i':'.':1':1':’-‘:'.':'.':1‘/

Botan: :PK_Signer signer(rsa_keypair.second, rng, "PSS(SHA-256)", Botan::Signature_

—Format: :Standard) ;
auto signature

signer.sign_message(plaintext, rng);

/:'::'::i‘;i':'.':(‘:l':i‘:’.‘:'.‘:(‘:k‘ RSA Verlfy :'.‘:'::’-';i':'.':(‘:{':i‘;i‘:'.‘:(‘:"':’-‘/

Botan: :PK_Verifier verifier(rsa_keypair.first, "PSS(SHA-256)", Botan::Signature_

(continues on next page)

8.29. PKCS#11 215

Botan Reference Guide, Release 3.9.0

(continued from previous page)

—Format: :Standard) ;
auto ok = verifier.verify _message(plaintext, signature);

return ok ? 0 : 1;

ECDSA
PKCS#11 ECDSA support is implemented in <botan/p11_ecdsa.h>.

ECDSA Public Keys

PKCS#11 ECDSA public keys are provided by the class PKCSI11_ECDSA_PublicKey. This class in-
herits from PKCS11_EC_PublicKey and ECDSA_PublicKey. The necessary property classes are de-
fined in <botan/pll_ecc_key.h>. For public keys there are EC_PublicKeyGenerationProperties and
EC_PublicKeyImportProperties.

class PKCS11_ECDSA_PublicKey : public PKCS11_EC_PublicKey, public virtual ECDSA_PublicKey

PKCS11_ECDSA_PublicKey (Session &session, ObjectHandle handle)
Existing PKCS#11 ECDSA private keys can be used by providing an ObjectHandle to the constructor.

PKCS11_ECDSA_PublicKey (Session &session, const EC_PublicKeyImportProperties &props)

This constructor can be wused to import an existing ECDSA public key with the
EC_PublicKeyImportProperties passed in props to the token.

ECDSA_PublicKey PKCS11_ECDSA_PublicKey: :export_key() const
Returns the exported ECDSA_PublicKey.

ECDSA Private Keys

The class PKCS11_ECDSA_PrivateKey inherits from PKCS11_EC_PrivateKey and implements sup-
port for PKCS#11 ECDSA private keys. There are two property classes for key generation and import:
EC_PrivateKeyGenerationProperties and EC_PrivateKeyImportProperties.

class PKCS11_ECDSA_PrivateKey : public PKCS11_EC_PrivateKey

PKCS11_ECDSA_PrivateKey(Session &session, ObjectHandle handle)
Existing PKCS#11 ECDSA private keys can be used by providing an ObjectHandle to the constructor.

PKCS11_ECDSA_PrivateKey(Session &session, const EC_PrivateKeyIlmportProperties &props)
This constructor can be wused to import an existing ECDSA private key with the
EC_PrivateKeyImportProperties passed in props to the token.
PKCS11_ECDSA_PrivateKey (Session &session, const std::vector<uint8_t> &ec_params, const
EC_PrivateKeyGenerationProperties &props)

This constructor can be used to generate a new ECDSA private key with the
EC_PrivateKeyGenerationProperties passed in props on the token. The ec_params parame-
ter is the DER-encoding of an ANSI X9.62 Parameters value.

ECDSA_PrivateKey export_key () const
Returns the exported ECDSA_PrivateKey.

PKCS#11 ECDSA key pairs can be generated with the following free function:

216 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

PKCS11_ECDSA_KeyPair PKCS11: :generate_ecdsa_keypair(Session &session, const
EC_PublicKeyGenerationProperties
&pub_props, const
EC_PrivateKeyGenerationProperties
&priv_props)

Code example:

#include <botan/asnl_obj.h>
#include <botan/auto_rng.h>
#include <botan/der_enc.h>
#include <botan/ec_group.h>
#include <botan/ecdsa.h>
#include <botan/pll.h>
#include <botan/pll_ecc_key.h>
#include <botan/pll_ecdsa.h>
#include <botan/pll_types.h>
#include <botan/pubkey.h>

#include <string>
#include <vector>

int main(Q) {

Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.dl1l");

// open write session to first slot with connected token

std: :vector<Botan: :PKCS11::SlotId> slots = Botan::PKCS11l::Slot::get_available_
—slots(module, true);

Botan: :PKCS11::Slot slot(module, slots.at(0));

Botan: :PKCS11::Session session(slot, false);

Botan: :PKCS11::secure_string pin = {'1", '2', '3', "4"', '5') '6'};
session.login(Botan: :PKCS11: :UserType: :User, pin);

/:'::':-.'.‘7':7'::1‘:1‘:?:'-‘:1‘:1‘:1‘ 1mport ECDSA private key :'::'::1‘:?:'-‘:1‘:1‘:1‘:?:'-‘:?:?:?/

// create private key in software
Botan: :AutoSeeded_RNG rng;

Botan: :ECDSA_PrivateKey priv_key_sw(rng, Botan::EC_Group::from_name("'secp256rl1"));

// set the private key import properties
Botan: :PKCS11::EC_PrivateKeyImportProperties priv_import_props(priv_key_sw.DER_
—domain(),
priv_key_sw.private_
—value(Q));

priv_import_props.set_token(true);
priv_import_props.set_private(true);
priv_import_props.set_sign(true);
priv_import_props.set_extractable(true);

// label

(continues on next page)

8.29. PKCS#11

217

Botan Reference Guide, Release 3.9.0

(continued from previous page)

std: :string label = "test ECDSA key";
priv_import_props.set_label(label);

// import to card
Botan: :PKCS11::PKCS11_ECDSA_PrivateKey priv_key(session, priv_import_props);

/:'::'::’r;’::i':(‘:l';i‘:i‘:'.‘:(‘:l‘ EXpOl"t PKCS#ll ECDSA prlvate key ;i‘:’.':'::'::’:;i‘:i':'.‘:(‘:i';i‘:i‘:(‘/
Botan: :ECDSA_PrivateKey priv_exported = priv_key.export_key();

Vs * import ECDSA public key ***]

// import to card

std: :vector<uint8_t> ec_point;

Botan: :DER_Encoder (ec_point) .encode(priv_key_sw.raw_public_key_bits(), Botan::ASN1_
—Type: :0ctetString);

Botan: :PKCS11: :EC_PublicKeyImportProperties pub_import_props(priv_key_sw.DER_domain(),

<, ec_point);

pub_import_props.set_token(true);
pub_import_props.set_verify(true);
pub_import_props.set_private(false);

// label
label = "test ECDSA pub key";
pub_import_props.set_label (label);

Botan: :PKCS11::PKCS11_ECDSA_PublicKey public_key(session, pub_import_props);

/:':;l-:’:;i—:?:?;h’:*:?*:’: eXpOrt PKCS#ll ECDSA publlC key :l-;’:7'::'::'::’:;’::%:’::’::’r;’::’:/
Botan: :ECDSA_PublicKey pub_exported = public_key.export_key();

JrEErrssLLadt generate PKCS#11 ECDSA private key **###x#ssiiiit/
Botan: :PKCS11::EC_PrivateKeyGenerationProperties priv_generate_props;
priv_generate_props.set_token(true);
priv_generate_props.set_private(true);
priv_generate_props.set_sign(true);

Botan: :PKCS11: :PKCS11_ECDSA_PrivateKey pk(
session, Botan::EC_Group::from_name('secp256r1").DER_encode(), priv_generate_
< props);

/7':;'::i‘:'.‘:i‘;(‘;i‘:i‘:?:(‘;l‘;i‘ generate PKCS#11 ECDSA key palr >':7’.‘:'::?;l‘;l‘:i‘:i‘;(‘;l‘:i‘:'.‘:?/

Botan: :PKCS11::EC_PublicKeyGenerationProperties pub_generate_props(
Botan: :EC_Group: : from_name("'secp256r1") .DER_encode()) ;

pub_generate_props.set_label ("BOTAN_TEST_ECDSA_PUB_KEY");
pub_generate_props.set_token(true);
pub_generate_props.set_verify(true);
pub_generate_props.set_private(false);
pub_generate_props.set_modifiable(true);

(continues on next page)

218 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)
Botan: :PKCS11::PKCS11_ECDSA_KeyPair key_pair =
Botan: :PKCS11::generate_ecdsa_keypair(session, pub_generate_props, priv_generate_
—Pprops) ;

/:1‘71‘:2‘:?:(‘:1‘71‘:2‘:1 B PKCS#ll ECDSA Sign and Verify P

std: :vector<uint8_t> plaintext(20, 0x01);

Botan: :PK_Signer signer(key_pair.second, rng, "Raw", Botan::Signature_
—Format: :Standard, "pkcsll");
auto signature = signer.sign_message(plaintext, rng);

Botan: :PK_Verifier token_verifier(key_pair.first, "Raw", Botan::Signature_
—Format::Standard, "pkcsll");

bool ecdsa_ok = token_verifier.verify _message(plaintext, signature);

return ecdsa_ok ? 0 : 1;

ECDH
PKCS#11 ECDH support is implemented in <botan/pl1_ecdh.h>.

ECDH Public Keys

PKCS#11 ECDH public keys are provided by the class PKCS11_ECDH_PublicKey. This class inherits from
PKCS11_EC_PublicKey. The necessary property classes are defined in <botan/pl1_ecc_key.h>. For public keys
there are EC_PublicKeyGenerationProperties and EC_PublicKeyImportProperties.

class PKCS11_ECDH_PublicKey : public PKCS11_EC_PublicKey
PKCS11_ECDH_PublicKey (Session &session, ObjectHandle handle)
Existing PKCS#11 ECDH private keys can be used by providing an ObjectHandle to the constructor.

PKCS11_ECDH_PublicKey (Session &session, const EC_PublicKeyImportProperties &props)
This constructor can be used to import an existing ECDH public key with the
EC_PublicKeyImportProperties passed in props to the token.

ECDH_PublicKey export_key () const
Returns the exported ECDH_PublicKey.

ECDH Private Keys

The class PKCS11_ECDH_PrivateKey inherits from PKCS11_EC_PrivateKey and PK_Key_Agreement_Key and
implements support for PKCS#11 ECDH private keys. There are two property classes. One for key generation and one
for import: EC_PrivateKeyGenerationProperties and EC_PrivateKeyImportProperties.

class PKCS11_ECDH_PrivateKey : public virtual PKCS11_EC_PrivateKey, public virtual PK_Key_Agreement_Key
PKCS11_ECDH_PrivateKey (Session &session, ObjectHandle handle)
Existing PKCS#11 ECDH private keys can be used by providing an ObjectHandle to the constructor.

PKCS11_ECDH_PrivateKey (Session &session, const EC_PrivateKeyImportProperties &props)

This constructor can be wused to import an existing ECDH private key with the
EC_PrivateKeyImportProperties passed in props to the token.

8.29. PKCS#11 219

Botan Reference Guide, Release 3.9.0

PKCS11_ECDH_PrivateKey (Session &session, const std::vector<uint8_t> &ec_params, const
EC_PrivateKeyGenerationProperties &props)

This constructor can be wused to generate a new ECDH private key with the
EC_PrivateKeyGenerationProperties passed in props on the token. The ec_params parame-
ter is the DER-encoding of an ANSI X9.62 Parameters value.

ECDH_PrivateKey export_key () const
Returns the exported ECDH_PrivateKey.

PKCS#11 ECDH key pairs can be generated with the following free function:

PKCS11_ECDH_KeyPair PKCS11: :generate_ecdh_keypair (Session &session, const
EC_PublicKeyGenerationProperties &pub_props,
const EC_PrivateKeyGenerationProperties
&priv_props)

Code example:

#include <botan/asnl_obj.h>
#include <botan/auto_rng.h>
#include <botan/der_enc.h>
#include <botan/ec_group.h>
#include <botan/ecdh.h>
#include <botan/pll.h>
#include <botan/pll_ecc_key.h>
#include <botan/pll_ecdh.h>
#include <botan/pll_types.h>
#include <botan/pubkey.h>
#include <botan/symkey.h>

#include <string>
#include <vector>

int main(Q) {

Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.dl1l");

// open write session to first slot with connected token

std: :vector<Botan: :PKCS11::SlotId> slots = Botan::PKCS11l::Slot::get_available_
—slots(module, true);

Botan: :PKCS11::Slot slot(module, slots.at(0));

Botan: :PKCS11::Session session(slot, false);

Botan: :PKCS11::secure_string pin = {'1", '2', '3', "4"', '5') '6'};
session.login(Botan: :PKCS11: :UserType: :User, pin);

/:'::'::’r:'::%:'::l‘:h'::?:'r:? lmpOrt ECDH private key 7'::'r:%:?:?7?:?:’.‘:!‘:’-‘7'.‘:?:’:/
Botan: :AutoSeeded_RNG rng;

// create private key in software
Botan: :ECDH_PrivateKey priv_key_sw(rng, Botan::EC_Group::from_name("'secp256r1"));

// set import properties
Botan: :PKCS11::EC_PrivateKeyImportProperties priv_import_props(priv_key_sw.DER_

(continues on next page)

220 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)
—domain(),
priv_key_sw.private_
—value(Q));

priv_import_props.set_token(true);
priv_import_props.set_private(true);
priv_import_props.set_derive(true);
priv_import_props.set_extractable(true);

// label
std: :string label = "test ECDH key";
priv_import_props.set_label(label);

// import to card
Botan: :PKCS11::PKCS11_ECDH_PrivateKey priv_key(session, priv_import_props);

/:’::'::’::'.-:'::%:?:?:'.-:’::%:% EXpOI"t ECDH private I(ey :'::'::'::'::i‘:'.-:1':1':%:1‘:'.':1':1'/
Botan: :ECDH_PrivateKey exported = priv_key.export_key(Q);

/;':;':;’:*:i‘;':;i‘:’r*:i‘;?;i‘ 1mp0rt ECDH publlC]{ey -.’:7'::':;':;1‘7’.‘*:1‘;':;!‘7’.‘*7?/

// set import properties

std: :vector<uint8_t> ec_point;

Botan: :DER_Encoder(ec_point) .encode(priv_key_sw.raw_public_key_bits(), Botan::ASN1_
—Type: :OctetString) ;

Botan: :PKCS11: :EC_PublicKeyImportProperties pub_import_props(priv_key_sw.DER_domain(),
<, ec_point);

pub_import_props.set_token(true);
pub_import_props.set_private(false);
pub_import_props.set_derive(true);

// label
label = "test ECDH pub key";
pub_import_props.set_label(label);

// import
Botan: :PKCS11::PKCS11_ECDH_PublicKey pub_key(session, pub_import_props);

/:’::?:’-—7’::?:’::l—:’:*:’::'::(— eXpOrt ECDH private key 7’::'::'::l—:’-—*:’::'::(—:’n'r:’:;l‘/
Botan: :ECDH_PublicKey exported_pub = pub_key.export_key(Q);

JEE ** generate ECDH private key ** =6

Botan: :PKCS11::EC_PrivateKeyGenerationProperties priv_generate_props;
priv_generate_props.set_token(true);
priv_generate_props.set_private(true);

priv_generate_props.set_derive(true);

Botan: :PKCS11::PKCS11_ECDH_PrivateKey priv_key2(
session, Botan::EC_Group::from_name('secp256r1").DER_encode(), priv_generate_
—props) ;

(continues on next page)

8.29. PKCS#11 221

Botan Reference Guide, Release 3.9.0

(continued from previous page)

/:’::’::’r:'::?:?:l-:i—:i—:?:?:’: generate ECDH key pair :’::’::'::1‘:‘:;’::'::'::1‘:’:;’::'::’:/

Botan: :PKCS11::EC_PublicKeyGenerationProperties pub_generate_props(
Botan: :EC_Group: : from_name("'secp256r1™) .DER_encode());

pub_generate_props.set_label (label + "_PUB_KEY");
pub_generate_props.set_token(true);
pub_generate_props.set_derive(true);
pub_generate_props.set_private(false);
pub_generate_props.set_modifiable(true);

Botan: :PKCS11::PKCS11_ECDH_KeyPair key_pair =
Botan: :PKCS11: :generate_ecdh_keypair(session, pub_generate_props, priv_generate_

—Pprops);
/:’::’::’::'.-:'::%:?:?:'.-:%:%:% ECDH derive :1'7’.‘:1‘:'.':1':’.‘:’::'.-:'::%:?:?:'.-/

Botan: :PKCS11::PKCS11_ECDH_KeyPair key_pair_other =
Botan: :PKCS11: :generate_ecdh_keypair(session, pub_generate_props, priv_generate_

< props) ;

Botan: :PK_Key_Agreement ka(key_pair.second, rng, "Raw", "pkcsll");
Botan: :PK_Key_Agreement kb(key_pair_other.second, rng, "Raw", "pkcsll");

Botan: :SymmetricKey alice_key = ka.derive_key(32, key_pair_other.first.raw_public_key_
~bits());

Botan: :SymmetricKey bob_key = kb.derive_key(32, key_pair.first.raw_public_key_bits());
bool eq = alice_key == bob_key;

return eq ? 0 : 1;

RNG

The PKCS#11 RNG is defined in <botan/pll_randomgenerator.h>. The class PKCS11_RNG implements the
Hardware_RNG interface.

class PKCS11_RNG : public Hardware_RNG
PKCS11_RNG(Session &session)
A PKCS#11 Session must be passed to instantiate a PKCS11_RNG.

void randomize (uint8_t output[], std::size_t length) override
Calls C_GenerateRandom to generate random data.

void add_entropy (const uint8_t in[], std::size_t length) override
Calls C_SeedRandom to add entropy to the random generation function of the token/middleware.

Code example:

222 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

#include <botan/auto_rng.h>

#include <botan/hmac_drbg.h>

#include <botan/mac.h>

#include <botan/pll.h>

#include <botan/pll_randomgenerator.h>
#include <botan/pll_types.h>

#include <vector>

int main() {

Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.dl1l");

// open write session to first slot with connected token

std: :vector<Botan: :PKCS11::S1lotId> slots = Botan::PKCS11::Slot::get_available_
—slots(module, true);

Botan: :PKCS11::Slot slot(module, slots.at(0));

Botan: :PKCS11::Session session(slot, false);

Botan: :PKCS11::PKCS11_RNG pll_rng(session);
/7':7'::(‘7?:?7?71‘71‘7?:?7?7? generate random data 7':7'::’:7'::(‘71’71‘7’.‘:’.‘:(‘7'.‘71‘:’.‘/

std: :vector<uint8_t> random(20);
pll_rng.randomize(random.data(), random.size());

JREERERERELEREE add entropy *rFF
Botan: :AutoSeeded_RNG auto_rng;

auto auto_rng_random = auto_rng.random_vec(20);
pll_rng.add_entropy(auto_rng_random.data(), auto_rng_random.size());

x /

/:'r:'::'r:'::1‘:'::{‘:’:7'::’::’::? use PKCS#ll RNG to Seed HMAC_DRBG :':7'::'::’.‘:’::':7?:’::’:7’::'::'::’:/

Botan: :HMAC_DRBG drbg(Botan: :MessageAuthenticationCode: :create("HMAC(SHA-512)"), pll_
—rng);

drbg.randomize(random.data(), random.size());

return 0;

Token Management Functions
The header file <botan/p11.h> also defines some free functions for token management:

void initialize_token(S/or &slot, const std::string &label, const secure_string &so_pin, const
secure_string &pin)
Initializes a token by passing a S1ot, a 1abel and the so_pin of the security officer.
void change_pin(Sior &slot, const secure_string &old_pin, const secure_string &new_pin)
Change PIN with old_pin to new_pin.
void change_so_pin(Slor &slot, const secure_string &old_so_pin, const secure_string &new_so_pin)
Change SO_PIN with old_so_pin to new new_so_pin.

void set_pin(Slor &slot, const secure_string &so_pin, const secure_string &pin)
Sets user pin with so_pin.

Code example:

8.29. PKCS#11 223

Botan Reference Guide, Release 3.9.0

#include <botan/pll.h>
#include <botan/pll_types.h>

#include <vector>

int main(Q) {

/:':

k)

%3 Set pln R R R R E R S
Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.dl1l");

// only slots with connected token
std: :vector<Botan: :PKCS11::SlotId> slots = Botan::PKCS11::Slot::get_available_
—slots(module, true);

// use first slot
Botan: :PKCS11::Slot slot(module, slots.at(0));

Botan: :PKCS11::secure_string so_pin = {'1', '2", '3', '4', '5"' '6"', '7', '8'};
Botan: :PKCS11::secure_string pin = {'1', '2', '3", "4', '5', '6'};
Botan: :PKCS11::secure_string test_pin = {'6', '5', "4"', '3', '2', "1'};

// set pin
Botan: :PKCS11::set_pin(slot, so_pin, test_pin);

// change back
Botan: :PKCS11::set_pin(slot, so_pin, pin);

/:'::l‘:’::’::%:'::':;’::i':’::'::’: lnl tialiZe :':;l‘:’::’:*:'::l‘:’r:’::%:'::’:;’:/
Botan: :PKCS11::initialize_token(slot, "Botan handbook example", so_pin, pin);

/:’: s Change pln s 7'::’:/
Botan: :PKCS11::change_pin(slot, pin, test_pin);

// change back
Botan: :PKCS11::change_pin(slot, test_pin, pin);

/:1‘71‘="""""""=’:='- ww Change Security officer pln Fode kbbb
Botan: :PKCS11::change_so_pin(slot, so_pin, test_pin);

// change back
Botan: :PKCS11::change_so_pin(slot, test_pin, so_pin);

return 0;

X.509

The header file <botan/pl1_x509.h> defines the property class X509_CertificateProperties and the class
PKCS11_X509_Certificate

class PKCS11_X509_Certificate : public Object, public X509_Certificate

PKCS11_X509_Certificate(Session &session, ObjectHandle handle)

Allows to use existing certificates on the token by passing a valid ObjectHandle.

224 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

PKCS11_X509_Certificate(Session &session, const X509_CertificateProperties &props)

Allows to import an existing X.509 certificate to the token with the X509_CertificateProperties
passed in props.

Code example:

#include <botan/pll.h>
#include <botan/pll_types.h>
#include <botan/pll_x509.h>
#include <botan/pkix_types.h>
#include <botan/x509cert.h>

#include <vector>

int main() {

Botan: :PKCS11: :Module module("C:\\pkcsll-middleware\\library.dl1l");

// open write session to first slot with connected token

std: :vector<Botan: :PKCS11::S1lotId> slots = Botan::PKCS11l::Slot::get_available_
—slots(module, true);

Botan: :PKCS11::Slot slot(module, slots.at(0));

Botan: :PKCS11::Session session(slot, false);

// load existing certificate
Botan: :X509_Certificate root("test.crt");

// set props
Botan: :PKCS11::X509_CertificateProperties props(root.subject_dn().DER_encode(), root.
—BER_encode());

props.set_label ("Botan PKCS#11 test certificate");
props.set_private(false);

props.set_token(true);

// import
Botan: :PKCS11::PKCS11_X509_Certificate pkcsll_cert(session, props);

// load by handle
Botan: :PKCS11::PKCS11_X509_Certificate pkcsll_cert2(session, pkcsll_cert.handle());

return 0;

Tests

The PKCS#11 tests are not executed automatically because the depend on an external PKCS#11 module/middleware.
The test tool has to be executed with --pkcs11-1ib= followed with the path of the PKCS#11 module and a second
argument which controls the PKCS#11 tests that are executed. Passing pkcs11 will execute all PKCS#11 tests but it’s
also possible to execute only a subset with the following arguments:

* pkcsll-ecdh
* pkcsll-ecdsa

* pkesll1-lowlevel

8.29. PKCS#11 225

Botan Reference Guide, Release 3.9.0

* pkcsll-manage
* pkcsl1-module
* pkesll-object
e pkcsll-rng
* pkesll-rsa
* pkesll1-session
* pkesll-slot
* pkes11-x509
The following PIN and SO-PIN/PUK values are used in tests:
* PIN 123456
* SO-PIN/PUK 12345678

Warning

Unlike the CardOS (4.4, 5.0, 5.3), the aforementioned SO-PIN/PUK is inappropriate for Gemalto (ID-
Prime MD 3840) cards, as it must be a byte array of length 24. For this reason some of the tests for
Gemalto card involving SO-PIN will fail. You run into a risk of exceding login attempts and as a re-
sult locking your card! Currently, specifying pin via command-line option is not implemented, and
therefore the desired PIN must be modified in the header src/tests/test_pkcs11.h:

// SO PIN is expected to be set to "12345678" prior to running the tests
const std::string SO_PIN "12345678";

const auto SO_PIN_SECVEC = Botan::PKCS11::secure_string(SO_PIN.begin(), SO_
—PIN.end());

Tested/Supported Smartcards
You are very welcome to contribute your own test results for other testing environments or other cards.

Test results

226 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

Smartcard Status oS Midleware Botan Errors
CardOS 4.4 mostly works Windows 10, API Version 2.4.0, Cryptoki
64-bit, version 5.4.9.77 (Cryp- v2.40
1709 toki v2.11)
CardOS 5.0 mostly works Windows 10, API Version 2.4.0, Cryptoki °!
64-bit, version 5.4.9.77 (Cryp- v2.40
1709 toki v2.11)
CardOS 5.3 mostly works Windows 10, API Version 2.4.0, Cryptoki 72
64-bit, version 5.4.9.77 (Cryp- v2.40
1709 toki v2.11)
CardOS 5.3 mostly works Windows 10, API Version 2.12.0 unre- 3
64-bit, version 5.5.1 (Cryptoki leased, Cryptoki
1903 v2.11) v2.40
Gemalto ID- mostly works ‘Windows 10, IDGo 800, 2.4.0, Cryptoki el
Prime MD 3840 64-bit, version v1.2.4 (Cryptoki v2.40
1709 v2.20)
SoftHSM 2.3.0 works Windows 10, Cryptoki v2.40 2.4.0, Cryptoki
(OpenSSL 64-bit, version v2.40
1.0.2g) 1709
SoftHSM 2.5.0 works Windows 10, Cryptoki v2.40 2.11.0, Cryptoki
(OpenSSL 64-bit, version v2.40
1.1.1) 1803

8.29. PKCS#11

227

Botan Reference Guide, Release 3.9.0

Error descriptions

30 Failing operations for CardOS 4.4:

20 Test fails due to unsupported copy function (CKR_FUNCTION_NOT_SUPPORTED)
21 Generating private key for extraction with property extractable fails (CKR_ARGUMENTS_BAD)
22 Generate rsa private key operation fails (CKR_TEMPLATE_INCOMPLETE)
23 Raw RSA sign-verify fails (CKR_MECHANISM_INVALID)

3 CKR_MECHANISM_INVALID (0x70=112)

2 CKR_ARGUMENTS_BAD (0x7=7)

4 CKR_FUNCTION_NOT_SUPPORTED (0x54=84)

3 CKR_RANDOM_SEED_NOT_SUPPORTED (0x120=288)
31 Failing operations for CardOS 5.0

32 Invalid argument OS2ECP: Unknown format type 155
33 Invalid argument OS2ECP: Unknown format type 92

30 Invalid argument Decoding error: BER: Value truncated
32 Failing operations for CardOS 5.3

object_copy*’
rsa_privkey_export”!
rsa_generate_private_key”’
rsa_sign_verify23
ecdh_privkey_import>
ecdh_privkey_export?
ecdh_pubkey_import*
ecdh_pubkey_export*
ecdh_generate_private_key3
ecdh_generate_keypair’
ecdh_derive®
ecdsa_privkey_import>
ecdsa_privkey_export?
ecdsa_pubkey_import*
ecdsa_pubkey_export*
ecdsa_generate_private_kef
ecdsa_generate_keypair’
ecdsa_si gn_verify3

rng_add_entropy’

object_copy?’
rsa_privkey_export”!
rsa_generate_private_ke 22
rsa_si gn_verify23
ecdh_privkey_export”
ecdh_pubkey_import*
ecdhﬁgeneratefprivateﬁkey32
ecdh_generate_keypair’
ecdh_derive®
ecdsa_privkey_export?
ecdsa_generate_private_key>’
ecdsa_generate_keypair’
ecdsa_sign_verify>’

rng_add_entropy’

228

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

ObjBCI_COpyPugC 228,20

rsa_privkey_export?aee 228, 21

rsa_generalte_priVate:_keyPugc 228,22

rsa_sign_verifyPngc 228,23

ecdh_privkey_export?aee 228, 2
ecdh_pubkey_import®
ecdh_pubkey_export®
ecdh_generate_private_key"e¢ 228, 30
ecdh_generate_keypair’'
ecdh_derive’ee 228, 30
ecdsa_privkey_export"e¢ 228, 2
ecdsa_pubkey_import®
ecdsa_pubkey_export®
ecdsa_generate_private_key3 1
ecdsa_generate_keypair’!

ecdsa_sign_verify34

Page 228, 5

rng_add_entropy

6 CKM_X9_42_DH_KEY_PAIR_GEN | CKR_DEVICE_ERROR (0x30=48)

3
34

Invalid argument Decoding error: BER: Length field is to large
Invalid argument OS2ECP: Unknown format type 57

33 Failing operations for CardOS 5.3 (middelware 5.5.1)

35

ecdh_privkey_export"2g¢ 228, 2

ecdh_generate_private_key35

ecdsa_privkey_export"2e¢ 228, 2

ecdsa_generate_private_key%

C_COpy_Obj ect}’uge 228, 4

ObjCCt_COpyPﬂgc 228, 4

rng_add_entropy’e¢ 228, 5

rsa_sign_verifyaee 2283

rsa_privkey_export"ee 228, 2

rsa_generate_private_key’

Invalid argument OS2ECP: Unknown format type 82

36 Invalid argument OS2ECP: Unknown format type 102
9 CKR_TEMPLATE_INCOMPLETE (0xD0=208)
54 Failing operations for Gemalto IDPrime MD 3840

session_login_logout®ee 228, 2

session_infoP2ee 228. 2

Set_pinl’ugc 228,2
initializeP2ge 228. 2
change_so_pin®¢ 228,2

ObjBCI_COpyPugC 228,20

rsa_generate_private_key7

rsa_encryl;)t_decrypt8

rsa_sign_verifylegc 228,2

rng_add_entropy"2¢ 2%8. 5

7 CKR_TEMPLATE_INCONSISTENT (0xD1=209)

8 CKR_ENCRYPTED_DATA_INVALID | CKM_SHA256_RSA_PKCS (0x40=64)

8.29.

PKCS#11

229

Botan Reference Guide, Release 3.9.0

8.30 Trusted Platform Module (TPM)

Some computers come with a TPM, which is a small side processor which can perform certain operations which include
RSA key generation and signing, a random number generator, accessing a small amount of NVRAM, and a set of PCRs
which can be used to measure software state (this is TPMs most famous use, for authenticating a boot sequence).

The TPM NVRAM and PCR APIs are not supported by Botan at this time, patches welcome.

Currently, we support TPM v1.2 as well as v2.0 systems via independent wrappers of TrouSerS (http://trousers.
sourceforge.net/) for TPM v1.2 and tpm2-tss (https://github.com/tpm?2-software/tpm2-tss) for TPM v2.0. Note how-
ever that the support for TPM v1.2 is deprecated as of Botan 3.5.0 and will be removed in a future release.

8.30.1 TPM 2.0 Wrappers
Added in version 3.6.0.

Botan’s TPM v2.0 support is currently based on a wrapper of the tpm?2-tss library (https://github.com/tpm2-software/
tpm2-tss). The code is tested in CI against the swtpm simulator (https://github.com/stefanberger/swtpm).

Support for TPM v2.0 is provided by the tpm2 module which is not built by default as it requires an external dependency.
Use the BOTAN_HAS_TPM2 macro to ensure that support for TPM v2.0 is available in your build of Botan.

The entire implementation is wrapped into the Botan: : TPM2 namespace. The remainder of this section will omit the
namespace prefix for brevity.

TPM 2.0 Context

The TPM context is the main entry point for all TPM operations. Also, it provides authorative information about the
TPM’s capabilities and allows persisting and evicting keys into the TPM’s NVRAM.

class Botan: : TPM2: :Context

std::shared_ptr<Context> create(const std::string &tcti)
Create a TPM2 context and connect to it via the given TPM Command Transmission Interface (TCTI). The
TCTI string is a colon-separated specifier of the form tcti_name[:tcti_options=value,...].
std::shared_ptr<Context> create(std::optional<std::string> tcti, std::optional<std::string> conf)

Create a TPM2 context and connect to it via the given TPM Command Transmission Interface (TCTI). The
configuration string is passed to the TCTI. Both values may by empty, in which case the TPM-TSS2 will
try to determine them from default values.

std::shared_ptr<Context> create (ESYS_CONTEXT *ctx)

Create a TPM2 context from an already set up TPM2-TSS ESYS_CONTEXT™ to enable usage of Botan’s
TPM2 functionalities via an outside ESYS Context. If the Botan TPM2 Context was created this way, the
destructor will not finalize the underlying ESYS_CONTEXT.

TPM2_HANDLE persist (TPM2::PrivateKey &Kkey, const SessionBundle &sessions, std::span<const
uint8_t> auth_value, std::optional<TPM2_HANDLE> persistent_handle)

Persists the given key in the TPM’s NVRAM. The returned handle can be used to load the key back into
the TPM after a reboot. The auth_value is used to re-authenticate operations after transforming it to a
persistent key.

void evict (std::unique_ptr<TPM2::PrivateKey> key, const SessionBundle &sessions)

Evicts the key from the TPM’s NVRAM. The key must be a persistent key and won’t be available for any
further use after the eviction. In particular it won’t be re-transformed into a transient key either.

230 Chapter 8. API Reference

http://trousers.sourceforge.net/
http://trousers.sourceforge.net/
https://github.com/tpm2-software/tpm2-tss
https://github.com/tpm2-software/tpm2-tss
https://github.com/tpm2-software/tpm2-tss
https://github.com/stefanberger/swtpm

Botan Reference Guide, Release 3.9.0

bool supports_botan_crypto_backend()

Returns whether the current configuration supports the Botan crypto backend. This might return false if
Botan was not built with the tpm2_crypto_backend enabled or the TPM2-TSS library is too old (3.x or
older).

void use_botan_crypto_backend (std::shared_ptr<Botan::RandomNumberGenerator> rng)

Enables the Botan crypto backend for this context. The RNG is needed to generate key material for the
communication with the TPM. It is crucial that this RNG does not depend on the TPM for its entropy as
this would create a chicken-and-egg problem.

bool supports_algorithm(std::string_view algo_name)
Returns whether the TPM supports the given algorithm. The algo_name is the name of the algorithm as
used in Botan. Eg. “RSA”, “SHA-256", “AES-128”, “OAEP(SHA-256)”, etc.

For further information about the functionality of the TPM context, please refer to the doxygen comments in
tpm2_context.h.

TPM 2.0 Sessions

TPM v2.0 uses sessions to authorize actions on the TPM, encrypt the communication between the application and the
TPM and perform audits of the operations performed.

Botan provides a Session class to handle the creation of sessions and comes with a SessionBundle helper to manage
multiple sessions to be passed to the TPM commands.

class Botan: : TPM2: : Session

std::shared_ptr<Session> unauthenticated_session(const std::shared_ptr<Context> &ctx,
std::string_view sym_algo, std::string_view
hash_algo)

Creates an unauthenticated session, i.e. does not provide protection against man-in-the-middle attacks by
adversaries who can intercept and modify the communication between the application and the TPM.

The sym_algo and hash_algo parameters specify the symmetric cipher used to encrypt parameters flow-
ing to and from the TPM and the hash of the HMAC algorithm used to protect the integrity of the commu-
nication.

std::shared_ptr<Session> authenticated_session(const std::shared_ptr<Context> &ctx, const PrivateKey
&tpm_key, std::string_view sym_algo, std::string_view
hash_algo)

Creates an authenticated session, i.e. it does provide protection against man-in-the-middle attacks by ad-
versaries who can intercept and modify the communication between the application and the TPM, under
the assumption that the tpm_key is trustworthy and known only to the TPM.

The sym_algo and hash_algo parameters specify the symmetric cipher used to encrypt parameters flow-
ing to and from the TPM and the hash of the HMAC algorithm used to protect the integrity of the commu-
nication.

Currently, there’s no support for other TPM sessions.

TPM 2.0 Random Number Generator

The RandomNumberGenerator is an adapter to use the TPM’s random number generator as a source of entropy. It
behaves exactly like any other RNG in Botan.

class Botan: : TPM2: : RandomNumberGenerator

8.30. Trusted Platform Module (TPM) 231

Botan Reference Guide, Release 3.9.0

RandomNumberGenerator (std::shared_ptr<Context> ctx, SessionBundle sessions)

Creates a new RNG object which uses the TPM’s random number generator as a source of entropy. The
sessions parameter is a bundle of sessions to be used for the RNG operations.

Asymmetric Keys hosted by a TPM 2.0

The TPM v2.0 supports RSA and ECC keys. Botan provides the classed PrivateKey and PublicKey in the TPM2
namespace, to manage and use asymmetric keys on the TPM. Additionally there are derived classes for RSA and ECC.
Currently, RSA keys can be used for signing and encryption, while ECC keys can only be used for ECDSA signing
(i.e., ECDH, ECSCHNORR, and SM2 are not supported).

Objects of these classes can be used throughout the Botan library to perform cryptographic operations with TPM keys
wherever an abstract Botan: :Private_Key is expected.

class Botan: : TPM2: : PublicKey

std::unique_ptr<Public_Key> load_persistent (const std::shared_ptr<Context> &ctx, TPM2_HANDLE
persistent_object_handle, const SessionBundle &sessions)

Loads a public key that is persistent in the TPM’s NVRAM given a persistent_object_handle.

std::unique_ptr<Public_Key> load_transient (const std::shared_ptr<Context> &ctx, std::span<const
uint8_t> public_blob, const SessionBundle &sessions)

Loads a public key from the given public_blob which is essentially a serialization of a public key returned
from a TPM key pair creation.

std::vector<uint8_t> raw_public_key_bits() const

Returns a serialized representation of the public key. This blob can be loaded back into the TPM as a
transient public key.

class Botan: : TPM2: :PrivateKey

std::unique_ptr<Private_Key> load_persistent (const std::shared_ptr<Context> &ctx, TPM2_HANDLE
persistent_object_handle, std::span<const uint8_t>
auth_value, const SessionBundle &sessions)

Loads a private key that is persistent in the TPM’s NVRAM given a persistent_object_handle and
an auth_value (e.g. a password).

std::unique_ptr<Private_Key> load_transient (const std::shared_ptr<Confext> &ctx, std::span<const
uint8_t> auth_value, const TPM2:: PrivateKey &parent,
std::span<const uint8_t> public_blob, std::span<const
uint8_t> private_blob, const SessionBundle &sessions)

Loads a private key from the given public_blob and private_blob returned from a TPM key pair
creation. To decipher the private_blob, a parent key is needed (the same as the one used to create the
key). The auth_value is used to authenticate private operations.

std::unique_ptr<PrivateKey> create_transient_from_template (const std::shared_ptr<Context> &ctx,
const SessionBundle &sessions,
ESYS_TR parent, const
TPMT_PUBLIC &key_template, const
TPM2B_SENSITIVE_CREATE
&sensitive_data);

Creates a new transient key pair on the TPM using the given key_template and sensitive_data under
the given parent key. This is a low-level function, and it assumes that the caller knows how to create
valid key_template and sensitive_data structures. Typically, users should resort to using the creation
functions in the derived private key classes.

232 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

secure_vector<uint8_t> raw_private_key_bits() const

Returns an encrypted “private blob” of the TPM private key if it is a transient key. This blob can only be
decrypted by the TPM that created it when loading the key back into the TPM.

Botan provides a set of derived classes for RSA keys, which are used to create and manage RSA keys on the TPM.

class Botan: : TPM2: :RSA_PrivateKey

std::unique_ptr<TPM2::PrivateKey> create_unrestricted_transient (const std::shared_ptr<Context>
&ctx, const SessionBundle
&sessions, std::span<const
uint8_t> auth_value, const
TPM2::PrivateKey &parent,
uint16_t keylength,
std::optional<uint32_t>
exponent);

Creates a new RSA key pair on the TPM with the given keylength and an optional exponent. Typical
users should not specify the exponent, as support for any but the default exponent (65537) is optional in
the TPM v2.0 specification.

Keys generated with this function are not restricted in their usage. They may be used both for signing and
data encryption with various padding schemes. Furthermore, they are transient, i.e. they are not stored in
the TPM’s NVRAM and must be loaded from their public and private blobs after a reboot.

Similarly, Botan provides a set of derived classes for ECC keys.

class Botan: : TPM2: :EC_PrivateKey

static std::unique_ptr<TPM2::PrivateKey> create_unrestricted_transient (const
std::shared_ptr<Context>
&ctx, const SessionBundle
&sessions, std::span<const
uint8_t> auth_value, const
TPM2::PrivateKey &parent,
const EC_Group &group);

Creates a new ECC key pair on the TPM with the given group. The group must be one of the supported
curves by the TPM and currently must be one of the NIST curves (secpl92rl, secp224rl, secp256rl,
secp384rl, secp521rl).

Keys generated with this function are not restricted in their usage. They may only be used for signing:
Currently, Botan only supports creating ECDSA keys. Furthermore, they are transient, i.e. they are not
stored in the TPM’s NVRAM and must be loaded from their public and private blobs after a reboot.

Once a transient key pair was created on the TPM, it can be persisted into the TPM’s NVRAM to make it available
across reboots independently of the “private blob”. This is done by passing the key pair to the Context: :persist
method.

Botan as a TPM2-TSS Crypto Backend

The TPM2-TSS library (4.0 and later) provides a callback API to override its default crypto backend (OpenSSL or
mbedtls). Botan can optionally use this API to provide a Botan-based crypto backend for TPM2-TSS and thus allowing
to avoid a dependency on another cryptographic library in applications.

Once a Context is created, the Botan-based crypto backend may be enabled for it via
the Context::use_botan_crypto_backend method. This will only succeed if the method
Context: :supports_botan_crypto_backend returns true.

Alternatively, if one just wants to utilize the backend in a TPM2-TSS ESAPI application without using Botan’s
wrappers, free-standing functions are provided in tpm2_crypto_backend.h. The use_botan_crypto_backend

8.30. Trusted Platform Module (TPM) 233

Botan Reference Guide, Release 3.9.0

works similar to the Context: :use_botan_crypto_backend method but is given an ESYS_CONTEXT* and returns a
TPM2: :CryptoCallbackState that needs to stay alive as long as the crypto backend is used. This will only succeed
if the method supports_botan_crypto_backend returns true.

TPM 2.0 Example

The following example demonstrates how to create a TPM key pair and sign a Certificate Signing Request (CSR) with
it. This may be useful if one wants to host a private key for TLS client authentication in a TPM, for example.

#include <iostream>
#include <botan/build.h>
#1f defined (BOTAN_HAS_TPM2)

#include <botan/auto_rng.h>
#include <botan/hex.h>

#include <botan/pkcsl0.h>
#include <botan/pkix_types.h>
#include <botan/x509_ext.h>
#include <botan/x509_key.h>

#include <botan/tpm2_context.h>
#include <botan/tpm2_rng.h>
#include <botan/tpm2_rsa.h>
#include <botan/tpm2_session.h>

namespace {

std: :span<const uint8_t> as_byteview(std::string_view str) {
return {reinterpret_cast<const uint8_t*>(str.data()), str.size()};

3
} // namespace

int main(Q) {

// This TCTI configuration is just an example, adjust as needed!

constexpr auto tcti_nameconf = "tabrmd:bus_name=net.randombit.botan.tabrmd,bus_
—type=session";

constexpr auto private_key_auth = "notguessable";

constexpr size_t key_length = 2048;

// Set up connection to TPM
auto ctx = Botan::TPM2::Context::create(std::string(tcti_nameconf));

// Create a TPM-backed RNG
auto tpm_rng = Botan::TPM2::RandomNumberGenerator(ctx);

if(ctx->supports_botan_crypto_backend()) {
ctx->use_botan_crypto_backend([&] {
// We need an RNG that is functionally independent from the TPM, to use
// in the crypto backend. Also, it is crucial not to use the TPM-backed
// RNG as the underlying source for the software RNG. This could lead
(continues on next page)

234 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)
// to TPM command sequence errors when the software RNG decides to
// transparently pull new entropy from the TPM while another TPM
// command is being processed in the crypto backend.
//
// Nevertheless, periodic reseeds from the TPM-backed RNG as shown
// below is fine, as this serializes the TPM commands properly. In this
// example we leave it at a single up-front reseed.
auto software_rng = std::make_shared<Botan: :AutoSeeded_RNG>();
software_rng->reseed_from_rng(tpm_rng) ;
return software_rng;
10D
std::cout << "Botan crypto backend enabled\n";

}

// Create an encrypted and "authenticated" session to the TPM using the SRK

// This assumes that the SRK is a persistent object, that is accessible

// without authentication.

auto storage_root_key = ctx->storage_root_key({}, {});

auto session = Botan::TPM2::Session::authenticated_session(ctx, *storage_root_key);

// Create a private key and persist it into the TPM
auto cert_private_key = Botan::TPM2::RSA_PrivateKey::create_unrestricted_transient(
ctx, session, as_byteview(private_key_auth), *storage_root_key, key_length);
const auto persistent_handle = ctx->persist(*cert_private_key, session, as_
—Dbyteview(private_key_auth));
std::cout << "New private key created\n";
std::cout << " Persistent handle: 0x" << std::hex << persistent_handle << '\n';

// To access the key in the future, load it from the TPM as seen below.
// For now, we still have the key in memory and can use it directly.
//

// auto loaded_private_key =

// Botan::TPM2: :PrivateKey: :1load_persistent(ctx,

// persistent_handle,

// as_byteview(private_key_auth),
// session) ;

// Create a Certificate Signing Request (CSR)

const Botan: :X509_DN dn({
{"X520.CommonName", "TPM-hosted test"},
{"X520.Country", "DE"},
{"X520.0rganization", "Rohde & Schwarz"},
{"X520.0rganizationalUnit", "GB11"},

b

// Set up relevant extensions
Botan: :Extensions extensions;
extensions.add_new(std: :make_unique<Botan: :Cert_Extension::Basic_Constraints>(false /
—~* not a CA */));
extensions.add_new(std: :make_unique<Botan: :Cert_Extension: :Key_Usage>(
Botan: :Key_Constraints(Botan: :Key_Constraints: :DigitalSignature | Botan::Key_
—,Constraints: :KeyEncipherment))) ;

(continues on next page)

8.30. Trusted Platform Module (TPM) 235

Botan Reference Guide, Release 3.9.0

(continued from previous page)
extensions.add_new(std: :make_unique<Botan: :Cert_Extension: :Extended_Key_Usage>(
std: :vector{Botan: :0ID: : from_name ("PKIX.ServerAuth").value()}));
extensions.add_new(std: :make_unique<Botan: :Cert_Extension: :Subject_Alternative_Name>
~([1 {
Botan::AlternativeName alt_name;
alt_name.add_dns("'rohde-schwarz.com");
alt_name.add_email ("rene.meusel@rohde-schwarz.com");
return alt_name;
FO);
extensions.add_new(
std: :make_unique<Botan: :Cert_Extension: :Subject_Key_ID>(cert_private_key->public_
~key_bits(), "SHA-256"));

// All done, create the CSR
auto csr = Botan::PKCS10_Request::create(*cert_private_key, dn, extensions, "SHA-256",
< tpm_rng, "PSS(SHA-256)");

// Print results

std::cout << '\n';

std::cout << "New Certificate Signing Request:\n";
std::cout << csr.PEM_encode() << '\n';

return 0;

}

#else
int main() {

std::cerr << "TPM2 support not enabled in this build\n";
return 1;

#endif

8.30.2 TPM 1.2 Wrappers
Added in version 1.11.26.

Currently v1.2 TPMs are supported via a wrapper of the TrouSerS (http://trousers.sourceforge.net/) library. However,
this wrapper is deprecated and will be removed in a future release. The current code has been tested with an ST TPM
running in a Lenovo laptop.

Test for TPM support with the macro BOTAN_HAS_TPV, include <botan/tpm.h>.

First, create a connection to the TPM with a TPM_Context. The context is passed to all other TPM operations, and
should remain alive as long as any other TPM object which the context was passed to is still alive, otherwise errors or
even an application crash are possible. In the future, the API may change to using shared_ptr to remove this problem.

class TPM_Context

TPM_Context (pin_cb cb, const char *srk_password)

The (somewhat improperly named) pin_cb callback type takes a std::string as an argument, which is an
informative message for the user. It should return a string containing the password entered by the user.

236 Chapter 8. API Reference

http://trousers.sourceforge.net/

Botan Reference Guide, Release 3.9.0

Normally the SRK password is null. Use nullptr to signal this.

The TPM contains a RNG of unknown design or quality. If that doesn’t scare you off, you can use it with TPM_RNG
which implements the standard RandomNumberGenerator interface.

class TPM_RNG

TPM_RNG(7PM_Context &ctx)

Initialize a TPM RNG object. After initialization, reading from this RNG reads from the hardware? RNG
on the TPM.

The v1.2 TPM uses only RSA, but because this key is implemented completely in hardware it uses a different private
key type, with a somewhat different API to match the TPM’s behavior.

class TPM_PrivateKey

TPM_PrivateKey(7PM_Context &ctx, size_t bits, const char *key_password)

Create a new RSA key stored on the TPM. The bits should be either 1024 or 2048; the TPM interface
hypothetically allows larger keys but in practice no v1.2 TPM hardware supports them.

The TPM processor is not fast, be prepared for this to take a while.
The key_password is the password to the TPM key ?

std::string register_key (TPM_Storage_Type storage_type)

Registers a key with the TPM. The storage type can be either TPM_Storage_Type::User or
TPM_Storage_Type::System. If System, the key is stored on the TPM itself. If User, it is stored on the
local hard drive in a database maintained by an intermediate piece of system software (which actual inter-
acts with the physical TPM on behalf of any number of applications calling the TPM API).

The TPM has only some limited space to store private keys and may reject requests to store the key.

In either case the key is encrypted with an RSA key which was generated on the TPM and which it will not
allow to be exported. Thus (so goes the theory) without physically attacking the TPM

Returns a UUID which can be passed back to constructor below.

TPM_PrivateKey (TPM_Context &ctx, const std::string &uuid, TPM_Storage_Type storage_type)
Load a registered key. The UUID was returned by the register_key function.
std::vector<uint8_t> export_blob() const
Export the key as an encrypted blob. This blob can later be presented back to the same TPM to load the
key.
TPM_PrivateKey (TPM_Context &ctx, const std::vector<uint8_t> &blob)
Load a TPM key previously exported as a blob with export_blob.
std::unique_ptr<Public_Key> public_key () const
Return the public key associated with this TPM private key.

TPM does not store public keys, nor does it support signature verification.

TSS_HKEY handle() const
Returns the bare TSS key handle. Use if you need to call the raw TSS APIL.

A TPM_PrivateKey can be passed to a PK_Signer constructor and used to sign messages just like any other key. Only
PKCS #1 v1.5 signatures are supported by the v1.2 TPM.

std::vector<std::string> TPM_PrivateKey: :registered_keys (TPM_Context &ctx)
This static function returns the list of all keys (in URL format) registered with the system

8.30. Trusted Platform Module (TPM) 237

Botan Reference Guide, Release 3.9.0

8.31 One Time Passwords

Added in version 2.2.0.

One time password schemes are a user authentication method that relies on a fixed secret key which is used to derive
a sequence of short passwords, each of which is accepted only once. Commonly this is used to implement two-factor
authentication (2FA), where the user authenticates using both a conventional password (or a public key signature) and
an OTP generated by a small device such as a mobile phone.

Botan implements the HOTP and TOTP schemes from RFC 4226 and 6238.

Since the range of possible OTPs is quite small, applications must rate limit OTP authentication attempts to some small
number per second. Otherwise an attacker could quickly try all 1000000 6-digit OTPs in a brief amount of time.

8.31.1 HOTP

HOTP generates OTPs that are a short numeric sequence, between 6 and 8 digits (most applications use 6 digits),
created using the HMAC of a 64-bit counter value. If the counter ever repeats the OTP will also repeat, thus both
parties must assure the counter only increments and is never repeated or decremented. Thus both client and server
must keep track of the next counter expected.

Anyone with access to the client-specific secret key can authenticate as that client, so it should be treated with the same
security consideration as would be given to any other symmetric key or plaintext password.

class HOTP
Implement counter-based OTP
HOTP (const SymmetricKey &key, const std::string &hash_algo = "SHA-1", size_t digits = 6)

Initialize an HOTP instance with a secret key (specific to each client), a hash algorithm (must be SHA-1,
SHA-256, or SHA-512), and the number of digits with each OTP (must be 6, 7, or 8).

In RFC 4226, HOTP is only defined with SHA-1, but many HOTP implementations support SHA-256 as
an extension. The collision attacks on SHA-1 do not have any known effect on HOTP’s security.

uint32_t generate_hotp (uint64_t counter)
Return the OTP associated with a specific counter value.

std::pair<bool, uint64_t> verify_hotp (uint32_t otp, uint64_t starting_counter, size_t resync_range = 0)
Check if a provided OTP matches the one that should be generated for the specified counter.

The starting_counter should be the counter of the last successful authentication plus 1. If resync_resync
is greater than 0, some number of counter values above starting_counter will also be checked if necessary.
This is useful for instance when a client mistypes an OTP on entry; the authentication will fail so the server
will not update its counter, but the client device will subsequently show the OTP for the next counter.
Depending on the environment a resync_range of 3 to 10 might be appropriate.

Returns a pair of (is_valid,next_counter_to_use). If the OTP is invalid then always returns
(false,starting_counter), since the last successful authentication counter has not changed.

8.31.2 TOTP
TOTP is based on the same algorithm as HOTP, but instead of a counter a timestamp is used.

class TOTP

TOTP (const SymmetricKey &key, const std::string &hash_algo = "SHA-1", size_t digits = 6, size_t time_step =
30)

Setup to perform TOTP authentication using secret key key.

238 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

uint32_t generate_totp (std::chrono::system_clock::time_point time_point)

uint32_t generate_totp (uint64_t unix_time)
Generate and return a TOTP code based on a timestamp.

bool verify_totp (uint32_t otp, std::chrono::system_clock::time_point time, size_t clock_drift_accepted = 0)

bool verify_totp (uint32_t otp, uint64_t unix_time, size_t clock_drift_accepted = 0)

Return true if the provided OTP code is correct for the provided timestamp. If required, use
clock_drift_accepted to deal with the client and server having slightly different clocks.

8.32 Roughtime

Added in version 2.13.0.

Botan includes a Roughtime client, available in botan/roughtime.h

8.33 libsodium Compatible Interfaces

To ease transitions, Botan includes an interface compatible with libsodium in sodium.h. All declarations are in the
Botan: : Sodium namespace but otherwise are named as and should act like their equivalents in libsodium.

The functions are not documented here since we don’t recommend using them generally; consult the libsodium docu-
mentation instead.

The implementation of the compatibility shim, in src/1ib/compat/sodium, may prove a useful reference if you wish
to remove uses of the sodium API and instead use the native Botan APIs.

8.34 ZFEC Forward Error Correction

Added in version 3.0.0.
The ZFEC class provides forward error correction compatible with the zfec (https://github.com/tahoe-lafs/zfec) library.

Forward error correction takes an input and creates multiple “shares”, such that any K of N shares is sufficient to recover
the entire original input.

Note

Specific to the ZFEC format, the first K generated shares are identical to the original input data, followed by N-K
shares of error correcting code. This is very different from threshold secret sharing, where having fewer than K
shares gives no information about the original input.

Warning

If a corrupted share is provided to the decoding algorithm, the resulting decoding will be invalid. It is recommended
to protect shares using a technique such as a MAC or public key signature, if corruption is likely in your application.

ZFEC requires that the input length be exactly divisible by K; if needed define a padding scheme to pad your input to
the necessary size.

An example application that adds padding and a hash checksum is available in src/cli/zfec.cpp and invokable
using botan fec_encode and botan fec_decode.

8.32. Roughtime 239

https://github.com/tahoe-lafs/zfec

Botan Reference Guide, Release 3.9.0

class ZFEC

ZFEC(size_tk, size_tn)

Set up for encoding or decoding using parameters k and n. Both must be less than 256, and k must be less
than n.

void encode_shares (const std::vector<const uint8_t*> &shares, size_t share_size, std::function<void(size_t,
const uint8_t[], size_t)> output_cb) const

Encode K shares in shares each of length share_size into N shares, also each of length share_size.
The output_cb function will be called once for each output share (in some unspecified and possibly non-
deterministic order).

The parameters to output_cb are: the share being output, the share contents, and the length of the encoded
share (which will always be equal to share_size).

void decode_shares (const std::map<size_t, const uint8_t*> &shares, size_t share_size,
std::function<void(size_t, const uint8_t[], size_t)> output_cb) const

Decode some set of shares into the original input. Each share is of share_size bytes. The shares are
identified by a small integer (between 0 and 255).

The parameters to output_cb are similar to that of encode_shares.

8.35 FFI (C Binding)

Added in version 2.0.0.

Botan’s ffi module provides a C89 binding intended to be easily usable with other language’s foreign function interface
(FFI) libraries. For instance the included Python wrapper uses Python’s ctypes module and the C89 API. This API is
of course also useful for programs written directly in C.

Code examples can be found in the tests (https://github.com/randombit/botan/blob/master/src/tests/test_fli.cpp) as
well as the implementations of the various language bindings (https://github.com/randombit/botan/wiki/Language-
Bindings). At the time of this writing, the Python and Rust bindings are probably the most comprehensive.

8.35.1 Rules of Engagement

Writing language bindings for C or C++ libraries is typically a tedious and bug-prone experience. This FFI layer was
designed to make the experience, if not pleasant, at least straighforward.

* All objects manipulated by the API are opaque structs. Each struct is tagged with a 32-bit magic num-
ber which is unique to its type; accidentally passing the wrong object type to a function will result in a
BOTAN_FFI_ERROR_INVALID_OBJECT error, instead of a crash or memory corruption.

* (Almost) all functions return an integer error code indicating success or failure. The exception is a small handful
of version query functions, which are guaranteed to never fail. All functions returning errors use the same set of
error codes.

* The set of types used is small and commonly supported: uint8_t arrays for binary data, size_t for lengths,
and NULL-terminated UTF-8 encoded strings.

* No ownership of pointers crosses the boundary. If the library is producing output, it does so by either writing to
a buffer that was provided by the application, or calling a view callback.

In the first case, the application typically passes both an output buffer and a pointer to a length field. On entry,
the length field should be set to the number of bytes available in the output buffer. If there is sufficient room,
the output is written to the buffer, the actual number of bytes written is returned in the length field, and the
function returns 0 (success). Otherwise, the number of bytes required is placed in the length parameter, and then
BOTAN_FFI_ERROR_INSUFFICIENT_BUFFER_SPACE is returned.

240 Chapter 8. API Reference

https://github.com/randombit/botan/blob/master/src/tests/test_ffi.cpp
https://github.com/randombit/botan/wiki/Language-Bindings

Botan Reference Guide, Release 3.9.0

In most cases, for this style of function, there is also a function which allows querying the actual (or possibly
upper bound) number of bytes in the function’s output. For example calling botan_hash_output_length
allows the application to determine in advance the number of bytes that botan_hash_final will want to write.

In some situations, it is not possible to determine exactly what the output size of the function will be in advance.
Here the FFI layer uses what it terms View Functions; callbacks that are allowed to view the entire output of the
function, but once the callback returns, no further access is allowed. View functions are called with an opaque
pointer provided by the application, which allows passing arbitrary context information.

8.35.2 Return Codes

Almost all functions in the Botan C interface return an int error code. The only exceptions are a handful of functions
(like botan_£fi_api_version) which cannot fail in any circumstances.

The FFI functions return a non-negative integer (usually 0) to indicate success, or a negative integer to represent an
error. A few functions (like botan_block_cipher_block_size) return positive integers instead of zero on success.

The error codes returned in certain error situations may change over time. This especially applies to very generic
errors like BOTAN_FFI_ERROR_EXCEPTION_THROWN and BOTAN_FFI_ERROR_UNKNOWN_ERROR. For instance, before
2.8, setting an invalid key length resulted in BOTAN_FFI_ERROR_EXCEPTION_THROWN but now this is specially handled
and returns BOTAN_FFI_FERROR_INVALID_KEY_LENGTH instead.

The following enum values are defined in the FFI header:

enumerator BOTAN_FFI_SUCCESS =0
Generally returned to indicate success

enumerator BOTAN_FFI_INVALID_VERIFIER =1

Note this value is positive, but still represents an error condition. In indicates that the function completed suc-
cessfully, but the value provided was not correct. For example botan_bcrypt_is_valid returns this value if
the password did not match the hash.

enumerator BOTAN_FFI_ERROR_INVALID_INPUT =-1

The input was invalid. (Currently this error return is not used.)

enumerator BOTAN_FFI_ERROR_BAD_MAC = -2
While decrypting in an AEAD mode, the tag failed to verify.

enumerator BOTAN_FFI_ERROR_INSUFFICIENT_BUFFER_SPACE = -10

Functions which write a variable amount of space return this if the indicated buffer length was insufficient to
write the data. In that case, the output length parameter is set to the size that is required.

enumerator BOTAN_FFI_ERROR_STRING_CONVERSION_ERROR =-11

A string view function which attempts to convert a string to a specified charset, and fails, can use this function
to indicate the error.

enumerator BOTAN_FFI_ERROR_EXCEPTION_THROWN = -20

An exception was thrown while processing this request, but no further details are available.

Note

If the environment variable BOTAN_FFI_PRINT_EXCEPTIONS is set to any non-empty value, then any excep-
tion which is caught by the FFI layer will first print the exception message to stderr before returning an error.
This is sometimes useful for debugging.

8.35. FFI (C Binding) 241

Botan Reference Guide, Release 3.9.0

enumerator BOTAN_FFI_ERROR_OUT_OF_MEMORY = -21

Memory allocation failed

enumerator BOTAN_FFI_ERROR_SYSTEM_ERROR = -22
A system call failed

enumerator BOTAN_FFI_ERROR_INTERNAL_ERROR = -23

An internal bug was encountered (please open a ticket on github)

enumerator BOTAN_FFI_ERROR_BAD_FLAG = -30

A value provided in a flag variable was unknown.

enumerator BOTAN_FFI_ERROR_NULL_POINTER = -31

A null pointer was provided as an argument where that is not allowed.
enumerator BOTAN_FFI_ERROR_BAD_PARAMETER = -32
An argument did not match the function.

enumerator BOTAN_FFI_ERROR_KEY_NOT_SET = -33

An object that requires a key normally must be keyed before use (eg before encrypting or MACing data). If this
is not done, the operation will fail and return this error code.

enumerator BOTAN_FFI_ERROR_INVALID_KEY_LENGTH = -34
An invalid key length was provided with a call to foo_set_key.
enumerator BOTAN_FFI_ERROR_INVALID_OBJECT_STATE = -35
An operation was invoked that makes sense for the object, but it is in the wrong state to perform it.

enumerator BOTAN_FFI_ERROR_NOT_IMPLEMENTED = -40

This is returned if the functionality is not available for some reason. For example if you call botan_hash_init
with a named hash function which is not enabled, this error is returned.

enumerator BOTAN_FFI_ERROR_INVALID_OBJECT = -50

This is used if an object provided did not match the function. For example calling botan_hash_destroy on a
botan_rng_t object will cause this error.

enumerator BOTAN_FFI_TPM_ERROR = -78
An error occured when performing TPM?2 interactions.

enumerator BOTAN_FFI_ERROR_UNKNOWN_ERROR = -100

Something bad happened, but we are not sure why or how.
Error values below -10000 are reserved for the application (these can be returned from view functions).
Further information about the error that occured is available via

const char *botan_error_last_exception_message()
Added in version 3.0.0.

Returns a static string stored in a thread local variable which contains the last exception message thrown.

Warning

This string buffer is overwritten on the next call to the FFI layer

242 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.35.3 Versioning

uint32_t botan_£fi_api_version()
Returns the version of the currently supported FFI API. This is expressed in the form YYYYMMDD of the
release date of this version of the API.

int botan_f£fi_supports_api (uint32_t version)

Returns 0 iff the FFI version specified is supported by this library. Otherwise returns -1. The expression
botan_ffi_supports_api(botan_ffi_api_version()) will always evaluate to 0. A particular version of the library
may also support other (older) versions of the FFI API.

const char *botan_version_string()
Returns a free-form string describing the version. The return value is a statically allocated string.

uint32_t botan_version_major ()
Returns the major version of the library

uint32_t botan_version_minor()
Returns the minor version of the library

uint32_t botan_version_patch()
Returns the patch version of the library

uint32_t botan_version_datestamp()
Returns the date this version was released as an integer YYYYMMDD, or 0 if an unreleased version

FFI Versions

This maps the FFI API version to the first version of the library that supported it.

FFI Version Supported Starting

20250506 3.8.0
20240408 34.0
20231009 32.0
20230711 3.1.0
20230403 3.0.0
20210220 2.18.0
20191214 2.13.0
20180713 2.8.0
20170815 23.0
20170327 2.1.0
20150515 2.0.0

8.35.4 View Functions
Added in version 3.0.0.

Starting in Botan 3.0, certain functions were added which produce a “view”. That is instead of copying data to a user
provided buffer, they instead invoke a callback, passing the data that was requested. This avoids an issue where in some
cases it is not possible for the caller to know what the output length of the FFI function will be. In these cases, the
best they can do is set a large length, invoke the function, and then accept that they may need to retry the (potentially
expensive) operation.

View functions avoid this by always providing the full data, and allowing the caller to allocate memory as necessary to
copy out the result, without having to guess the length in advance.

8.35. FFI (C Binding) 243

Botan Reference Guide, Release 3.9.0

In all cases the pointer passed to the view function is deallocated after the view function returns, and should not be
retained.

The view functions return an integer value; if they return non-zero, then the overall FFI function will also return this
integer. To avoid confusion when mapping the errors, any error returns should either match Botan’s FFI error codes,
or else use an integer value in the application reserved range.
typedef void *botan_view_ctx

The application context, which is passed back to the view function.

typedef int (*botan_view_bin_£n)(boran_view_ctx view_ctx, const uint8_t *data, size_t len)

A viewer of arbitrary binary data.

typedef int (*botan_view_str_£n)(botan_view_ctx view_ctx, const char *str, size_t len)

A viewer of a null terminated C-style string. The length includes the null terminator byte. The string should be
UTF-8 encoded, but in certain circumstances may not be. (Typically this would be due to a bug or oversight;
please report the issue.) BOTAN_FFI_ERROR_STRING_CONVERSION_ERROR is reserved to allow the FFI call to
indicate the problem, should it be unable to convert the data.

8.35.5 Utility Functions

int botan_constant_time_compare (const uint8_t *x, const uint8_t *y, size_t len)
Returns 0 if x/0..len] == y[0..len], -1 otherwise.

int botan_hex_encode (const uint8_t *x, size_t len, char *out, uint32_t flags)
Performs hex encoding of binary data in x of size len bytes. The output buffer our must be of at least x*2 bytes in
size. If flags contains BOTAN_FFI_HEX_LOWER_CASE, hex encoding will only contain lower-case letters, upper-
case letters otherwise. Returns O on success, 1 otherwise.

int botan_hex_decode (const char *hex_str, size_t in_len, uint8_t *out, size_t *out_len)
Hex decode some data

8.35.6 Random Number Generators

typedef opaque *botan_rng_t
An opaque data type for a random number generator. Don’t mess with it.

int botan_rng_init (boran_rng_t *rng, const char *rng_type)

Initialize a random number generator object from the given rng_type: “system” (or nullptr): System_RNG,
“user”: AutoSeeded_RNG, “user-threadsafe”: serialized AutoSeeded_RNG, “null”: Null_RNG (always fails),
“hwrnd” or “rdrand”: Processor_RNG (if available)

int botan_rng_init_custom(boran_rng_t *rng, const char *rng_name, void *context, int (*get_cb)(void *context,
uint8_t *out, size_t out_len), int (*add_entropy_cb)(void *context, const uint8_t
input[], size_t length), void (*destroy_cb)(void *context));

Added in version 2.18.0.
Create a new custom RNG object, which will invoke the provided callbacks.
int botan_rng_get (boran_rng_t rng, uint8_t *out, size_t out_len)
Get random bytes from a random number generator.
int botan_rng_reseed(boran_rng_t rng, size_t bits)
Reseeds the random number generator with bits number of bits from the System_RNG.

int botan_rng_reseed_from_rng (botan_rng t rng, botan_rng_t src, size_t bits)

Reseeds the random number generator with bits number of bits taken from the given source RNG.

244 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

int botan_rng_add_entropy (botan_rng_t rng, const uint8_t seed[], size_t len)
Adds the provided seed material to the internal RNG state.

This call may be ignored by certain RNG instances (such as RDRAND or, on some systems, the system RNG).

int botan_rng_destroy (botan_rng_t rng)
Destroy the object created by botan_rng_init.

8.35.7 Block Ciphers
Added in version 2.1.0.

This is a ‘raw’ interface to ECB mode block ciphers. Most applications want the higher level cipher API which pro-
vides authenticated encryption. This API exists as an escape hatch for applications which need to implement custom
primitives using a PRP.
typedef opaque *botan_block_cipher_t
An opaque data type for a block cipher. Don’t mess with it.
int botan_block_cipher_init (botan_block_cipher_t *bc, const char *cipher_name)
Create a new cipher mode object, cipher_name should be for example “AES-128" or “Threefish-512”
int botan_block_cipher_block_size(boran_block_cipher_t be)
Return the block size of this cipher.
int botan_block_cipher_name (boran_block_cipher_t cipher, char *name, size_t *name_len)
Return the name of this block cipher algorithm, which may nor may not exactly match what was passed to
botan_block_cipher_init.
int botan_block_cipher_get_keyspec(boran_block_cipher_t cipher, size_t *out_minimum_keylength, size_t
*out_maximum_keylength, size_t *out_keylength_modulo)
Return the limits on the key which can be provided to this cipher. If any of the parameters are null, no output
is written to that field. This allows retrieving only (say) the maximum supported keylength, if that is the only
information needed.
int botan_block_cipher_clear (botan_block_cipher_t bc)
Clear the internal state (such as keys) of this cipher object, but do not deallocate it.
int botan_block_cipher_set_key(botan_block_cipher_t be, const uint8_t keyl[], size_t key_len)
Set the cipher key, which is required before encrypting or decrypting.

int botan_block_cipher_encrypt_blocks (botan_block_cipher_t be, const uint8_t in[], uint8_t out[], size_t
blocks)

The key must have been set first with botan_block_cipher_set_key. Encrypt blocks blocks of data stored in
in and place the ciphertext into out. The two parameters may be the same buffer, but must not overlap.

int botan_block_cipher_decrypt_blocks (botan_block_cipher_t be, const uint8_t in[], uint8_t out[], size_t
blocks)

The key must have been set first with botan_block_cipher_set_key. Decrypt blocks blocks of data stored
in in and place the ciphertext into out. The two parameters may be the same buffer, but must not overlap.

int botan_block_cipher_destroy (boran_block_cipher_t rng)
Destroy the object created by botan_block_cipher_init.

8.35. FFI (C Binding) 245

Botan Reference Guide, Release 3.9.0

8.35.8 Hash Functions
typedef opaque *botan_hash_t
An opaque data type for a hash. Don’t mess with it.

int botan_hash_init (botan_hash_t hash, const char *hash_name, uint32_t flags)
Creates a hash of the given name, e.g., “SHA-384".

Flags should always be zero in this version of the APIL.

int botan_hash_destroy (boran_hash_t hash)
Destroy the object created by botan_hash_init.

int botan_hash_name (boran_hash_t hash, char *name, size_t *name_len)
Write the name of the hash function to the provided buffer.

int botan_hash_copy_state (botan_hash_t *dest, const botan_hash_t source)
Copies the state of the hash object to a new hash object.

int botan_hash_clear (boran_hash_t hash)
Reset the state of this object back to clean, as if no input has been supplied.

int botan_hash_output_length(boran_hash_t hash, size_t *output_length)
Return the output length of the hash function.

int botan_hash_update (boran_hash_t hash, const uint8_t *input, size_t len)
Add input to the hash computation.

int botan_hash_final (boran_hash_t hash, uint8_t out[])
Finalize the hash and place the output in out. Exactly botan_hash_output_length bytes will be written.

8.35.9 Message Authentication Codes

typedef opaque *botan_mac_t
An opaque data type for a MAC. Don’t mess with it, but do remember to set a random key first.

int botan_mac_init (boran_mac_t *mac, const char *mac_name, uint32_t flags)
Creates a MAC of the given name, e.g., “HMAC(SHA-384)”. Flags should always be zero in this version of the
APIL

int botan_mac_destroy (boran_mac_t mac)
Destroy the object created by botan_mac_init.

int botan_mac_clear (botan_mac_t mac)
Reset the state of this object back to clean, as if no key and input have been supplied.

int botan_mac_output_length(boran_mac_t mac, size_t *output_length)
Return the output length of the MAC.

int botan_mac_set_key (botan_mac_t mac, const uint8_t *key, size_t key_len)
Set the random key.

int botan_mac_set_nonce (boran_mac_t mac, const uint8_t *key, size_t key_len)
Set a nonce for the MAC. This is used for certain (relatively uncommon) MACs such as GMAC

int botan_mac_update (boran_mac_t mac, uint8_t buf[], size_t len)
Add input to the MAC computation.

int botan_mac_f£inal (boran_mac_t mac, uint8_t out[], size_t *out_len)
Finalize the MAC and place the output in out. Exactly botan_mac_output_Ilength bytes will be written.

246 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.35.10 Symmetric Ciphers

typedef opaque *botan_cipher_t

An opaque data type for a symmetric cipher object. Don’t mess with it, but do remember to set a random key
first. And please use an AEAD.

int botan_cipher_init (boran_cipher_t *cipher, const char *cipher_name, uint32_t flags)
Create a cipher object from a name such as “AES-256/GCM” or “Serpent/OCB”.

Flags is a bitfield; the low bitof flags specifies if encrypt or decrypt, ie use 0 for encryption and 1 for decryption.
int botan_cipher_destroy(boran_cipher_t cipher)
int botan_cipher_clear (botan_cipher_t hash)
int botan_cipher_set_key (boran_cipher_t cipher, const uint8_t *key, size_t key_len)
int botan_cipher_is_authenticated(boran_cipher_t cipher)
int botan_cipher_requires_entire_message (botan_cipher_t cipher)
int botan_cipher_get_tag_length(boran_cipher_t cipher, size_t *tag_len)
Write the tag length of the cipher to tag_len. This will be zero for non-authenticated ciphers.
int botan_cipher_valid_nonce_length(botan_cipher_t cipher, size_t nl)
Returns 1 if the nonce length is valid, or 0 otherwise. Returns -1 on error (such as the cipher object being invalid).
int botan_cipher_get_default_nonce_length(boran_cipher_t cipher, size_t *nl)
Return the default nonce length
int botan_cipher_get_update_granularity(boran_cipher_t cipher, size_t *ug)
Return the minimum update granularity, ie the size of a buffer that must be passed to botan_cipher_update
int botan_cipher_get_ideal_update_granularity(boran_cipher_t cipher, size_t *ug)

Return the ideal update granularity, ie the size of a buffer that must be passed to botan_cipher_update that
maximizes performance.

Note

Using larger buffers than the value returned here is unlikely to hurt (within reason). Typically the returned
value is a small multiple of the minimum granularity, with the multiplier depending on the algorithm and
hardware support.

int botan_cipher_set_associated_data(boran_cipher_t cipher, const uint8_t *ad, size_t ad_len)
Set associated data. Will fail unless the cipher is an AEAD.
int botan_cipher_start (botan_cipher_t cipher, const uint8_t *nonce, size_t nonce_len)
Start processing a message using the provided nonce.
int botan_cipher_update (botan_cipher_t cipher, uint32_t flags, uint8_t output[], size_t output_size, size_t

*output_written, const uint8_t input_bytes[], size_t input_size, size_t
*input_consumed)

Encrypt or decrypt data.

8.35. FFI (C Binding) 247

Botan Reference Guide, Release 3.9.0

8.35.11 PBKDF

int botan_pbkdf (const char *pbkdf_algo, uint8_t out[], size_t out_len, const char *passphrase, const uint8_t salt[],
size_t salt_len, size_t iterations)

Derive a key from a passphrase for a number of iterations using the given PBKDF algorithm, e.g.,
“PBKDF2(SHA-512)”.

int botan_pbkdf_timed(const char *pbkdf_algo, uint8_t out[], size_t out_len, const char *passphrase, const uint8_t
salt[], size_t salt_len, size_t milliseconds_to_run, size_t *out_iterations_used)

Derive a key from a passphrase using the given PBKDF algorithm, e.g., “PBKDF2(SHA-512)". If
out_iterations_used is zero, instead the PBKDF is run until milliseconds_to_run milliseconds have passed. In
this case, the number of iterations run will be written to out_iterations_used.

8.35.12 KDF

int botan_kdf (const char *kdf_algo, uint8_t out[], size_t out_len, const uint8_t secret[], size_t secret_len, const
uint8_t salt[], size_t salt_len, const uint8_t label[], size_t label_len)

Derive a key using the given KDF algorithm, e.g., “SP800-56C”. The derived key of length out_len bytes will
be placed in out.

8.35.13 Multiple Precision Integers
Added in version 2.1.0.
typedef opaque *botan_mp_t
An opaque data type for a multiple precision integer. Don’t mess with it.
int botan_mp_init (boran_mp_t *mp)
Initialize a botan_mp_t. Initial value is zero, use botan_mp_set_X to load a value.
int botan_mp_destroy (boran_mp_t mp)
Free a botan_mp_t
int botan_mp_to_hex (botan_mp_t mp, char *out)
Writes exactly botan_mp_num_bytes(mp)*2 + 1 bytes to out
int botan_mp_to_str(botan_mp_t mp, uint8_t base, char *out, size_t *out_len)
Base can be either 10 or 16.
int botan_mp_set_£from_int (botan_mp_t mp, int initial_value)
Set botan_mp_t from an integer value.

int botan_mp_set_£from_mp (botan_mp_t dest, botan_mp_t source)
Set botan_mp_t from another MP.

int botan_mp_set_£from_str (botan_mp_t dest, const char *str)
Set botan_mp_t from a string. Leading prefix of “Ox” is accepted.
int botan_mp_num_bits (boran_mp_t n, size_t *bits)
Return the size of n in bits.
int botan_mp_num_bytes (botan_mp_t n, size_t *uint8_ts)
Return the size of n in bytes.
int botan_mp_to_bin(botan_mp_t mp, uint8_t vec[])
Writes exactly botan_mp_num_bytes (mp) to vec.

248 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

int botan_mp_£from_bin(boran_mp_t mp, const uint8_t vec[], size_t vec_len)
Loads botan_mp_t from a binary vector (as produced by botan_mp_to_bin).
int botan_mp_is_negative (boran_mp_t mp)
Return 1 if mp is negative, otherwise 0.
int botan_mp_£1ip_sign(boran_mp_t mp)
Flip the sign of mp.
int botan_mp_add (botan_mp_t result, botan_mp_t X, botan_mp_t y)
Add two botan_mp_t and store the output in result.

int botan_mp_sub (botan_mp_t result, botan_mp_t X, botan_mp_t y)
Subtract two botan_mp_t and store the output in result.

int botan_mp_mul (botan_mp_t result, botan_mp_t X, botan_mp_t y)
Multiply two botan_mp_t and store the output in result.

int botan_mp_div (botan_mp_t quotient, botan_mp_t remainder, botan_mp_t X, botan_mp_t y)
Divide x by y and store the output in quotient and remainder.

int botan_mp_mod_mul (botan_mp_t result, botan_mp_t x, botan_mp_t y, botan_mp_t mod)
Set result to x times y modulo mod.

int botan_mp_equal (botan_mp_t X, botan_mp_t y)
Return 1 if x is equal to y, 0 if x is not equal to y

int botan_mp_is_zero(const botan_mp_t x)

Return 1 if x is equal to zero, otherwise 0.

int botan_mp_is_odd (const boran_mp_t x)

Return 1 if x is odd, otherwise 0.
int botan_mp_is_even(const botan_mp_t X)
Return 1 if x is even, otherwise 0.
int botan_mp_is_positive(const botan_mp_t X)
Return 1 if x is greater than or equal to zero.
int botan_mp_is_negative (const botan_mp_t X)
Return 1 if x is less than zero.
int botan_mp_to_uint32 (const boran_mp_t X, uint32_t *val)
If x fits in a 32-bit integer, set val to it and return 0. If x is out of range an error is returned.
int botan_mp_cmp (int *result, botan_mp_t X, botan_mp_t y)
Three way comparison: set result to -1 if x is less than y, 0 if x is equal to y, and 1 if x is greater than y.
int botan_mp_swap (botan_mp_t X, botan_mp_t y)
Swap two botan_mp_t values.
int botan_mp_powmod (botan_mp_t out, botan_mp_t base, botan_mp_t exponent, botan_mp_t modulus)
Modular exponentiation.
int botan_mp_lshift (botan_mp_t out, botan_mp_t in, size_t shift)
Left shift by specified bit count, place result in out.

8.35. FFI (C Binding) 249

Botan Reference Guide, Release 3.9.0

int botan_mp_rshift (botan_mp_t out, botan_mp_t in, size_t shift)
Right shift by specified bit count, place result in out.
int botan_mp_mod_inverse (botan_mp_t out, botan_mp_t in, botan_mp_t modulus)
Compute modular inverse. If no modular inverse exists (for instance because in and modulus are not relatively
prime), then sets out to -1.
int botan_mp_rand_bits (botan_mp_t rand_out, botan_rng_t rng, size_t bits)
Create a random botan_mp_t of the specified bit size.
int botan_mp_rand_range (botan_mp_t rand_out, botan_rng_t tng, botan_mp_t lower_bound, botan_mp_t
upper_bound)

Create a random botan_mp_t within the provided range.
int botan_mp_gcd (botan_mp_t out, botan_mp_t X, botan_mp_t y)
Compute the greatest common divisor of x and y.
int botan_mp_is_prime (botan_mp_t n, botan_rng_t rng, size_t test_prob)
Test if n is prime. The algorithm used (Miller-Rabin) is probabilistic, set test_prob to the desired assurance
level. For example if test_prob is 64, then sufficient Miller-Rabin iterations will run to assure there is at most
a 1/2**64 chance that n is composite.
int botan_mp_get_bit (boran_mp_t n, size_t bit)
Returns 0 if the specified bit of n is not set, 1 if it is set.
int botan_mp_set_bit (boran_mp_t n, size_t bit)
Set the specified bit of n
int botan_mp_clear_bit (boran_mp_t n, size_t bit)
Clears the specified bit of n

8.35.14 Password Hashing
int botan_bcrypt_generate (uint8_t *out, size_t *out_len, const char *password, botan_rng_t rng, size_t
work_factor, uint32_t flags)

Create a password hash using Berypt. The output buffer our should be of length 64 bytes. The output is formatted
berypt $2a$. ..

int botan_bcrypt_is_valid(const char *pass, const char *hash)

Check a previously created password hash. Returns BOTAN_SUCCESS if if this password/hash combination is
valid, BOTAN_FFI_INVALID_VERIFIER if the combination is not valid (but otherwise well formed), negative on
error.

8.35.15 Object Identifiers
Added in version 3.8.0.
typedef opaque *botan_asnl_oid_t
An opaque data type for an object identifier. Don’t mess with it.
int botan_oid_destroy(boran_asnl_oid_t oid)
Destroy an object.
int botan_oid_from_string (boran_asnl_oid_t *oid, const char *oid_str)
Create an OID from a string, either dot notation (e.g. ‘1.2.3.4’) or a registered name (e.g. ‘RSA’)

250 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

int botan_oid_register (boran_asnl_oid_t oid, const char *name)
Register an OID so that it may later be retrieved by name

int botan_oid_view_string (boran_asnl_oid_t oid, botan_view_ctx ctX, botan_view_str_fn view)
View the OID in dot notation

int botan_oid_view_name (botan_asnl_oid_t oid, botan_view_ctx ctx, botan_view_str_fn view)
View the OID as a name if it has one, otherwise as dot notation

int botan_oid_equal (horan_asnl_oid_t a, botan_asnl_oid_t b)
Three way comparison: set result to -1 if a is less than b, 0 if a is equal to b, and 1 if a is greater than b.

int botan_oid_cmp (int *result, botan_asnl_oid_t a, botan_asnl_oid_t b)
Return 1 if a is equal to b, 0 if a is not equal to b

8.35.16 EC Groups
Added in version 3.8.0.

typedef opaque *botan_ec_group_t
An opaque data type for an EC Group. Don’t mess with it.

int botan_ec_group_destroy (boran_ec_group_t oid)
Destroy an object.

int botan_ec_group_supports_application_specific_group(int *out)
Checks if in this build configuration it is possible to register an application specific elliptic curve, and sets out
to 1 if so, O otherwise.

int botan_ec_group_supports_named_group (const char *name, int *out)
Checks if in this build configuration botan_ec_group_from_name(group_ptr, name) will succeed, and sets out
to 1 if so, 0 otherwise.

int botan_ec_group_£from_params (botan_ec_group_t *ec_group, botan_asnl_oid_t oid, botan_mp_t p,
botan_mp_t a, botan_mp_t b, botan_mp_t base_x, botan_mp_t base_y,
botan_mp_t order)

Create a new EC Group from the given parameters.

Warning

Use only elliptic curve parameters you trust.

int botan_ec_group_£from_ber (botan_ec_group_t *ec_group, const uint8_t *ber, size_t ber_len)
Decode a BER encoded ECC domain parameter set

int botan_ec_group_from_pem(boran_ec_group_t *ec_group, const char *pem)
Initialize an EC Group from the PEM/ASN.1 encoding

int botan_ec_group_from_oid(boran_ec_group_t *ec_group, botan_asnl_oid_t oid)

Initialize an EC Group from a group named by an object identifier

int botan_ec_group_£rom_name (botan_ec_group_t *ec_group, const char *name)
Initialize an EC Group from a common group name (eg “secp256r1”™)

int botan_ec_group_view_der (botan_ec_group_t ec_group, botan_view_ctx ctx, botan_view_bin_fn view)
View an EC Group in DER encoding

8.35. FFI (C Binding) 251

Botan Reference Guide, Release 3.9.0

int botan_ec_group_view_pem(botan_ec_group_t ec_group, botan_view_ctx ctx, botan_view_str_fn view)
View an EC Group in PEM encoding
int botan_ec_group_get_curve_oid (botan_asnl_oid_t *oid, botan_ec_group_t ec_group)
Get the curve OID of an EC Group
int botan_ec_group_get_p(botan_mp_t *p, botan_ec_group_t ec_group)
Get the prime modulus of the field
int botan_ec_group_get_a(boran_mp_t *a, botan_ec_group_t ec_group)
Get the a parameter of the elliptic curve equation
int botan_ec_group_get_b(boran_mp_t *b, botan_ec_group_t ec_group)
Get the b parameter of the elliptic curve equation
int botan_ec_group_get_g_x(botan_mp_t *g_Xx, botan_ec_group_t ec_group)
Get the x coordinate of the base point
int botan_ec_group_get_g_y (botan_mp_t *g_y, botan_ec_group_t ec_group)
Get the y coordinate of the base point
int botan_ec_group_get_order (botan_mp_t *order, botan_ec_group_t ec_group)
Get the order of the base point

int botan_ec_group_equal (botan_ec_group_t curvel, botan_ec_group_t curve2)
Return 1 if curvel is equal to curve2, 0 if curvel is not equal to curve2

8.35.17 Public Key Creation, Import and Export
typedef opaque *botan_privkey_t

An opaque data type for a private key. Don’t mess with it.
int botan_privkey_destroy (botan_privkey_t key)

Destroy an object.

int botan_privkey_create(botan_privkey_t *key, const char *algo_name, const char *algo_params, botan_rng_t
rng)

int botan_ec_privkey_create(boran_privkey_t *key, const char *algo_name, botan_ec_group_t ec_group,
botan_rng_t rng)

int botan_privkey_create_rsa(botan_privkey_t *key, botan_rng_t rng, size_t n_bits)
Create an RSA key of the given size

int botan_privkey_create_ecdsa(boran_privkey_t *key, botan_rng_t rng, const char *curve)
Create a ECDSA key of using a named curve

int botan_privkey_create_ecdh(botan_privkey_t *key, botan_rng_t rng, const char *curve)
Create a ECDH key of using a named curve

int botan_privkey_create_mceliece (boran_privkey_t *key, botan_rng_t rng, size_t n, size_t t)

Create a McEliece key using the specified parameters. See HyMES McEliece cryptosystem for details on choosing
parameters.

int botan_privkey_create_dh(boran_privkey_t *key, botan_rng_t rng, const char *params)
Create a finite field Diffie-Hellman key using the specified named group, for example “modp/ietf/3072”.

252 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

int botan_privkey_load(botan_privkey_t *key, botan_rng_t rng, const uint8_t bits[], size_t len, const char
*password)

Load a private key. If the key is encrypted, password will be used to attempt decryption.
int botan_privkey_export (boran_privkey_t key, uint8_t out[], size_t *out_len, uint32_t flags)
Export a private key. If flags is 1 then PEM format is used.
int botan_privkey_view_encrypted_der (botan_privkey_t key, botan_rng_t rng, const char *passphrase, const

char *cipher_algo, const char *pbkdf_hash, size_t pbkdf_iterations,
botan_view_ctx ctx, botan_view_bin_fn view)

View the encrypted DER private key. In this version the number of PKBDF2 iterations is specified.
Set cipher_algo and pbkdf_hash to NULL to select defaults.

int botan_privkey_view_encrypted_der_timed(botan_privkey_t key, botan_rng_t rng, const char *passphrase,
const char *cipher_algo, const char *pbkdf_hash, size_t
pbkdf_runtime_msec, botan_view_ctx ctx, botan_view_bin_fn
view)

View the encrypted DER private key. In this version the desired PBKDF runtime is specified in milliseconds.
Set cipher_algo and pbkdf_hash to NULL to select defaults.

int botan_privkey_view_encrypted_pem(botan_privkey_t key, botan_rng_t rng, const char *passphrase, const
char *cipher_algo, const char *pbkdf_hash, size_t pbkdf_iterations,
botan_view_ctx ctx, botan_view_str_fn view)

View the encrypted PEM private key. In this version the number of PKBDF?2 iterations is specified.
Set cipher_algo and pbkdf hash to NULL to select defaults.

int botan_privkey_view_encrypted_pem_timed(botan_privkey_t key, botan_rng_t rng, const char *passphrase,
const char *cipher_algo, const char *pbkdf_hash, size_t
pbkdf_runtime_msec, botan_view_ctx ctx, botan_view_str_fn
view)

View the encrypted PEM private key. In this version the desired PBKDF runtime is specified in milliseconds.
Set cipher_algo and pbkdf_hash to NULL to select defaults.

int botan_privkey_view_der (boran_privkey_t key, botan_view_ctx ctx, botan_view_bin_fn view)
View the unencrypted DER encoding of the private key

int botan_privkey_view_pem(botan_privkey_t key, botan_view_ctx ctx, botan_view_str_fn view)

View the unencrypted PEM encoding of the private key

int botan_privkey_view_raw(boran_privkey_t key, botan_view_ctx ctx, botan_view_str_fn view)

View the unencrypted canonical raw encoding of the private key This might not be defined for all key types and
throw in that case.

int botan_privkey_export_encrypted (boran_privkey_t key, uint8_t out[], size_t *out_len, botan_rng_t rng,
const char *passphrase, const char *encryption_algo, uint32_t flags)

Deprecated, use botan_privkey_export_encrypted_msecor botan_privkey_export_encrypted_iter

int botan_privkey_export_encrypted_pbkdf msec(boran_privkey_t key, uint8_t out[], size_t *out_len,
botan_rng_t rng, const char *passphrase, uint32_t
pbkdf_msec_runtime, size_t *pbkdf_iterations_out, const
char *cipher_algo, const char *pbkdf_hash, uint32_t
flags);
Encrypt a key, running the key derivation function for pbkdf_msec_runtime milliseconds. Returns the number
of iterations used in pbkdf_iterations_out.

8.35. FFI (C Binding) 253

Botan Reference Guide, Release 3.9.0

cipher_algo must specify a CBC mode cipher (such as “AES-128/CBC”) or as a Botan-specific extension a
GCM mode may be used.

int botan_privkey_export_encrypted_pbkdf_iter(boran_privkey_t key, uint8_t out[], size_t *out_len,
botan_rng_t rng, const char *passphrase, size_t
pbkdf_iterations, const char *cipher_algo, const char
*pbkdf_hash, uint32_t flags);

Encrypt a private key. The PBKDF function runs for the specified number of iterations. At least 100,000 is
recommended.

int botan_privkey_export_pubkey (botan_pubkey_t *out, botan_privkey_t in)

int botan_privkey_get_£field(botan_mp_t output, botan_privkey_t key, const char *field_name)

(T3] [P

Read an algorithm specific field from the private key object, placing it into output. For example “p” or “q” for
RSA keys, or “x” for DSA keys or ECC keys.

int botan_privkey_oid(boran_asnl_oid_t *oid, botan_privkey_t key)
Get the key’s associated OID.

int botan_privkey_stateful_operation(boran_privkey_t key, int *out)

Checks whether a key is stateful and set out to 1 if it is, O otherwise.

int botan_privkey_remaining_operations(botan_privkey_t key, uint64_t *out)

Set out to the number of remaining operations. If the key is not stateful, an error will be returned.

typedef opaque *botan_pubkey_t
An opaque data type for a public key. Don’t mess with it.

int botan_pubkey_load (boran_pubkey_t *key, const uint8_t bits[], size_t len)

int botan_pubkey_export (boran_pubkey_t key, uint8_t out[], size_t *out_len, uint32_t flags)

int botan_pubkey_view_der (botan_pubkey_t key, botan_view_ctx ctx, botan_view_bin_fn view)
View the DER encoding of the public key

int botan_pubkey_view_pem(boran_pubkey_t key, botan_view_ctx ctx, botan_view_str_fn view)
View the PEM encoding of the public key

int botan_pubkey_view_raw(botan_pubkey_t key, botan_view_ctx ctx, botan_view_bin_fn view)
View the canonical raw encoding of the public key. This may not be defined for all public key types and throw.

int botan_pubkey_algo_name (boran_pubkey_t key, char out[], size_t *out_len)

int botan_pubkey_estimated_strength(botan_pubkey_t key, size_t *estimate)

int botan_pubkey_fingerprint (boran_pubkey_t key, const char *hash, uint8_t out[], size_t *out_len)
int botan_pubkey_destroy (botan_pubkey_t key)

int botan_pubkey_get_field(botan_mp_t output, botan_pubkey_t key, const char *field_name)
Read an algorithm specific field from the public key object, placing it into output. For example “n” or “e” for
RSA keys or “p”, “q”, “g”, and “y” for DSA keys.

int botan_pubkey_oid(boran_asnl_oid_t *oid, botan_privkey_t key)
Get the key’s associated OID.

254 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.35.18 RSA specific functions

Note

These functions are deprecated. Instead use botan_privkey_get_field and botan_pubkey_get_field.

int botan_privkey_rsa_get_p(botan_mp_t p, botan_privkey_t rsa_key)
Set p to the first RSA prime.

int botan_privkey_rsa_get_q(botan_mp_t q, botan_privkey_t rsa_key)
Set q to the second RSA prime.

int botan_privkey_rsa_get_d(botan_mp_t d, botan_privkey_t rsa_key)
Set d to the RSA private exponent.

int botan_privkey_rsa_get_n(botan_mp_t n, botan_privkey_t rsa_key)
Set n to the RSA modulus.

int botan_privkey_rsa_get_e(botan_mp_t e, botan_privkey_t rsa_key)
Set e to the RSA public exponent.

int botan_pubkey_rsa_get_e(botan_mp_t e, botan_pubkey_t rsa_key)
Set e to the RSA public exponent.

int botan_pubkey_rsa_get_n(botan_mp_t n, botan_pubkey_t rsa_key)
Set n to the RSA modulus.

int botan_privkey_load_rsa(boran_privkey_t *¥key, botan_mp_t p, botan_mp_t q, botan_mp_t €)
Initialize a private RSA key using parameters p, g, and e.

int botan_pubkey_load_rsa (botan_pubkey_t *key, botan_mp_t n, botan_mp_t €)
Initialize a public RSA key using parameters n and e.

8.35.19 DSA specific functions
int botan_privkey_load_dsa(botan_privkey_t ¥key, botan_mp_t p, botan_mp_t q, botan_mp_t g, botan_mp_t X)
Initialize a private DSA key using group parameters p, g, and g and private key x.

int botan_pubkey_load_dsa (botan_pubkey_t *key, botan_mp_t p, botan_mp_t q, botan_mp_t g, botan_mp_t y)
Initialize a private DSA key using group parameters p, g, and g and public key y.

8.35.20 ElGamal specific functions
int botan_privkey_load_elgamal (boran_privkey_t *key, botan_mp_t p, botan_mp_t g, botan_mp_t X)
Initialize a private EIGamal key using group parameters p and g and private key x.

int botan_pubkey_load_elgamal (botan_pubkey_t *key, botan_mp_t p, botan_mp_t g, botan_mp_t y)
Initialize a public EIGamal key using group parameters p and g and public key y.

8.35.21 Diffie-Hellman specific functions
int botan_privkey_load_dh(boran_privkey_t *key, botan_mp_t p, botan_mp_t g, botan_mp_t X)
Initialize a private Diffie-Hellman key using group parameters p and g and private key x.

int botan_pubkey_load_dh(boran_pubkey_t *key, botan_mp_t p, botan_mp_t g, botan_mp_t y)
Initialize a public Diffie-Hellman key using group parameters p and g and public key y.

8.35. FFI (C Binding) 255

Botan Reference Guide, Release 3.9.0

8.35.22 Public Key Encryption/Decryption

typedef opaque *botan_pk_op_encrypt_t
An opaque data type for an encryption operation. Don’t mess with it.
int botan_pk_op_encrypt_create (botan_pk_op_encrypt_t *op, botan_pubkey_t key, const char *padding,
uint32_t flags)
Create a new operation object which can be used to encrypt using the provided key and the specified padding
scheme (such as “OAEP(SHA-256)” for use with RSA). Flags should be 0 in this version.
int botan_pk_op_encrypt_destroy (botan_pk_op_encrypt_t op)
Destroy the object.

int botan_pk_op_encrypt_output_length(boran_pk_op_encrypt_t op, size_t ptext_len, size_t *ctext_len)
Returns an upper bound on the output length if a plaintext of length ptext_len is encrypted with this
key/parameter setting. This allows correctly sizing the buffer that is passed to botan_pk_op_encrypt.

int botan_pk_op_encrypt (botan_pk_op_encrypt_t op, botan_rng_t rng, uint8_t out[], size_t *out_len, const

uint8_t plaintext[], size_t plaintext_len)

Encrypt the provided data using the key, placing the output in out. If out is NULL, writes the length of what
the ciphertext would have been to *out_len. However this is computationally expensive (the encryption actually
occurs, then the result is discarded), so it is better to use botan_pk_op_encrypt_output_length to correctly
size the buffer.

typedef opaque *botan_pk_op_decrypt_t
An opaque data type for a decryption operation. Don’t mess with it.

int botan_pk_op_decrypt_create (botan_pk_op_decrypt_t *op, botan_privkey_t key, const char *padding,
uint32_t flags)

int botan_pk_op_decrypt_destroy (botan_pk_op_decrypt_t op)

int botan_pk_op_decrypt_output_length(boran_pk_op_decrypt_t op, size_t ctext_len, size_t *ptext_len)
For a given ciphertext length, returns the upper bound on the size of the plaintext that might be enclosed. This
allows properly sizing the output buffer passed to botan_pk_op_decrypt.

int botan_pk_op_decrypt (botan_pk_op_decrypt_t op, uint8_t out[], size_t *out_len, uint8_t ciphertext[], size_t
ciphertext_len)

8.35.23 Signature Generation

typedef opaque *botan_pk_op_sign_t
An opaque data type for a signature generation operation. Don’t mess with it.

int botan_pk_op_sign_create(botan_pk_op_sign_t *op, botan_privkey_t key, const char *hash_and_padding,

uint32_t flags)

Create a signature operator for the provided key. The padding string specifies what hash function and padding
should be used, for example “PKCS1v15(SHA-256)” for PKCS #1 v1.5 padding (used with RSA) or “SHA-384".
Generally speaking only RSA has special padding modes; for other algorithms like ECDSA one just names the
hash.

int botan_pk_op_sign_destroy(botan_pk_op_sign_t op)
Destroy an object created by botan_pk_op_sign_create.

int botan_pk_op_sign_output_length(botan_pk_op_sign_t op, size_t *sig_len)

Writes the length of the signatures that this signer will produce. This allows properly sizing the buffer passed to
botan_pk_op_sign_finish.

256 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

int botan_pk_op_sign_update (botan_pk_op_sign_t op, const uint8_t in[], size_t in_len)
Add bytes of the message to be signed.

int botan_pk_op_sign_finish(boran_pk_op_sign_t op, botan_rng_t rng, uint8_t sig[], size_t *sig_len)

Produce a signature over all of the bytes passed to botan_pk_op_sign_update. Afterwards, the sign operator
is reset and may be used to sign a new message.

8.35.24 Signature Verification
typedef opaque *botan_pk_op_verify_t
An opaque data type for a signature verification operation. Don’t mess with it.

int botan_pk_op_verify_create(botan_pk_op_verify_t *op, botan_pubkey_t key, const char
*hash_and_padding, uint32_t flags)

int botan_pk_op_verify_destroy(boran_pk_op_verify_t op)
int botan_pk_op_verify_update (botan_pk_op_verify_t op, const uint8_t in[], size_t in_len)
Add bytes of the message to be verified

int botan_pk_op_verify_finish(botan_pk_op_verify_t op, const uint8_t sig[], size_t sig_len)
Verify if the signature provided matches with the message provided as calls to botan_pk_op_verify_update.

8.35.25 Key Agreement
typedef opaque *botan_pk_op_ka_t
An opaque data type for a key agreement operation. Don’t mess with it.
int botan_pk_op_key_agreement_create (boran_pk_op_ka_t *op, botan_privkey_t key, const char *kdf, uint32_t
flags)
int botan_pk_op_key_agreement_destroy (boran_pk_op_ka_t op)

int botan_pk_op_key_agreement_export_public(boran_privkey_t key, uint8_t out[], size_t *out_len)

int botan_pk_op_key_agreement_view_public(botan_privkey_t key, botan_view_ctx ctx, botan_view_bin_fn
view)

int botan_pk_op_key_agreement (botan_pk_op_ka_t op, uint8_t out[], size_t *out_len, const uint8_t other_key[],
size_t other_key_len, const uint8_t salt[], size_t salt_len)

8.35.26 Public Key Encapsulation

Added in version 3.0.0.

typedef opaque *botan_pk_op_kem_encrypt_t
An opaque data type for a KEM operation. Don’t mess with it.

int botan_pk_op_kem_encrypt_create (botan_pk_op_kem_encrypt_t *op, botan_pubkey_t key, const char *kdf)
Create a KEM operation, encrypt version

int botan_pk_op_kem_encrypt_destroy (botan_pk_op_kem_encrypt_t op)

Destroy the operation, freeing memory

8.35. FFI (C Binding) 257

Botan Reference Guide, Release 3.9.0

int botan_pk_op_kem_encrypt_shared_key_length(boran_pk_op_kem_encrypt_t op, size_t
desired_shared_key_length, size_t
*output_shared_key_length)

Return the output shared key length, assuming desired_shared_key_length is provided.

Note

Normally this will just return desired_shared_key_length but may return a different value if a “raw” KDF is
used (returning the unhashed output), or potentially depending on KDF limitations.

int botan_pk_op_kem_encrypt_encapsulated_key_length(botan_pk_op_kem_encrypt_t op, size_t
*output_encapsulated_key_length)
Return the length of the encapsulated key
int botan_pk_op_kem_encrypt_create_shared_key(botan_pk_op_kem_encrypt_t op, botan_rng_t rng, const
uint8_t salt[], size_t salt_len, size_t
desired_shared_key_len, uint8_t shared_key[], size_t

*shared_key_len, uint8_t encapsulated_key[], size_t
*encapsulated_key_len)

Create a new encapsulated key. Use the length query functions beforehand to correctly size the output buffers,
otherwise an error will be returned.

typedef opaque *botan_pk_op_kem_decrypt_t
An opaque data type for a KEM operation. Don’t mess with it.

int botan_pk_op_kem_decrypt_create(botan_pk_op_kem_decrypt_t *op, botan_pubkey_t key, const char *kdf)
Create a KEM operation, decrypt version

int botan_pk_op_kem_decrypt_shared_key_length(boran_pk_op_kem_decrypt_t op, size_t
desired_shared_key_length, size_t
*output_shared_key_length)

See botan_pk_op_kem_encrypt_shared_key_length

int botan_pk_op_kem_decrypt_shared_key (botan_pk_op_kem_decrypt_t op, const uint8_t salt[], size_t salt_len,
const uint8_t encapsulated_key[], size_t encapsulated_key_len,
size_t desired_shared_key_len, uint8_t shared_key[], size_t
*shared_key_len)

Decrypt an encapsulated key and return the shared secret

int botan_pk_op_kem_decrypt_destroy (botan_pk_op_kem_decrypt_t op)

Destroy the operation, freeing memory

8.35.27 TPM 2.0 Functions
Added in version 3.6.0.
typedef opaque *botan_tpm2_ctx_t
An opaque data type for a TPM 2.0 context object. Don’t mess with it.
typedef opaque *botan_tpm2_session_t
An opaque data type for a TPM 2.0 session object. Don’t mess with it.

258 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

typedef opaque *botan_tpm2_crypto_backend_state_t
An opaque data type to hold the TPM 2.0 crypto backend state when registering the botan-based crypto backend
on a bare ESYS_CONTEXT. When the TPM 2.0 context is managed via Botan botan_tpm?2_ctx_t, this state
object is maintained internally.

int botan_tpm2_supports_crypto_backend()
Returns 1 if the Botan-based TPM 2.0 crypto backend is available, 0 otherwise.

int botan_tpm2_ctx_init (botan_tpm2_ctx_t *ctx_out, const char *tcti_nameconf)
Initialize a TPM 2.0 context object. The TCTI name and configuration are mangled into a single string separated
by a colon. for instance “device:/dev/tpm0”.

int botan_tpm2_ctx_init_ex(boran_tpm2_ctx_t *ctx_out, const char *tcti_name, const char *tcti_conf)

Initialize a TPM 2.0 context object. The TCTI name and configuration are passed as separate strings.

int botan_tpm2_ctx_from_esys (botan_tpm2_ctx_t *ctx_out, ESYS_CONTEXT *esys_ctx)
Initialize a TPM 2.0 context object from a pre-existing ESYS_CONTEXT that is managed by the application. De-
stroying this object will not finalize the ESYS_CONTEXT, this responsibility remains with the application.

int botan_tpm2_ctx_enable_crypto_backend (boran_tpm2_ctx_t ctx, botan_rng_t rng)

Enable the Botan-based TPM 2.0 crypto backend. Note that the random number generator passed to this function
must not be dependent on the TPM itself. This should be used when the ESYS_CONTEXT is managed by the TPM
2.0 wrapper provided by Botan (i.e. the application did not explicitly instantiate the ESYS_CONTEXT itself).

int botan_tpm2_enable_crypto_backend(boran_tpm2_crypto_backend_state_t *cbs_out, ESYS_CONTEXT
*esys_ctx, botan_rng_t rng)

Enable the Botan-based TPM 2.0 crypto backend on a pre-existing ESYS_CONTEXT that is managed by the appli-
cation. Note that the random number generator passed to this function must not be dependent on the TPM itself.
The crypto backend has to keep internal state. The application is responsible to keep this state alive and destroy
it after the ESYS_CONTEXT is no longer used.

int botan_tpm2_unauthenticated_session_init (botan_tpm2_session_t *session_out, botan_tpm2_ctx_t ctx)
Initialize an unauthenticated session that can be used to encrypt the communication between your application
and the TPM.

int botan_tpm2_rng_init (botan_rng_t *rng_out, botan_tpm?2_ctx_t ctx, botan_tpm2_session_t sl,

botan_tpm?2_session_t s2, botan_tpm2_session_t $3)

Initialize a random number generator that uses the TPM as a source of entropy.

int botan_tpm2_ctx_destroy (botan_tpm2_ctx_t ctx)
Destroy a TPM 2.0 context object.

int botan_tpm2_session_destroy (boran_tpm2_session_t session)
Destroy a TPM 2.0 session object.

int botan_tpm2_crypto_backend_state_destroy(boran_tpm2_crypto_backend_state_t cbs)

Destroy a TPM 2.0 crypto backend state. This is required when registering the botan-based crypto backend
on an ESYS_CONTEXT managed by the application using botan_tpm2_enable_crypto_backend. When the
ESYS_CONTEXT is managed in the botan wrapper, and botan_tpm2_ctx_enable_crypto_backend was used,
this state is managed within the library and does not need to be cleaned up.

8.35.28 X.509 Certificates

typedef opaque *botan_x509_cert_t
An opaque data type for an X.509 certificate. Don’t mess with it.

8.35. FFI (C Binding) 259

Botan Reference Guide, Release 3.9.0

int botan_x509_cert_load(boran_x509_cert_t *cert_obj, const uint8_t cert[], size_t cert_len)
Load a certificate from the DER or PEM representation

int botan_x509_cert_load_file(boran_x509 cert_t *cert_obj, const char *filename)

Load a certificate from a file.

int botan_x509_cert_dup (boran_x509_cert_t *cert_obj, botan_x509_cert_t cert)

Create a new object that refers to the same certificate.
int botan_x509_cert_destroy (botan_x509_cert_t cert)
Destroy the certificate object

int botan_x509_cert_gen_selfsigned (boran_x509_cert_t *cert, botan_privkey_t key, botan_rng_t rng, const
char *common_name, const char *org_name)

int botan_x509_cert_get_time_starts(boran_x509 cert_t cert, char out[], size_t *out_len)
Return the time the certificate becomes valid, as a string in form “YYYYMMDDHHMMSSZ” where Z is a
literal character reflecting that this time is relative to UTC. Prefer botan_x509_cert_not_before.

int botan_x509_cert_get_time_expires (boran_x509 cert_t cert, char out[], size_t *out_len)
Return the time the certificate expires, as a string in form “YYYYMMDDHHMMSSZ” where Z is a literal
character reflecting that this time is relative to UTC. Prefer botan_x509_cert_not_after.

int botan_x509_cert_not_before(boran_x509_cert_t cert, uint64_t *time_since_epoch)
Return the time the certificate becomes valid, as seconds since epoch.

int botan_x509_cert_not_after (botan_x509_cert_t cert, uint64_t *time_since_epoch)
Return the time the certificate expires, as seconds since epoch.

int botan_x509_cert_get_fingerprint (botan_x509_cert t cert, const char *hash, uint8_t out[], size_t
*out_len)

int botan_x509_cert_get_serial_number (boran_x509 cert_t cert, uint8_t out[], size_t *out_len)
Return the serial number of the certificate.
int botan_x509_cert_get_authority_key_id(boran_x509 cert t cert, uint8_t out[], size_t *out_len)
Return the authority key ID set in the certificate, which may be empty.
int botan_x509_cert_get_subject_key_id(boran_x509 cert_t cert, uint8_t out[], size_t *out_len)
Return the subject key ID set in the certificate, which may be empty.
int botan_x509_cert_get_public_key_bits(boran_x509 cert t cert, uint8_t out[], size_t *out_len)
Get the serialized (DER) representation of the public key included in this certificate
int botan_x509_cert_view_public_key_bits(boran_x509_cert_t cert, botan_view_ctx ctx, botan_view_bin_fn
view)
View the serialized (DER) representation of the public key included in this certificate
int botan_x509_cert_get_public_key(boran_x509_cert_t cert, botan_pubkey_t *key)
Get the public key included in this certificate as a newly allocated object
int botan_x509_cert_get_issuer_dn(boran_x509_cert_t cert, const char *key, size_t index, uint8_t out[], size_t
*out_len)
Get a value from the issuer DN field.
int botan_x509_cert_get_subject_dn(boran_x509_cert_t cert, const char *key, size_t index, uint8_t out[],
size_t *out_len)
Get a value from the subject DN field.

260 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

int botan_x509_cert_to_string(botan_x509_cert_t cert, char out[], size_t *out_len)
Format the certificate as a free-form string.

int botan_x509_cert_view_as_string(boran_x509 cert_t cert, botan_view_ctx ctx, botan_view_str_fn view)
View the certificate as a free-form string.

enum botan_x509_cert_key_constraints

Certificate key usage constraints. Allowed values: NO_CONSTRAINTS, DIGITAL SIGNATURE,
NON_REPUDIATION, KEY_ENCIPHERMENT, DATA_ENCIPHERMENT, KEY_AGREEMENT,
KEY _CERT _SIGN, CRL_SIGN, ENCIPHER_ONLY, DECIPHER ONLY.

int botan_x509_cert_allowed_usage (boran_x509_cert_t cert, unsigned int key_usage)
int botan_x509_cert_verify(int *validation_result, botan_x509_cert_t cert, const botan_x509_cert t
*intermediates, size_t intermediates_len, const botan_x509_cert_t *trusted, size_t

trusted_len, const char *trusted_path, size_t required_strength, const char
*hostname, uint64_t reference_time)

Verify a certificate. Returns 0 if validation was successful, 1 if unsuccessful, or negative on error.
Sets validation_result to a code that provides more information.

If not needed, set intermediates to NULL and intermediates_len to zero.

If not needed, set trusted to NULL and trusted_len to zero.

The trusted_path refers to a directory where one or more trusted CA certificates are stored. It may be NULL
if not needed.

Set required_strength to indicate the minimum key and hash strength that is allowed. For instance setting to
80 allows 1024-bit RSA and SHA-1. Setting to 110 requires 2048-bit RSA and SHA-256 or higher. Set to zero
to accept a default.

Set reference_time to be the time which the certificate chain is validated against. Use zero to use the current
system clock.

int botan_x509_cert_verify_with_crl (int *validation_result, boran_x509_cert_t cert, const botan_x509_cert_t
*intermediates, size_t intermediates_len, const botan_x509 _cert t
*trusted, size_t trusted_len, const boran_x509_crl_t *crls, size_t
crls_len, const char *trusted_path, size_t required_strength, const char
*hostname, uint64_t reference_time)

Certificate path validation supporting Certificate Revocation Lists.
Works the same as botan_x509_cert_cerify.
crls is an array of botan_x509_crl_t objects, crls_len is its length.

const char *botan_x509_cert_validation_status(int code)

Return a (statically allocated) string associated with the verification result, or NULL if the code is not known.

8.35.29 X.509 Certificate Revocation Lists
typedef opaque *botan_x509_crl_t
An opaque data type for an X.509 CRL.

int botan_x509_crl_load(boran_x509_crl_t *crl_obj, const uint8_t crl[], size_t crl_len)
Load a CRL from the DER or PEM representation.

int botan_x509_crl_load_file (boran_x509_crl_t *crl_obj, const char *filename)
Load a CRL from a file.

8.35. FFI (C Binding) 261

Botan Reference Guide, Release 3.9.0

int botan_x509_crl_destroy (botan_x509_cri_t crl)
Destroy the CRL object.

int botan_x509_is_revoked (botan_x509 crl _t crl, botan_x509 cert_t cert)

Check whether a given crl contains a given cert. Return ® when the certificate is revoked, -1 otherwise.

8.35.30 ZFEC (Forward Error Correction)
Added in version 3.0.0.

int botan_zfec_encode(size_t K, size_t N, const uint8_t *input, size_t size, uint8_t **outputs)

Perform forward error correction encoding. The input length must be a multiple of K bytes. The outputs param-
eter must point to N output buffers, each of length size / K.

Any K of the N output shares is sufficient to recover the original input.

int botan_zfec_decode (size_t K, size_t N, const size_t *indexes, uint8_t *const *const inputs, size_t shareSize,
uint8_t **outputs)

Decode some FEC shares. The indexes and inputs must be exactly K in length. The indexes array specifies which
shares are presented in inputs. Each input must be of length shareSize. The output is written to the K buffers in
outputs, each buffer must be shareSize long.

8.36 Environment Variables

Certain environment variables can affect or tune the behavior of the library. The variables and their behavior are
described here.

These values can be set in the environment before the program starts, or using setenv somewhere at the start of main,
before Botan has been invoked.

e BOTAN_THREAD_POOL_SIZE controls the number of threads which will be created for a thread pool used for
some purposes within the library. If not set, or set to 0, then it defaults to the number of CPUs available on the
system. If it is set to the string “none” then the thread pool is disabled; instead all work passed to the thread pool
will be executed immediately by the calling thread.

As of version 3.2.0, on MinGW the thread pool is by default disabled, due to a bug which causes deadlock on
application shutdown. Enabling the pool can be explicitly requested by setting BOTAN_THREAD_POOL_SIZE to
an integer value.

* BOTAN_MLOCK_POOL_SIZE controls the total amount of memory, in bytes, which will be locked in memory using
mlock or VirtualLock and managed in a memory pool. This should be a multiple of the system page size. If
set to 0, then the memory pool is disabled.

e BOTAN_FFI_PRINT_EXCEPTIONS if this variable is set (to any value), then if an exception is caught by the FFI
layer, before returning an error code, it will print the text message of the exception to stderr. This is primarily
intended for debugging.

* BOTAN_CLEAR_CPUID: this variable can be set to a comma-separated list of CPUID fields to ignore. For example
setting BOTAN_CLEAR_CPUID=avx2,avx512 will cause AVX2 and AVX-512 codepaths to be avoided. Note that
disabling basic features (notably NEON or SSE2/SSSE3) can cause other higher level features like AES-NI to
also become disabled.

8.37 Python Binding

Added in version 1.11.14. The Python binding is based on the ffi module of botan and the ctypes module of the Python
standard library.

262 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

The versioning of the Python module follows the major versioning of the C++ library. So for Botan 2, the module is
named botan2 while for Botan 3 it is botan3.

8.37.1 Versioning
botan3.version_major()
Returns the major number of the library version.

botan3.version_minor()

Returns the minor number of the library version.

botan3.version_patch()

Returns the patch number of the library version.

botan3.version_string()

Returns a free form version string for the library

8.37.2 Random Number Generators
class botan3.RandomNumberGenerator (rng_type='system")

Previously rng

Type ‘user’ also allowed (userspace HMAC_DRBG seeded from system rng). The system RNG is
very cheap to create, as just a single file handle or CSP handle is kept open, from first use until
shutdown, no matter how many ‘system’ rng instances are created. Thus it is easy to use the RNG in
a one-off way, with botan.RandomNumberGenerator().get(32).

When Botan is configured with TPM 2.0 support, also ‘tpm?2’ is allowed to instantiate a TPM-
backed RNG. Note that this requires passing additional named arguments tpm2_context= with a
TPM2Context and (optionally) tpm2_sessions= with one or more TPM2Session objects.

get (length)
Return some bytes

reseed (bits=256)

Meaningless on system RNG, on userspace RNG causes a reseed/rekey

reseed_from_rng (source_rng, bits=256)
Take bits from the source RNG and use it to seed self

add_entropy (seed)
Add some unpredictable seed data to the RNG

8.37.3 Hash Functions
class botan3.HashFunction(algo)
Previously hash_function
The algo param is a string (eg ‘SHA-1’, ‘SHA-384’, ‘BLAKE2b’)
algo_name()
Returns the name of this algorithm

clear()
Clear state

8.37. Python Binding 263

Botan Reference Guide, Release 3.9.0

output_length()
Return output length in bytes

update (x)
Add some input
final O

Returns the hash of all input provided, resets for another message.

8.37.4 Message Authentication Codes
class botan3.MsgAuthCode (algo)
Previously message_authentication_code
Algo is a string (eg ‘HMAC(SHA-256)’, ‘Poly1305°, ‘CMAC(AES-256))
algo_name()
Returns the name of this algorithm

clear()
Clear internal state including the key

output_length()
Return the output length in bytes

set_key (key)
Set the key

update (x)
Add some input

final O
Returns the MAC of all input provided, resets for another message with the same key.

8.37.5 Ciphers
class botan3.SymmetricCipher (object, algo, encrypt=True)

Previously cipher
The algorithm is spcified as a string (eg ‘AES-128/GCM’, ‘Serpent/OCB(12)’, ‘Threefish-512/EAX’).
Set the second param to False for decryption
algo_name()
Returns the name of this algorithm
tag_length()
Returns the tag length (0 for unauthenticated modes)

default_nonce_length()
Returns default nonce length

update_granularity()
Returns update block size. Call to update() must provide input of exactly this many bytes

is_authenticated()
Returns True if this is an AEAD mode

264 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

valid_nonce_length(nonce_len)

Returns True if nonce_len is a valid nonce len for this mode

clear()

Resets all state
set_key (key)
Set the key

set_assoc_data(ad)
Sets the associated data. Fails if this is not an AEAD mode

start (nonce)

Start processing a message using nonce

update (#xt)

Consumes input text and returns output. Input text must be of update_granularity() length. Alternately,
always call finish with the entire message, avoiding calls to update entirely

finish (zxr=None)

Finish processing (with an optional final input). May throw if message authentication checks fail, in which
case all plaintext previously processed must be discarded. You may call finish() with the entire message

8.37.6 Bcrypt
botan3.bcrypt (passwd, rng, work_factor=10)
Provided the password and an RNG object, returns a berypt string

botan3.check_bcrypt (passwd, bcrypt)

Check a berypt hash against the provided password, returning True iff the password matches.

8.37.7 PBKDF

botan3.pbkdf (algo, password, out_len, iterations=100000, salt=None)

Runs a PBKDF?2 algo specified as a string (eg ‘PBKDF2(SHA-256)’, ‘PBKDF2(CMAC(Blowfish))’). Runs with
specified iterations, with meaning depending on the algorithm. The salt can be provided or otherwise is randomly
chosen. In any case it is returned from the call.

Returns out_len bytes of output (or potentially less depending on the algorithm and the size of the request).
Returns tuple of salt, iterations, and psk

botan3.pbkdf_timed(algo, password, out_len, ms_to_run=300, salt=rng().get(12))

Runs for as many iterations as needed to consumed ms_to_run milliseconds on whatever we’re running on.
Returns tuple of salt, iterations, and psk

8.37.8 Scrypt
Added in version 2.8.0.
botan3.scrypt(out_len, password, salt, N=1024, r=8, p=38)

Runs Scrypt key derivation function over the specified password and salt using Scrypt parameters N, r, p.

8.37. Python Binding 265

Botan Reference Guide, Release 3.9.0

8.37.9 KDF

botan3.kdf (algo, secret, out_len, salt)

Performs a key derviation function (such as “HKDF(SHA-384)”) over the provided secret and salt values. Returns
a value of the specified length.

8.37.10 Public Key

class botan3.PublicKey(object)

Previously public_key

classmethod load(val)
Load a public key. The value should be a PEM or DER blob.

classmethod load_rsa(n,)
Load an RSA public key giving the modulus and public exponent as integers.

classmethod load_dsa(p, g, g, y)
Load an DSA public key giving the parameters and public value as integers.

classmethod load_dh(p, g, y)
Load an Diffie-Hellman public key giving the parameters and public value as integers.

classmethod load_elgamal(p, g, g, y)
Load an ElGamal public key giving the parameters and public value as integers.

classmethod load_ecdsa(curve, pub_x, pub_y)
Load an ECDSA public key giving the curve as a string (like “secp256r1”) and the public point as a pair of
integers giving the affine coordinates.

classmethod load_ecdh(curve, pub_x, pub_y)
Load an ECDH public key giving the curve as a string (like “secp256r1”’) and the public point as a pair of
integers giving the affine coordinates.

classmethod load_sm2 (curve, pub_x, pub_y)
Load a SM2 public key giving the curve as a string (like “sm2p256v1”) and the public point as a pair of
integers giving the affine coordinates.

classmethod load_ml_kem(mode, raw_encoding)
Load an ML-KEM public key giving the mode as a string (like “ML-KEM-512") and the raw encoding of
the public key.

classmethod load_ml_dsa(mode, raw_encoding)
Load an ML-DSA public key giving the mode as a string (like “ML-DSA-4x4") and the raw encoding of
the public key.

classmethod load_slh_dsa(mode, raw_encoding)
Load an SLH-DSA public key giving the mode as a string (like “SLH-DSA-SHAKE-128f") and the raw
encoding of the public key.

check_key(rng_obj, strong=True):
Test the key for consistency. If strong is True then more expensive tests are performed.

export (pem=False)

Exports the public key using the usual X.509 SPKI representation. If pem is True, the result is a PEM
encoded string. Otherwise it is a binary DER value.

266

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

to_der()

Like self.export(False)
to_pem()

Like self.export(True)
to_raw()

Exports the key in its canonical raw encoding. This might not be available for all key types and raise an
exception in that case.

get_field(field_name)

Return an integer field related to the public key. The valid field names vary depending on the algorithm.
For example RSA public modulus can be extracted with rsa_key.get_field("n").

object_identifier()

Returns the associated OID
fingerprint (hash='SHA-256")

Returns a hash of the public key
algo_name()

Returns the algorithm name

estimated_strength()
Returns the estimated strength of this key against known attacks (NFS, Pollard’s rho, etc)

8.37.11 Private Key

class botan3.PrivateKey
Previously private_key

classmethod create(algo, param, rng)
Creates a new private key. The parameter type/value depends on the algorithm. For “rsa” is is the size of
the key in bits. For “ecdsa” and “ecdh” it is a group name (for instance “secp256r1”’). For “ecdh” there is
also a special case for groups “curve25519” and “x448” (which are actually completely distinct key types
with a non-standard encoding).

classmethod create_ec(algo, ec_group, rng)
Creates a new ec private key.

classmethod load(val, passphrase="")
Return a private key (DER or PEM formats accepted)

classmethod load_rsa(p, g, ¢)
Return a private RSA key

classmethod load_dsa(p, g, g, x)
Return a private DSA key
classmethod load_dh(p, g, x)
Return a private DH key
classmethod load_elgamal(p, ¢, g, x)
Return a private ElGamal key

classmethod load_ecdsa(curve, x)
Return a private ECDSA key

8.37. Python Binding 267

Botan Reference Guide, Release 3.9.0

classmethod load_ecdh(curve, x)
Return a private ECDH key

classmethod load_sm2 (curve, x)
Return a private SM2 key

classmethod load_ml_kem(mode, raw_encoding)
Return a private ML-KEM key

classmethod load_ml_dsa(mode, raw_encoding)
Return a private ML-DSA key

classmethod load_slh_dsa(mode, raw_encoding)
Return a private SLH-DSA key

get_public_key(Q
Return a public_key object
to_pem()
Return the PEM encoded private key (unencrypted). Like self.export(True)

to_der()
Return the PEM encoded private key (unencrypted). Like self.export(False)

to_raw()
Exports the key in its canonical raw encoding. This might not be available for all key types and raise an
exception in that case.

check_key(rng_obj, strong=True):

Test the key for consistency. If strong is True then more expensive tests are performed.

algo_name()

Returns the algorithm name

export (pem=False)
Exports the private key in PKCS8 format. If pem is True, the result is a PEM encoded string. Otherwise it
is a binary DER value. The key will not be encrypted.

export_encrypted(passphrase, rng, pem=False, msec=300, cipher=None, pbkdf=None)
Exports the private key in PKCSS8 format, encrypted using the provided passphrase. If pem is True, the
result is a PEM encoded string. Otherwise it is a binary DER value.

get_field(field_name)
Return an integer field related to the public key. The valid field names vary depending on the algorithm.
For example first RSA secret prime can be extracted with rsa_key.get_field("p"). This function can
also be used to extract the public parameters.

object_identifier()
Returns the associated OID

stateful _operation()
Return whether the key is stateful or not.

remaining_operations()
If the key is stateful, return the number of remaining operations.
Raises an exception if the key is not stateful.

268

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

8.37.12 Public Key Operations

class botan3.PKEncrypt (pubkey, padding)
Previously pk_op_encrypt

encrypt(msg, rng)

class botan3.PKDecrypt (privkey, padding)
Previously pk_op_decrypt

decrypt (msg)

class botan3.PKSign(privkey, hash_w_padding)
Previously pk_op_sign

update (msg)
finish(rng)

class botan3.PKVerify(pubkey, hash_w_padding)
Previously pk_op_verify

update (msg)
check_signature (signature)

class botan3.PKKeyAgreement (privkey, kdf)
Previously pk_op_key_agreement

public_value()

Returns the public value to be passed to the other party

agree (other, key_len, salt)

Returns a key derived by the KDF.

8.37.13 TPM 2.0 Bindings
Added in version 3.6.0.

class botan3.TPM2Context (fcti_nameconf=None, tcti_conf=None)

Create a TPM 2.0 context optionally with a TCTI name and configuration, separated by a colon, or as separate

parameters.

supports_botan_crypto_backend ()

Returns True if the TPM adapter can use Botan-based crypto primitives to communicate with the TPM

enable_botan_crypto_backend (rng)

Enables the TPM adapter to use Botan-based crypto primitives. The passed RNG must not depend on the TPM

itself.

class botan3.TPM2UnauthenticatedSession(ctx)

Creates a TPM 2.0 session that is not bound to any authentication credential but provides basic parameter en-

cryption between the TPM and the application.

8.37. Python Binding

269

Botan Reference Guide, Release 3.9.0

8.37.14 Multiple Precision Integers (MPI)
Added in version 2.8.0.

class botan3.MPI (initial_value=None, radix=None)

Initialize an MPI object with specified value, left as zero otherwise. The initial_value should be an int,
str, or MPI. The radix value should be set to 16 when initializing from a base 16 str value.

mul__, etc) are defined.

—_ —— —_

Most of the usual arithmetic operators (__add

inverse_mod (rmodulus)

Return the inverse of self modulo modulus, or zero if no inverse exists

is_prime(rng, prob=128)
Test if self is prime

pow_mod(exponent, modulus):
Return self to the exponent power modulo modulus

mod_mul (other, modulus):
Return the multiplication product of self and other modulo modulus

gcd(other):
Return the greatest common divisor of self and other

8.37.15 Object Identifiers (OID)
Added in version 3.8.0.
class botan3.0ID(object)
classmethod from_string(value)
Create a new OID from dot notation or from a known name

to_string()
Export the OID in dot notation

to_name()
Export the OID as a name if it has one, else in dot notation

register (name)
Register the OID so that it may later be retrieved by the given name

8.37.16 EC Groups
Added in version 3.8.0.
class botan3.ECGroup (object)
classmethod supports_application_specific_group()
Returns true if in this build configuration it is possible to register an application specific elliptic curve

classmethod supports_named_group (name)
Returns true if in this build configuration ECGroup.from_name(name) will succeed

classmethod from_params(oid, p, a, b, base_x, base_y, order)
Creates a new ECGroup from ec parameters

270 Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

classmethod from_ber (ber)
Creates a new ECGroup from a BER blob

classmethod from_pem(pem)

Creates a new ECGroup from a pem encoding

classmethod from_oid(oid)
Creates a new ECGroup from a group named by an OID

classmethod from_name (name)

Creates a new ECGroup from a common group name

to_der()
Export the group in DER encoding

to_pem()
Export the group in PEM encoding

get_curve_oid()
Get the curve OID

get_pQ
Get the prime modulus of the field

get_a(Q
Get the a parameter of the elliptic curve equation

get_bQ

Get the b parameter of the elliptic curve equation

get_g_x0
Get the x coordinate of the base point

get_g_yO
Get the y coordinate of the base point

get_order()
Get the order of the base point

8.37.17 Format Preserving Encryption (FE1 scheme)
Added in version 2.8.0.

class botan3.FormatPreservingEncryptionFE1(modulus, key, rounds=5, compat_mode=False)

Initialize an instance for format preserving encryption

encrypt (msg, tweak)
The msg should be a botan3.MPI or an object which can be converted to one

decrypt (msg, tweak)
The msg should be a botan3.MPI or an object which can be converted to one

8.37.18 HOTP
Added in version 2.8.0.
class botan3.HOTP (key, hash="SHA-1', digits=6)

8.37. Python Binding 271

Botan Reference Guide, Release 3.9.0

generate (counter)
Generate an HOTP code for the provided counter

check(code, counter, resync_range=0)

Check if provided code is the correct code for counter. If resync_range is greater than zero, HOTP
also checks up to resync_range following counter values.

Returns a tuple of (bool,int) where the boolean indicates if the code was valid, and the int indicates the next
counter value that should be used. If the code did not verify, the next counter value is always identical to
the counter that was passed in. If the code did verify and resync_range was zero, then the next counter will
always be counter+1.

8.37.19 X509Cert

class botan3.X509Cert (filename=None, buf=None)

time_starts()

Return the time the certificate becomes valid, as a string in form “YYYYMMDDHHMMSSZ” where Z is
a literal character reflecting that this time is relative to UTC.

time_expires()

Return the time the certificate expires, as a string in form “YYYYMMDDHHMMSSZ” where Z is a literal
character reflecting that this time is relative to UTC.

to_string()
Format the certificate as a free-form string.
fingerprint (hash_algo="SHA-256")

Return a fingerprint for the certificate, which is basically just a hash of the binary contents. Normally
SHA-1 or SHA-256 is used, but any hash function is allowed.

serial_number()
Return the serial number of the certificate.

authority_key_id()

Return the authority key ID set in the certificate, which may be empty.
subject_key_id()

Return the subject key ID set in the certificate, which may be empty.

subject_public_key_bits(
Get the serialized representation of the public key included in this certificate.

subject_public_key()
Get the public key included in this certificate as an object of class PublicKey.

subject_dn(key, index)
Get a value from the subject DN field.

key specifies a value to get, for instance "Name" or “Country”.

issuer_dn(key, index)
Get a value from the issuer DN field.

key specifies a value to get, for instance "Name" or “Country”.

hostname_match (hostname)
Return True if the Common Name (CN) field of the certificate matches a given hostname.

272

Chapter 8. API Reference

Botan Reference Guide, Release 3.9.0

not_before()

Return the time the certificate becomes valid, as seconds since epoch.

not_after()

Return the time the certificate expires, as seconds since epoch.

allowed_usage (usage_list)

Return True if the certificates Key Usage extension contains all constraints given in usage_list.
Also return True if the certificate doesn’t have this extension. Example usage constraints are:
"DIGITAL_SIGNATURE", "KEY_CERT_SIGN", "CRL_SIGN".

verify (intermediates=None, trusted=None, trusted_path=None, required_strength=0, hostname=None,
reference_time=0 crls=None)

Verify a certificate. Returns 0 if validation was successful, returns a positive error code if the validation
was unsuccesful.

intermediates is a list of untrusted subauthorities.
trusted is a list of trusted root CAs.
The trusted_path refers to a directory where one or more trusted CA certificates are stored.

Set required_strength to indicate the minimum key and hash strength that is allowed. For instance
setting to 80 allows 1024-bit RSA and SHA-1. Setting to 110 requires 2048-bit RSA and SHA-256 or
higher. Set to zero to accept a default.

If hostname is given, it will be checked against the certificates CN field.

Set reference_time to be the time which the certificate chain is validated against. Use zero (default) to
use the current system clock.

crls is a list of CRLs issued by either trusted or untrusted authorities.

classmethod validation_status(error_code)

Return an informative string associated with the verification return code.

is_revoked(self, crl)

Check if the certificate (self) is revoked on the given crl.

8.37.20 X509CRL
class botan3.X509CRL (filename=None, buf=None)
Class representing an X.509 Certificate Revocation List.

A CRL in PEM or DER format can be loaded from a file, with the filename argument, or from a bytestring,
with the buf argument.

8.37. Python Binding 273

Botan Reference Guide, Release 3.9.0

274 Chapter 8. API Reference

CHAPTER
NINE

COMMAND LINE INTERFACE

9.1 Outline

The botan program is a command line tool for using a broad variety of functions of the Botan library in the shell.
All commands follow the syntax botan <command> <command-options>.

If botan is run with an unknown command, or without any command, or with the --help option, all available com-
mands will be printed. If a particular command is run with the --help option (like botan <command> --help) some
information about the usage of the command is printed.

Starting in version 2.9, commands that take a passphrase (such as gen_bcrypt or pkcs8) will also accept the literal
- to mean ask for the passphrase on the terminal. If supported by the operating system, echo will be disabled while
reading the passphrase.

Most arguments that take a path to a file will also accept the literal - to mean the file content should be read from
STDIN instead.

All options for the command line are displayed in the summary line, and in the help output. All options are, as the
name suggests, optional, and the default values are shown. For example hash file prints the SHA-256 of the file
encoded as hex, while hash --format=base64 --algo=SHA-384 file prints the base64 encoded SHA-384 hash
of the same file.

9.2 Hash Function

hash --algo=SHA-256 --buf-size=4096 --no-fsname --format=hex *files
Compute the algo digest over the data in any number of files. If no files are listed on the command line, the input
source defaults to standard input. Unless the --no-fsname option is given, the filename is printed alongside the
hash, in the style of tools such as sha256sum.

9.3 Password Hash

gen_argon2 --mem=65536 --p=1 --t=1 password
Calculate the Argon2 password digest of password. mem is the amount of memory to use in Kb, p the paral-
lelization parameter and ¢ the number of iterations to use.

check_argon2 password hash
Checks if the Argon2 hash of the passed password equals the passed hash value.

gen_bcrypt --work-factor=12 password
Calculate the berypt password digest of password. work-factor is an integer between 4 and 18. A higher work-
factor value results in a more expensive hash calculation.

275

Botan Reference Guide, Release 3.9.0

check_bcrypt password hash
Checks if the berypt hash of the passed password equals the passed hash value.

pbkdf_tune --algo=Scrypt --max-mem=256 --output-len=32 --check *times
Tunes the PBKDF algorithm specified with --algo= for the given times.

9.4 HMAC

hmac --hash=SHA-256 --buf-size=4096 --no-fsname key files
Compute the HMAC tag with the cryptographic hash function hash using the key in file key over the data in files.
files defaults to STDIN. Unless the --no-fsname option is given, the filename is printed alongside the HMAC
value.

9.5 Encryption

cipher --buf-size=4096 --decrypt --cipher= --key= --nonce= --ad=

Encrypt a given file with the specified cipher, eg “AES-256/GCM”. If --decrypt is provided the file is
decrypted instead.

9.6 Public Key Cryptography

keygen --algo=RSA --params= --passphrase= --cipher= --pbkdf= --pbkdf-ms=300 --provider=

--der-out
Generate a PKCS #8 algo private key. If der-out is passed, the pair is BER encoded. Otherwise, PEM encoding

is used. To protect the PKCS #8 formatted key, it is recommended to encrypt it with a provided passphrase.

If a passphrase is used, cipher specifies the name of the desired encryption algorithm (such as “AES-256/CBC”,
or leave empty to use a default), and pbkdf can be used to specify the password hashing mechanism (either a
hash such as “SHA-256" to select PBKDF2, or “Scrypt”).

The cipher mode must have an object identifier defined, this allows use of ciphers such as AES, Twofish, Serpent,
and SM4. Ciphers in CBC, GCM, and SIV modes are supported. However most other implementations support
only AES or 3DES in CBC mode.

If encryption is used, the parameter pbkdf-ms controls how long the password hashing function will run to derive
the encryption key from the passed passphrase.

Algorithm specific parameters, as the desired bit length of an RSA key, can be passed with params.
» For RSA params specifies the bit length of the RSA modulus. It defaults to 3072.
» For DH params specifies the DH parameters. It defaults to modp/ietf/2048.
» For DSA params specifies the DSA parameters. It defaults to dsa/botan/2048.
 For EC algorithms params specifies the elliptic curve. It defaults to secp256r1.
pkcs8 --pass-in= --pub-out --der-out --pass-out= --cipher= --pbkdf= --pbkdf-ms=300 key

Open a PKCS #8 formatted key at key. If key is encrypted, the passphrase must be passed as pass-in. It is
possible to (re)encrypt the read key with the passphrase passed as pass-out. The parameters cipher, pbkdf,
and pbkdf-ms work similarly to keygen.

sign --der-format --passphrase= --hash=SHA-256 --padding= --provider= key file

Sign the data in file using the PKCS #8 private key key and cryptographic hash hash. If key is encrypted,
the used passphrase must be passed as pass-in.

276 Chapter 9. Command Line Interface

Botan Reference Guide, Release 3.9.0

The padding option can be used to control padding for algorithms that have divergent methods; this mostly
applies to RSA. For RSA, if the option is not specified PSS signatures are used. You can select generating
a PKCS #1 v1.5 formatted signature instead by providing --padding=PKCS1v15.

For ECDSA and DSA, the option --der-format outputs the signature as an ASN.1 encoded blob. Some
other tools (including openssl) default to this format. This option does not make sense for other algo-
rithms such as RSA.

The signature is formatted for your screen using base64.

verify --der-format --hash=SHA-256 --padding= pubkey file signature
Verify the authenticity of the data in file with the provided signature signature and the public key pubkey. Simi-
larly to the signing process, padding specifies the padding scheme and hash the cryptographic hash function to
use.

gen_dl_group --pbits=1024 --gbits=0 --seed= --type=subgroup
Generate ANSI X9.42 encoded Diffie-Hellman group parameters.

o If type=subgroup is passed, the size of the prime subgroup q is sampled as a prime of gbits length and p is
pbits long. If gbits is not passed, its length is estimated from pbits as described in RFC 3766.

 If type=strong is passed, p is sampled as a safe prime with length pbits and the prime subgroup has size q
with pbits-1 length.

* Iftype=dsaisused, p and q are generated by the algorithm specified in FIPS 186-4. If the --seed parameter
is used, it allows to select the seed value, instead of one being randomly generated. If the seed does not in
fact generate a valid DSA group, the command will fail.

dl_group_info --pem name
Print raw Diffie-Hellman parameters (p,g) of the standardized DH group name. If pem is set, the X9.42 encoded
group is printed.

ec_group_info --pem name
Print raw elliptic curve domain parameters of the standardized curve name. If pem is set, the encoded domain is
printed.

pk_encrypt --aead=AES-256/GCM rsa_pubkey datafile
Encrypts datafile using the specified AEAD algorithm, under a key protected by the specified RSA public key.

pk_decrypt rsa_privkey datafile
Decrypts a file encrypted with pk_encrypt. If the key is encrypted using a password, it will be prompted for on
the terminal.

fingerprint --no-fsname --algo=SHA-256 *keys
Calculate the public key fingerprint of the keys.

pk_workfactor --type=rsa bits
Provide an estimate of the strength of a public key based on it’s size. --type= can be “rsa”, “dl” or “dl_exp”.

9.7 X.509

gen_pkcsl® key CN --country= --organization= --ca --path-limit=1 --email= --dns=
--ext-ku= --key-pass= --hash=SHA-256 --padding=
Generate a PKCS #10 certificate signing request (CSR) using the passed PKCS #8 private key key. If the private
key is encrypted, the decryption passphrase key-pass has to be passed.

The padding option specifies the padding scheme to be used when calculating the signature. This is only used
for RSA,; for such keys PSS is used by default.

9.7. X.509 277

Botan Reference Guide, Release 3.9.0

gen_self_signed key CN --country= --dns= --organization= --email= --path-limit=1

--days=365 --key-pass= --ca --hash=SHA-256 --padding= --der
Generate a self signed X.509 certificate using the PKCS #8 private key key. If the private key is encrypted, the

decryption passphrase key-pass has to be passed. If ca is passed, the certificate is marked for certificate authority
(CA) usage.

The padding option specifies the padding scheme to be used when calculating the signature. This is only used
for RSA; for such keys PSS is used by default.

sign_cert --ca-key-pass= --hash=SHA-256 --duration=365 --padding= ca_cert ca_key

pkcs10_req
Create a CA signed X.509 certificate from the information contained in the PKCS #10 CSR pkcsI0_req. The CA

certificate is passed as ca_cert and the respective PKCS #8 private key as ca_key. If the private key is encrypted,
the decryption passphrase ca-key-pass has to be passed. The created certificate has a validity period of duration
days.

The padding argument specifies the padding scheme to be used when calculating the signature; this is only used
for RSA. If not set then it will defaults to the padding scheme used in the CA certificate, or otherwise some
suitable default.

ocsp_check --timeout=3000 subject issuer
Verify an X.509 certificate against the issuers OCSP responder. Pass the certificate to validate as subject and the
CA certificate as issuer.

cert_info --fingerprint file
Parse X.509 PEM certificate and display data fields. If --fingerprint is used, the certificate’s fingerprint is
also printed.

cert_verify subject *ca_certs
Verify if the provided X.509 certificate subject can be successfully validated. The list of trusted CA certificates
is passed with ca_certs, which is a list of one or more certificates.

trust_roots --dn --dn-only --display
List the certificates in the system trust store.

9.8 TLS Server/Client

The --policy= argument of the TLS commands specifies the TLS policy to use. The policy can be any of the strings
“default”, “suiteb_128", “suiteb_192”, “bsi”, “strict”, or “all” to denote built-in policies, or it can name a file from
which a policy description will be read.

tls_ciphers --policy=default --version=tlsl.2
Prints the list of ciphersuites that will be offered under a particular policy/version.

tls_client host --port=443 --print-certs --policy=default --tlsl.® --tlsl.1l --tlsl.2
--skip-system-cert-store --trusted-cas= --session-db= --session-db-pass=

--next-protocols= --type=tcp --client-cert= --client-cert-key=
Implements a testing TLS client, which connects to host via TCP or UDP on port port. The TLS version can be

set with the flags #ls1.0, tlsl.1 and tlsi.2 of which the lowest specified version is automatically chosen. If none
of the TLS version flags is set, the latest supported version is chosen. The client honors the TLS policy specified
with policy and prints all certificates in the chain, if print-certs is passed. next-protocols is a comma separated
list and specifies the protocols to advertise with Application-Layer Protocol Negotiation (ALPN). Pass a path to
a client certificate PEM and unencrypted PKCS8 encoded private key if client authentication is required.

tls_server cert key --port=443 --type=tcp --policy=default --dump-traces= --max-clients=0

--socket-id=0
Implements a testing TLS server, which allows TLS clients to connect and which echos any data that is sent to

it. Binds to either TCP or UDP on port port. The server uses the certificate cert and the respective PKCS #8

278 Chapter 9. Command Line Interface

Botan Reference Guide, Release 3.9.0

private key key. The server honors the TLS policy specified with policy. socket-id is only available on FreeBSD
and sets the so_user_cookie value of the used socket.

tls_http_server cert key --port=443 --policy=default --threads=0 --max-clients=0

--session-db --session-db-pass=
Only available if Boost.Asio support was enabled. Provides a simple HTTP server which replies to all requests

with an informational text output. The server honors the TLS policy specified with policy.

tls_proxy listen_port target_host target_port server_cert server_key--policy=default

--threads=0 --max-clients=0 --session-db= --session-db-pass=
Only available if Boost.Asio support was enabled. Listens on a port and forwards all connects to a target server

specified at target_host and target_port.

tls_client_hello --hex input
Parse and print a TLS client hello message.

9.9 Number Theory

is_prime --prob=56 n
Test if the integer n is composite or prime with a Miller-Rabin primality test with (prob+2)/2 iterations.

factor n
Factor the integer n using a combination of trial division by small primes, and Pollard’s Rho algorithm. It can in
reasonable time factor integers up to 110 bits or so.

gen_prime --count=1 bits
Samples count primes with a length of bits bits.

mod_inverse n mod
Calculates a modular inverse.

9.10 PSK Database

The PSK database commands are only available if sqlite3 support was compiled in.

psk_set db db_key name psk
Using the PSK database named db and encrypting under the (hex) key db_key, save the provided psk (also hex)
under name:

[$ botan psk_set psk.db deadba55 bunny f00fee

psk_get db db_key name
Get back a value saved with psk_set:

$ botan psk_get psk.db deadba55 bunny
f00fee

psk_list db db_key
List all values saved to the database under the given key:

$ botan psk_list psk.db deadba55
bunny

9.9. Number Theory 279

Botan Reference Guide, Release 3.9.0

9.11 Secret Sharing

Split a file into several shares.

tss_split M N data_file --id= --share-prefix=share --share-suffix=tss --hash=SHA-256
Split a file into N pieces any M of which suffices to recover the original input. The ID allows specifying a unique
key ID which may be up to 16 bytes long, this ensures that shares can be uniquely matched. If not specified a
random 16 byte value is used. A checksum can be appended to the data to help verify correct recovery, this can
be disabled using --hash=None.

tss_recover *shares
Recover some data split by tss_split. If insufficient number of shares are provided an error is printed.

9.12 Data Encoding/Decoding

base32_dec file
Decode file to Base32.

base32_enc file
Encode Base32 encoded file.

base58_enc --check file
Encode file to Base58. If --check is provided Base58Check is used.

base58_dec --check file
Decode Base58 encoded file. If --check is provided Base58Check is used.

base64_dec file
Decode file to Base64.

base64_enc file
Encode Base64 encoded file.

hex_dec file
Decode file to Hex.

hex_enc file
Encode Hex encoded file.

9.13 Forward Error Correction

fec_encode --suffix=fec --prefix= --output-dir= k n input
Split a given input file into n shares where k shares are required to recreate the original file. The output shares
a written to files with the file extension specified in --suffix and either the original file name or the one
specified in --prefix. The output directory is either equal to the input file’s directory or the one specified in
--output-dir.

fec_decode *shares
If given enough shares, this will output the original input file’s content to stdout. Otherwise an error is printed
on stderr.

fec_info share
Given a single share this will print information about the share. For instance: FEC share 4/4 with 3 needed
for recovery

280 Chapter 9. Command Line Interface

Botan Reference Guide, Release 3.9.0

9.14 Miscellaneous Commands

version --full
Print the version number. If option --full is provided, additional details are printed.

has_command cmd
Test if the command cmd is available.

config info_type
Prints build information, useful for applications which want to build against the library. The info_type ar-
gument can be any of prefix, cflags, 1dflags, or 1ibs. This is similar to information provided by the
pkg-config tool.

cpuid
List available processor flags (AES-NI, SIMD extensions, ...).

cpu_clock --test-duration=500
Estimate the speed of the CPU cycle counter.

asnlprint --skip-context-specific --print-limit=4096 --bin-limit=2048 --max-depth=64
--pem file®
Decode and print file with ASN.1 Basic Encoding Rules (BER). If flag --pem is used, or the filename ends in

.pem, then PEM encoding is assumed. Otherwise the input is assumed to be binary DER/BER.

http_get --redirects=1 --timeout=3000 url
Retrieve resource from the passed http url.

speed --msec=500 --format=default --ecc-groups= --provider= --buf-size=1024
--clear-cpuid= --cpu-clock-speed=0 --cpu-clock-ratio=1.0 *algos
Measures the speed of the passed algos. If no algos are passed all available speed tests are executed. msec
(in milliseconds) sets the period of measurement for each algorithm. The buf-size option allows testing the
same algorithm on one or more input sizes, for example speed --buf-size=136,1500 AES-128/GCHM tests
the performance of GCM for small and large packet sizes. format can be “default”, “table” or “json”.

timing_test test_type --test-data-file= --test-data-dir=src/tests/data/timing
--warmup-runs=1000 --measurement-runs=10000
Run various timing side channel tests.

rng --format=hex --system --rdrand --auto --entropy --drbg --drbg-seed= *bytes
Sample bytes random bytes from the specified random number generator. If system is set, the system RNG is used.
If rdrand is set, the hardware RDRAND instruction is used. If auto is set, AutoSeeded_RNG is used, seeded
with the system RNG if available or the global entropy source otherwise. If entropy is set, AutoSeeded_RNG is
used, seeded with the global entropy source. If drbg is set, HMAC_DRBG is used seeded with drbg-seed.

entropy --truncate-at=128 source
Sample a raw entropy source.

cc_encrypt CC passphrase --tweak=
Encrypt the passed valid credit card number CC using FPE encryption and the passphrase passphrase. The key
is derived from the passphrase using PBKDF2 with SHA256. Due to the nature of FPE, the ciphertext is also a
credit card number with a valid checksum. tweak is public and parameterizes the encryption function.

cc_decrypt CC passphrase --tweak=
Decrypt the passed valid ciphertext CC using FPE decryption with the passphrase passphrase and the tweak
tweak.

roughtime_check --raw-time chain-file
Parse and validate a Roughtime chain file.

9.14. Miscellaneous Commands 281

Botan Reference Guide, Release 3.9.0

roughtime --raw-time --chain-file=roughtime-chain --max-chain-size=128
--check-local-clock=60 --host= --pubkey= --servers-file=
Retrieve time from a Roughtime server and store it in a chain file.

uuid
Generate and print a random UUID.

compress --type=gzip --level=6 --buf-size=8192 file
Compress a given file.

decompress --buf-size=8192 file
Decompress a given compressed archive.

282 Chapter 9. Command Line Interface

CHAPTER
TEN

HARDWARE ACCELERATION

Botan provides built-in support for hardware acceleration of certain algorithms on certain platforms. These alternate
implementations use special CPU instructions that are not available on all platforms and either speed up the algorithm
or improve security in terms of side channel resistance.

A “base” software implementation is always provided. For example, for the AES-128 block cipher three implementa-
tions are available. All of the AES implementations are immune to common cache/timing based side channels.

* If AES hardware support is available (AES-NI, POWERS, Aarch64) use that

* If 128-bit SIMD with byte shuffles are available (SSSE3, NEON, or Altivec), use the vperm technique published
by Mike Hamburg at CHES 2009

* If no hardware or SIMD support, fall back to a constant time bitsliced implementation

The following sections list the platforms and algorithms for which hardware acceleration is available. If the CPU
specific optimizations are available at runtime, they are automatically used if enabled in the build. If not, the base
implementation is used.

It is possible to disable CPU-specific optimizations at runtime by setting the environment variable
BOTAN_CLEAR_CPUID. For example BOTAN_CLEAR_CPUID=avx2 will disable use of any AVX2 instructions.

10.1 x86

On x86-64 and x86-32 platforms, the following CPU specific optimizations are available:

283

Botan Reference Guide, Release 3.9.0

Algo- Extension Module Added in
rithm
AES VAES-AVX2 aes_vaes 3.6.0
AES-NI aes_ni 19.3
SSSE3 aes_vperm 1.9.10
AES- CLMUL ghash_cpu 1.11.6
GCM SSSE3 ghash_vperm 1.9.10
Argon2 AVX2 argon2_avx2 3.0.0
SSSE3 argon2_ssse3 2.19.2
ChaCha AVX512 (x86-64 only) chacha_avx512 3.1.0
AVX2 chacha_avx2 2.8.0
SSSE3 chacha_simd32 1.11.32
IDEA SSE2 idea_sse2 194
KMAC BMI2 keccak_perm_bmi2 3.2.0
NOEKEO! SSSE3 noekeon_simd 1.94
RDRAND RDRAND processor_rng 1.11.31
RD- RDSEED rdseed 1.11.36
SEED
Serpent AVX512 (x86-64 only) serpent_avx512 3.1.0
AVX2 serpent_avx2 2.8.0
SSSE3 serpent_simd 1.9.0
SHA- Intel SHA Extensions shacal2_x86 2.3.0
CAL2 AVX2 shacal2_avx2 2.13.0
SHAKE BMI2 keccak_perm_bmi2 2.13.0
SHA-1 Intel SHA Extensions shal_x86 2.2.0
SSSE3 shal_simd 1.7.12
SHA-256 Intel SHA Extensions sha2_32_x86 2.2.0
SSSE3 sha2_32_simd 3.8.0
AVX2 + BMI2 sha2_32_avx2 3.8.0
SHA-512 Intel SHA Extensions sha2_64_x86 3.8.0
AVX2 + BMI2 sha2_64_avx2 3.8.0
AVX-512 + BMI2 sha2_64_avx512 3.8.0
SHA-3 BMI2 keccak_perm_bmi2 2.10.0
SM4 AVX2 + GFNI sm4_gfni 3.6.0
ZFEC SSSE3 zfec_vperm 3.0.0
10.2 ARM

On arm64 and arm32 platforms, the following CPU specific optimizations are available:

284

Chapter 10. Hardware Acceleration

Botan Reference Guide, Release 3.9.0

Algorithm Extension Module Added in
AES NEON aes_armv8 1.9.3
AES-GCM PMULL (arm64 only) ghash_cpu 2.3.0
ChaCha NEON chacha_simd32 2.8.0
NOEKEON NEON noekeon_simd 1.94
Serpent NEON serpent_simd 1.9.2
SHACAL2 NEON shacal2_simd 2.3.0
ARMVS8 Cryptography Extensions (arm64 only) shacal2_armv8 2.13.0
SHA-1 ARMVS8 Cryptography Extensions (arm64 only) shal_armv8 2.2.0
NEON shal_simd 3.8.0
SHA-256 ARMVS Cryptography Extensions (arm64 only) sha2_32_armv8 2.2.0
NEON sha2_32_simd 3.8.0
SHA-384 ARMVS8 Cryptography Extensions (arm64 only) sha2_64_armv8 3.3.0
SHA-512 ARMVS8 Cryptography Extensions (arm64 only) sha2_64_armv8 330
SM4 ARMVS Cryptography Extensions (arm64 only) sm4_armv8 2.8.0
ZFEC NEON zfec_vperm 3.0.0

10.3 PowerPC

On ppc64 and ppc32 platforms, the following CPU specific optimizations are available:

Algorithm Extension Module Added in
AES POWERS/POWER9 aes_power8 2.14.0
AltiVec aes_vperm 2.12.0
ChaCha AltiVec chacha_simd32 2.8.0
DARN POWER9 processor_rng 2.15.0
Serpent AltiVec serpent_simd 1.9.2
SHACAL2 AltiVec shacal2_simd 2.3.0
NOEKEON AltiVec noekeon_simd 194

10.4 Loongarch64

On loongarch64, the LSX extensions are used.

Note

Loongarch64 apparently supports a “crypto” extension, for which hwcaps exist for Linux, and there are shipping
processors which do support these extensions. However no documentation has been so far located. If you are aware
of any such documentation please do contact the maintainers.

10.3. PowerPC 285

Botan Reference Guide, Release 3.9.0

Algorithm Extension Module Added in
AES LSX aes_vperm 3.8.0
ChaCha LSX chacha_simd32 3.8.0
Serpent LSX serpent_simd 3.8.0
SHA-1 LSX shal_simd 3.8.0
SHACAL2 LSX shacal2_simd 3.8.0
NOEKEON LSX noekeon_simd 3.8.0
ZFEC LSX zfec_vperm 3.8.0

10.5 Configuring Acceleration

If it is desirable to avoid using some form of acceleration, this can be accomplished at build time
by using --disable-modules=. For instance, to remove support of ARMvS intrinsics for AES, use
--disable-modules=aes_armv8.

It is also possible to disable acceleration at runtime using BOTAN_CLEAR_CPUID environment variable. This is the
preferred mode of disabling acceleration.

286 Chapter 10. Hardware Acceleration

CHAPTER
ELEVEN

DEPRECATED FEATURES

Certain functionality is deprecated and is likely to be removed in a future major release.

To help warn users, macros are used to annotate deprecated functions and headers. These warnings are enabled by
default, but can be disabled by defining the macro BOTAN_NO_DEPRECATED_WARNINGS prior to including any Botan
headers.

Warning

Not all of the functionality which is currently deprecated has an associated warning.

If you are using something which is currently deprecated and there doesn’t seem to be an obvious alternative, contact
the developers to explain your use case if you want to make sure your code continues to work.

11.1 Platform Support Deprecations

* Support for building for Windows systems prior to Windows 10 is deprecated.

11.2 TLS Protocol Deprecations

The following TLS protocol features are deprecated and will be removed in a future major release:

* Support for point compression in TLS. This is supported in v1.2 but removed in v1.3. For simplicity it will be
removed in v1.2 also.

* All CBC mode ciphersuites. This includes all available 3DES ciphersuites. This implies also removing Encrypt-
then-MAC extension.

» All DHE ciphersuites
 Support for renegotiation in TLS v1.2
* All ciphersuites using static RSA key exchange

e Credentials_Manager::psk() to provide various TLS-specific keys and secrets, most notably “session-
ticket”, “dtls-cookie-secret” and the actual TLS PSKs for given identities and hosts. Instead, use the dedicated
methods in Credentials_Manager and do not override the psk () method any longer.

287

Botan Reference Guide, Release 3.9.0

11.3 Elliptic Curve Deprecations

A number of features relating to elliptic curves are deprecated. As a typical user you would probably not notice these;
their removal would not affect for example using ECDSA signatures or TLS, but only applications doing unusual things
such as custom elliptic curve parameters, or creating your own protocol using elliptic curve points.

Botan currently contains support for a number of relatively weak or little used elliptic curves. These are depre-
cated.

The curves “secpl60k1”, “secpl60rl”, “secpl60r2”, “brainpool160rl” and “secp224kl” will be removed in
Botan4, and it will not be possible to add support for them as an application specified curve. If your application
makes use of any of these curves please open an issue asap so we can understand your use case.

Other curves including “secp192k1”, “brainpool192r1”, “brainpool224r1”, “brainpool320r1”, “x962_p192v2”,
“x962_p192v3”, “x962_p239v1”, “x962_p239v2”, “x962_p239v3”, “gost_256A”, “gost_S512A” are deprecated,
and may also be removed from Botan4. However it will be possible to add support for any curves from this list
as an application specified curve.

The EC_Point type is deprecated and will be removed. Use EC_AffinePoint.

Support for explicit ECC curve parameters and ImplicitCA encoded parameters in EC_Group and all users (in-
cluding X.509 certificates and PKCS#8 private keys).

Currently it is possible to create an EC_Group with cofactor > 1. None of the builtin groups have composite
order, and in the future it will be impossible to create composite order EC_Group.

Currently it is possible to create an application specific EC_Group with parameters of effectively arbitrary size.
In a future release the parameters of application provided elliptic curve will be limited in the following ways.

a) The bitlength must be between 192 and 512 bits, and a multiple of 32

b) As an extension of (a) you can also use the 521 bit Mersenne prime or the X9.62 239 bit prime.
¢) The prime must be congruent to 3 modulo 4

d) The bitlength of the prime and the bitlength of the order must be equal

Elliptic curve points can be encoded in several different ways. The most common are “compressed” and “un-
compressed”; both are widely used in various systems. Botan additionally supports a “hybrid” encoding format
which is effectively uncompressed but with an additional indicator of the parity of the y coordinate. This format
is quite obscure and seemingly rarely implemented. Support for this encoding will be removed in a future release.

The SECI1 standard specifies that the identity element is encoded as a single byte consisting of 0. This was not
well thought out. In addition identity elements are rarely if ever useful serialized into a protocol. Support for
encoding or decoding EC identity elements is deprecated and will be removed.

11.4 Deprecated Modules

In a number of cases an entire module is deprecated. If the build is configured with --disable-deprecated then
these will not be included. In a future major release the source for these modules will be entirely removed.

Deprecated modules include

* Kyber mode kyber_90s: Kyber’s “90s mode” is not in the NIST ML-KEM standard, and seems to have been

never implemented widely.

Dilithium mode dilithium_aes: Similar situation to Kyber 90s mode.
Block cipher gost_28147: This cipher was obsolete 20 years ago.

Block cipher noekeon: An interesting design but not widely implemented.

Block cipher 1ion: Similar situation to Noekeon

288

Chapter 11. Deprecated Features

Botan Reference Guide, Release 3.9.0

Checksum adler32: Not useful cryptographically

Checksum crc32: Not useful cryptographically

Hash function gost_3411: Very weak and questionable hash function.
Hash function streebog: Incredibly sketchy situation with the sbox
Hash function md4: It’s time to let go

Hash function md5: See above

Hash function keccak: Note this is not SHA-3 or the Keccak permutation, but rather the Keccak hash originally
proposed during the SHA-3 competition.

MAC siphash: Only supports a 64-bit output length, and not really intended for cryptography per se.
MAC x919_mac: Quite obsolete at this point

Signature scheme dsa: Finite field DSA is slow, very rarely used anymore, and no longer approved by NIST
Signature scheme gost_3410

McEliece implementation mce. Will be replaced by the proposal Classic McEliece.

Stream cipher shake_cipher. Note this deprecation affects only using SHAKE as a StreamCipher not as a
hash or XOF

cryptobox: A not unreasonable password based encryption utility but neither modern (these days) nor widely
implemented.

dlies: DLIES is considered quite obsolete

tpm (TPM 1.2 only, rarely tested)

11.5 Other Deprecated Functionality

This section lists other functionality which will be removed in a future major release, or where a backwards incompatible
change is expected.

The PBKDF class is deprecated in favor of PasswordHash and PasswordHashFamily.

Implicit conversion of a private key into a public key. Currently Private_Key derives from Public_Key (and
likewise for each of the algorithm specfic classes, eg RSA_PrivateKey derives from RSA_PublicKey). In a
future release these derivations will not exist. To correctly extract the public key from a private key, use the
function Private_Key: :public_key()

Prior to 2.8.0, SM2 algorithms were implemented as two distinct key types, one used for encryption and the
other for signatures. In 2.8, the two types were merged. However it is still possible to refer to SM2 using the
split names of “SM2_Enc” or “SM2_Sig”. In a future major release this will be removed, and only “SM2” will
be recognized.

DSA, ECDSA, ECGDSA, ECKCDSA, and GOST-34.10 previously (before Botan 3) required that the hash
be named as “EMSA1(HASH_NAME)”. This is no longer required. In a future major release, only
“HASH_NAME” will be accepted.

The Buffered_Computation base class. In a future release the class will be removed, and all of member
functions instead declared directly on MessageAuthenticationCode and HashFunction. So this only affects
you if you are directly referencing Botan: : Buffered_Computation in some way.

GCM support for 64-bit tags
All built in MODP groups < 2048 bits
All pre-created DSA groups

11.5.

Other Deprecated Functionality 289

Botan Reference Guide, Release 3.9.0

 All support for loading, generating or using RSA keys with a public exponent larger than 2**64-1

e Currently RSA_PrivateKey will allow generating any key of bitlength greater than or equal to 1024 bits. In a
future major release the allowed bitlengths of new RSA keys will be restricted to 2048 bits or higher, and the
bitlength must be a multiple of 1024 bits.

e Currently some public key padding mechanisms can be used with several different names. This is depre-
cated. “EMSA_PKCS1”, “EMSA-PKCS1-v1_5”, “EMSA3”: Use “PKCS1v15” “PSSR_Raw”: Use “PSS_Raw”
“PSSR”, “EMSA-PSS”, “PSS-MGF1”, “EMSA4”: Use “PSS” “EMSA_X931”, “EMSA2”: Use “X9.31”

11.6 Deprecated Headers

These headers are currently publically available, but will be made internal to the library in the future.

PBKDF headers: bcrypt_pbkdf.h, pbkdf2.h, pgp_s2k.h, scrypt.h, and argon2.h: Use the
PasswordHash interface instead.

Internal implementation headers - seemingly no reason for applications to use: assert.h, curve_gfp.h,
numthry.h, reducer.h, tls_algos.h, tls_magic.h

Utility headers, nominally useful in applications but not a core part of the library API and most are just
sufficient for what the library needs to implement other functionality. compiler.h, mem_ops.h, uuid.h,

290 Chapter 11. Deprecated Features

CHAPTER
TWELVE

DEVELOPMENT ROADMAP

12.1 Near Term Plans

Here is an outline of the development plans over the next ~12 months, as of February 2025.

12.2 Botan2

As of 2025-01-01, Botan?2 has reached end of life. No further releases are planned.

12.3 Botan3

The following future work is currently planned for Botan3:

* New ECC based password authenticated key exchanges, to replace SRP. The most likely candidate algorithms
are SPAKE2(+) and CPace.

¢ Adding an implementation of BLS12-381 elliptic curve pairing.
* HPKE (RFC 9180)

12.4 Botan4

Botan4 is currently planned for release in 2027.
See the current planning discussion in https://github.com/randombit/botan/issues/4666

One notable change planned for Botan4 is that in that release, Public_Key will no longer derive from Private_Key. And
similarly, specific private keys (for example RSA_PrivateKey) will no longer derive from their corresponding public

key type.

291

https://github.com/randombit/botan/issues/4666

Botan Reference Guide, Release 3.9.0

292 Chapter 12. Development Roadmap

CHAPTER

THIRTEEN

CREDITS

This is at least a partial credits-file of people that have contributed to botan. It is sorted by name and formatted to allow
easy grepping and beautification by scripts. The fields are name (N), email (E), web-address (W), PGP key ID and

fingerprint (P), description (D), snail-mail address (S), and Bitcoin address (B).

Fabian Albert

fabian.albert@rohde-schwarz.com

https://www.rohde-schwarz.com/cybersecurity

SLH-DSA, Ed/X448, HSS/LMS, ML-KEM, ML-DSA, Classic McEliece, TLS-Anvil tests
Bochum, Germany

»nw o =sm=

Alexander Bluhm

https://www.genua.de/

1E3B BEA4 6C20 EA0O 2FFC DE4D C5F4 83AD DEE8 6380
improve support for OpenBSD

Kirchheim, Germany

»w oY==

Michael Boric
michael.boric@rohde-schwarz.com
https://www.rohde-schwarz.com/cybersecurity
Kyber, Dilithium

Cologne, Germany

no=sm=

Charles Brockman
http://www.securitygenetics.com/
documentation editing

Oregon, USA

»nwo=s=

=

Erwan Chaussy
Base32, Base64 matching Base32 implementation
France

wnw O

Simon Cogliani

simon.cogliani@tanker.io

EA73 DOAF 5A81 A61A 8931 C2CA C9AB F2E4 3820 4F25
Getting keystream of ChaCha

Paris, France

»w O Y m=

=

Martin Doering
doering@cdc.informatik.tu-darmstadt.de
D: GF(p) arithmetic

=1

(continues on next page)

293

Botan Reference Guide, Release 3.9.0

N: Olivier de Gaalon

D: SQLite encryption codec (src/contrib/sqlite)
N: Matthias Gierlings

E: matthias.gierlings@hackmanit.de

W: https://www.hackmanit.de/

P: 39EQ® D270 19A4 B356 05D0® 29AE 1BD3 49CF 744A Q2FF
D: GMAC, Extended Hash-Based Signatures (XMSS)
S: Bochum, Germany

N: Manuel Glaser

E: manuel.glaser@rohde-schwarz.com

W: https://www.rohde-schwarz.com/cybersecurity
D: Kyber, Dilithium

S: Cologne, Germany

N: Matthew Gregan

D: Binary file I/O support, allocator fixes

N: Hany Greiss
Windows porting

o

Manuel Hartl
hartl@flexsecure.de
http://www. flexsecure.de/
ECDSA, ECDH

O=m=

Yves Jerschow

yves. jerschow@uni-duesseldorf.de

Optimizations for memory load/store and HMAC

Support for IPv4 addresses in X.509 alternative names
Germany

»n Oom=

=

Matt Johnston
Allocator fixes and optimizations, decompressor fixes

o

Peter J. Jones
pjones@pmade.org

Bzip2 compression module
Colorado, USA

»nom=

=

Justin Karneges
Qt support modules (mutexes and types), X.509 API design

o

Rostyslav Khudolii
rhudoliy@gmail . com
SRP6 FFI
Ukraine/Denmark

»nom=

=

Vojtech Kral
E: vojtech@kral.hk

(continued from previous page)

(continues on next page)

294

Chapter 13. Credits

Botan Reference Guide, Release 3.9.0

wn

»nom=

»w oY sm=

O m=

»w oY =sm=

»nw o =sm=

=

o ™

= =

»nom=

LZMA compression module
Czech Republic

Matej Kenda

matej.kenda@topit.si

Locking in Algo_Registry for Windows OS
Slovenia

René Fischer (formerly Korthaus)

rene. fischer@rohde-schwarz.com
https://www.rohde-schwarz.com/cybersecurity

C196 FF9D 3DDC ASE7 F98C E745 9AD® F9FA 587E 74D6
CI, Ninja build system, ECGDSA, ECKCDSA

Bochum, Germany

Adam Langley
agl@imperialviolet.org
Curve25519

Jack Lloyd

jack@randombit.net

https://www.randombit.net/

3F69 2E64 6D92 3BBE E7AE 9258 5COF 96E8 4EC1 6D6B
Original designer/author, maintainer 2001-current
Vermont, USA

Philippe Lieser

philippe.lieser@rohde-schwarz.com
https://www.rohde-schwarz.com/cybersecurity

CI, BSI module policy, HSS/LMS, various minor contributions
Saarland, Germany

Joel Low
DLL symbol visibility and Windows DLL support in general

: Threaded_Fork

: Christoph Ludwig

ludwig@fh-worms.de

: GP(p) arithmetic

: Vaclav Ovsik

vaclav.ovsik@i.cz
Perl XS module (src/contrib/perl-xs)

Luca Piccarreta

luca.piccarreta@gmail . com

x86/amd64 assembler, BigInt optimizations, Win32 mutex module
Italy

Hannes Rantzsch
https://www.nexenio.com

: TLS 1.3, Kyber, Dilithium

(continued from previous page)

(continues on next page)

295

Botan Reference Guide, Release 3.9.0

S: Berlin, Germany

Amos Treiber

amos . treiber@rohde-schwarz.com
https://www.rohde-schwarz.com/cybersecurity

SLH-DSA, TPM 2.0, FrodoKEM, Classic McEliece, ML-KEM, ML-DSA
Cologne, Germany

»n o =sm=

: Daniel Seither
post@tiwoc.de
i0S support, improved Android support, improved MSVC support

O m=

Falko Strenzke

fstrenzke@cryptosource.de

http://www.cryptosource.de

McEliece, GF(p) arithmetic, CVC, Shanks-Tonelli algorithm
Darmstadt, Germany

»n o =sm=

René Meusel

rene.meusel@rohde-schwarz.com
https://www.rohde-schwarz.com/cybersecurity

TLS 1.3, ML-KEM, ML-DSA, SLH-DSA, FrodoKEM, TPM 2.0, CI
Berlin, Germany

»n o =sm=

Daniel Neus

daniel .neus@rohde-schwarz.com
https://www.rohde-schwarz.com/cybersecurity
CI, PKCS#11, RdSeed, BSI module policy
Bochum, Germany

»n o =sm=

Simon Warta
simon@kullo.net
Build system
Germany

»nom=

Philipp Weber
philipp.weber@rohde-schwarz.com
https://www.rohde-schwarz.com/cybersecurity
KDF1-18033, ECIES

Saarland, Germany

»n o =sm=

Daniel Wyatt (on behalf of Ribose Inc)
daniel.wyatt@ribose.com
https://www.ribose.com/

SM3, Streebog, various minor contributions

O=m=

(continued from previous page)

296

Chapter 13. Credits

CHAPTER
FOURTEEN

ABI STABILITY

Botan uses semantic versioning for the API; if API features are added the minor version increases, whereas if API
compatibility breaks occur the major version is increased.

However no guarantees about ABI are made between releases. Maintaining an ABI compatible release in a complex
C++ API is exceedingly expensive in development time; just adding a single member variable or virtual function is
enough to cause ABI issues.

If ABI changes, the soname revision will increase to prevent applications from linking against a potentially incompatible
version at runtime.

If you are concerned about long-term ABI issues, considering using the C API instead; this subset is ABI stable.

You can review a report on ABI changes to Botan at https://abi-laboratory.pro/tracker/timeline/botan/

297

https://abi-laboratory.pro/tracker/timeline/botan/

Botan Reference Guide, Release 3.9.0

298 Chapter 14. ABI Stability

CHAPTER
FIFTEEN

NOTES FOR DISTRIBUTORS

This document has information for anyone who is packaging copies of Botan for use by downstream developers, such
as through a Linux distribution or other package management system.

15.1 Recommended Options

In most environments, zlib, bzip2, and sqlite are already installed, so there is no reason to not include support for them
in Botan as well. Build with options --with-z1ib --with-bzip2 --with-sqlite3 to enable these features.

15.2 Set Path to the System CA bundle

Most Unix/Linux systems maintain a list of trusted CA certificates at some well known path like /etc/ssl/certs/
ca-certificates.crt or /etc/ssl/cert.pem. Unfortunately the exact path varies between systems. Use
--system-cert-bundle=PATH to set this path. If the option is not used, configure.py tries a list of known lo-
cations.

15.3 Set Distribution Info

If your distribution of Botan involves creating library binaries, use the configure.py flag --distribution-info= to
set the version of your packaging. For example Foonix OS might distribute its 4th revision of the package for Botan
2.1.3 using --distribution-info="'Foonix 2.1.3-4"'. The string is completely free-form, since it depends on
how the distribution numbers releases and packages.

Any value set with --distribution-info flag will be included in the version string, and can read through the
BOTAN_DISTRIBUTION_INFO macro.

15.4 CMake Integration

Starting in Botan 3.3.0, we ship botan-config. cmake files. While this config file is somewhat relocatable, it assumes
the default installation directory structure as generated by make install. If your distribution changes the directory
layout of the installed files you might want to either adapt the final botan-config.cmake file accordingly or leave it
out entirely using --without-cmake-config.

Please don’t hesitate to give your feedback on this new feature by opening a ticket on the upstream GitHub.

15.5 Minimize Distribution Patches

We (Botan upstream) strongly prefer that downstream distributions maintain no long-term patches against Botan. Even
if it is a build problem which probably only affects your environment, please open an issue on github and include the
patch you are using. Perhaps the issue does affect other users, and even if not it would be better for everyone if the

299

Botan Reference Guide, Release 3.9.0

library were improved so it were not necessary for the patch to be created in the first place. For example, having to
modify or remove a build data file, or edit the makefile after generation, suggests an area where the build system is
insufficiently flexible.

Obviously nothing in the BSD-2 license prevents you from distributing patches or modified versions of Botan however
you please. But long term patches by downstream distributors have a tendency to bitrot and sometimes even result in
security problems (such as in the Debian OpenSSL RNG fiasco) because the patches are never reviewed by the library
developers. So we try to discourage them, and work to ensure they are never necessary.

300 Chapter 15. Notes for Distributors

CHAPTER
SIXTEEN

SECURITY ADVISORIES

If you think you have found a security bug in Botan please contact Jack Lloyd (jack @randombit.net). If you would like
to encrypt your mail please use:

pub

rsa3072/57123B60 2015-03-23
Key fingerprint = 4E60 C735 51AF 2188 DFOA 5A62 78E9 8043 5712 3B60
uid Jack Lloyd <jack@randombit.net>

This key can be found in the file doc/pgpkey.txt or online at https://keybase.io/jacklloyd and on most PGP key-
servers.

16.1 2024

e 2024-07-08 (CVE-2024-34702): Denial of Service Due to Excessive Name Constraints

Checking name constraints in X.509 certificates is quadratic in the number of names and name constraints. An
attacker who presented a certificate chain which contained a very large number of names in the SubjectAlterna-
tiveName, signed by a CA certificate which contained a large number of name constraints, could cause a denial
of service.

Introduced in 2.0.0, fixed in 2.19.5 and 3.5.0
Found and reported by Bing Shi.
2024-07-08 (CVE-2024-39312): Authorization Error due to Name Constraint Decoding Bug

A bug in the parsing of name constraint extensions in X.509 certificates meant that if the extension included both
permitted subtrees and excluded subtrees, only the permitted subtree would be checked. If a certificate included a
name which was permitted by the permitted subtree but also excluded by excluded subtree, it would be accepted.

Introduced in 2.0.0, fixed in 2.19.5 and 3.5.0

2024-02-20: Kyber side channel

The Kyber implementation was vulnerable to the KyberSlash1 and KyberSlash2 side channel issues.
Introduced in 3.0.0, fixed in 3.3.0

2024-02-20 (CVE-2024-34703): DoS due to oversized elliptic curve parameters

When decoding an ASN.1 encoded elliptic curve, Botan would verify the p parameter was actually prime, and
at least some minimum size. However it failed to check if the prime was far too large (for example thousands of
bits), in which case checking the prime would take a significant amount of computation. Now the maximum size
of arbitrary elliptic curves when decoding from ASN.1 is limited.

Reported by Bing Shi
Fixed in 3.3.0 and 2.19.4

301

mailto:jack@randombit.net
https://keybase.io/jacklloyd

Botan Reference Guide, Release 3.9.0

16.2 2022

* 2022-11-16 (CVE-2022-43705): Failure to correctly check OCSP responder embedded certificate

OCSP responses for some end entity are either signed by the issuing CA certificate of the PKI, or an OCSP
responder certificate that the PKI authorized to sign responses in their name. In the latter case, the responder
certificate (and its validation path certificate) may be embedded into the OCSP response and clients must verify
that such certificates are indeed authorized by the CA when validating OCSP responses.

The OCSP implementation failed to verify that an authorized responder certificate embedded in an OCSP re-
sponse is authorized by the issuing CA. As a result, any valid signature by an embedded certificate passed the
check and was allowed to make claims about the revocation status of certificates of any CA.

Attackers that are in a position to spoof OCSP responses for a client could therefore render legitimate certificates
of a 3rd party CA as revoked or even use a compromised (and actually revoked) certificate by spoofing an OCSP-
“OK” response. E.g. an attacker could exploit this to impersonate a legitimate TLS server using a compromised
certificate of that host and get around the revocation check using OCSP stapling.

Introduced in 1.11.34, fixed in 2.19.3 and 3.0.0

16.3 2020

e 2020-12-21 (CVE-2021-24115): Codec encoding/decoding was not constant time

The base64, base32, base58 and hex encoding/decoding routines used lookup tables which could leak informa-
tion via a cache-based side channel attack. The encoding tables were small and unlikely to be exploitable, but
the decoding tables were large enough to cause non-negligible information leakage. In particular parsing an
unencrypted PEM-encoded private key within an SGX enclave could be easily attacked to leak key material.

Identified and reported by Jan Wichelmann, Thomas Eisenbarth, Sebastian Berndt, and Florian Sieck.
Fixed in 2.17.3
2020-07-05: Failure to enforce name constraints on alternative names

The path validation algorithm enforced name constraints on the primary DN included in the certificate but failed
to do so against alternative DNs which may be included in the subject alternative name. This would allow
a corrupted sub-CA which was constrained by a name constraints extension in its own certificate to issue a
certificate containing a prohibited DN. Until 2.15.0, there was no API to access these alternative name DN so it
is unlikely that any application would make incorrect access control decisions on the basis of the incorrect DN.
Reported by Mario Korth of Ruhr-Universitit Bochum.

Introduced in 1.11.29, fixed in 2.15.0
2020-03-24: Side channel during CBC padding

The CBC padding operations were not constant time and as a result would leak the length of the plaintext values
which were being padded to an attacker running a side channel attack via shared resources such as cache or
branch predictor. No information about the contents was leaked, but the length alone might be used to make
inferences about the contents. This issue affects TLS CBC ciphersuites as well as CBC encryption using PKCS7
or other similar padding mechanisms. In all cases, the unpadding operations were already constant time and are
not affected. Reported by Maximilian Blochberger of Universitidt Hamburg.

Fixed in 2.14.0, all prior versions affected.

302

Chapter 16. Security Advisories

Botan Reference Guide, Release 3.9.0

16.4 2018

* 2018-12-17 (CVE-2018-20187): Side channel during ECC key generation

A timing side channel during ECC key generation could leak information about the high bits of the secret scalar.
Such information allows an attacker to perform a brute force attack on the key somewhat more efficiently than
they would otherwise. Found by Jan Janc¢ar using ECTester.

Introduced in 1.11.20, fixed in 2.8.0.
¢ 2018-06-13 (CVE-2018-12435): ECDSA side channel

A side channel in the ECDSA signature operation could allow a local attacker to recover the secret key. Found
by Keegan Ryan of NCC Group.

Bug introduced in 2.5.0, fixed in 2.7.0. The 1.10 branch is not affected.
* 2018-04-10 (CVE-2018-9860): Memory overread in TLS CBC decryption

An off by one error in TLS CBC decryption meant that for a particular malformed ciphertext, the receiver would
miscompute a length field and HMAC exactly 64K bytes of data following the record buffer as if it was part of
the message. This cannot be used to leak information since the MAC comparison will subsequently fail and the
connection will be closed. However it might be used for denial of service. Found by OSS-Fuzz.

Bug introduced in 1.11.32, fixed in 2.6.0
e 2018-03-29 (CVE-2018-9127): Invalid wildcard match

RFC 6125 wildcard matching was incorrectly implemented, so that a wildcard certificate such as b*.domain.
com would match any hosts *b*.domain.com instead of just server names beginning with b. The host and
certificate would still have to be in the same domain name. Reported by Fabian Weifiberg of Rohde and Schwarz
Cybersecurity.

Bug introduced in 2.2.0, fixed in 2.5.0

16.5 2017

* 2017-10-02 (CVE-2017-14737): Potential side channel using cache information

In the Montgomery exponentiation code, a table of precomputed values is used. An attacker able to analyze
which cache lines were accessed (perhaps via an active attack such as Prime+Probe) could recover information
about the exponent. Identified in “CacheD: Identifying Cache-Based Timing Channels in Production Software”
by Wang, Wang, Liu, Zhang, and Wu (Usenix Security 2017).

Fixed in 1.10.17 and 2.3.0, all prior versions affected.
¢ 2017-07-16: Failure to fully zeroize memory before free

The secure_allocator type attempts to zeroize memory before freeing it. Due to a error sometimes only a portion
of the memory would be zeroed, because of a confusion between the number of elements vs the number of
bytes that those elements use. So byte vectors would always be fully zeroed (since the two notions result in the
same value), but for example with an array of 32-bit integers, only the first 1/4 of the elements would be zeroed
before being deallocated. This may result in information leakage, if an attacker can access memory on the heap.
Reported by Roman Pozlevich.

Bug introduced in 1.11.10, fixed in 2.2.0
* 2017-04-04 (CVE-2017-2801): Incorrect comparison in X.509 DN strings

Botan’s implementation of X.509 name comparisons had a flaw which could result in an out of bound memory
read while processing a specially formed DN. This could potentially be exploited for information disclosure or

16.4. 2018 303

Botan Reference Guide, Release 3.9.0

denial of service, or result in incorrect validation results. Found independently by Aleksandar Nikolic of Cisco
Talos, and OSS-Fuzz automated fuzzing infrastructure.

Bug introduced in 1.6.0 or earlier, fixed in 2.1.0 and 1.10.16
2017-03-23 (CVE-2017-7252): Incorrect berypt computation

Botan’s implementation of berypt password hashing scheme truncated long passwords at 56 characters, instead
of at berypt’s standard 72 characters limit. Passwords with lengths between these two bounds could be cracked
more easily than should be the case due to the final password bytes being ignored. Found and reported by Solar
Designer.

Bug introduced in 1.11.0, fixed in 2.1.0.

16.6 2016

2016-11-27 (CVE-2016-9132) Integer overflow in BER decoder

While decoding BER length fields, an integer overflow could occur. This could occur while parsing untrusted
inputs such as X.509 certificates. The overflow does not seem to lead to any obviously exploitable condition, but
exploitation cannot be positively ruled out. Only 32-bit platforms are likely affected; to cause an overflow on
64-bit the parsed data would have to be many gigabytes. Bug found by Falko Strenzke, cryptosource GmbH.

Fixed in 1.10.14 and 1.11.34, all prior versions affected.
2016-10-26 (CVE-2016-8871) OAEP side channel

A side channel in OAEP decoding could be used to distinguish RSA ciphertexts that did or did not have a leading
0 byte. For an attacker capable of precisely measuring the time taken for OAEP decoding, this could be used
as an oracle allowing decryption of arbitrary RSA ciphertexts. Remote exploitation seems difficult as OAEP
decoding is always paired with RSA decryption, which takes substantially more (and variable) time, and so will
tend to mask the timing channel. This attack does seems well within reach of a local attacker capable of a cache
or branch predictor based side channel attack. Finding, analysis, and patch by Juraj Somorovsky.

Introduced in 1.11.29, fixed in 1.11.33
2016-08-30 (CVE-2016-6878) Undefined behavior in Curve25519

On systems without a native 128-bit integer type, the Curve25519 code invoked undefined behavior. This was
known to produce incorrect results on 32-bit ARM when compiled by Clang.

Introduced in 1.11.12, fixed in 1.11.31
2016-08-30 (CVE-2016-6879) Bad result from X509_Certificate::allowed_usage

If allowed_usage was called with more than one Key_Usage set in the enum value, the function would return true
if any of the allowed usages were set, instead of if all of the allowed usages are set. This could be used to bypass
an application key usage check. Credit to Daniel Neus of Rohde & Schwarz Cybersecurity for finding this issue.

Introduced in 1.11.0, fixed in 1.11.31
2016-03-17 (CVE-2016-2849): ECDSA side channel

ECDSA (and DSA) signature algorithms perform a modular inverse on the signature nonce k. The modular
inverse algorithm used had input dependent loops, and it is possible a side channel attack could recover sufficient
information about the nonce to eventually recover the ECDSA secret key. Found by Sean Devlin.

Introduced in 1.7.15, fixed in 1.10.13 and 1.11.29
2016-03-17 (CVE-2016-2850): Failure to enforce TLS policy

TLS v1.2 allows negotiating which signature algorithms and hash functions each side is willing to accept. How-
ever received signatures were not actually checked against the specified policy. This had the effect of allowing a

304

Chapter 16. Security Advisories

Botan Reference Guide, Release 3.9.0

server to use an MD5 or SHA-1 signature, even though the default policy prohibits it. The same issue affected
client cert authentication.

The TLS client also failed to verify that the ECC curve the server chose to use was one which was acceptable by
the client policy.

Introduced in 1.11.0, fixed in 1.11.29
¢ 2016-02-01 (CVE-2016-2196): Overwrite in P-521 reduction

The P-521 reduction function would overwrite zero to one word following the allocated block. This could po-
tentially result in remote code execution or a crash. Found with AFL

Introduced in 1.11.10, fixed in 1.11.27
* 2016-02-01 (CVE-2016-2195): Heap overflow on invalid ECC point

The PointGFp constructor did not check that the affine coordinate arguments were less than the prime, but then
in curve multiplication assumed that both arguments if multiplied would fit into an integer twice the size of the
prime.

The bigint_mul and bigint_sqr functions received the size of the output buffer, but only used it to dispatch to a
faster algorithm in cases where there was sufficient output space to call an unrolled multiplication function.

The result is a heap overflow accessible via ECC point decoding, which accepted untrusted inputs. This is likely
exploitable for remote code execution.

On systems which use the mlock pool allocator, it would allow an attacker to overwrite memory held in se-
cure_vector objects. After this point the write will hit the guard page at the end of the mmap’ed region so it
probably could not be used for code execution directly, but would allow overwriting adjacent key material.

Found by Alex Gaynor fuzzing with AFL
Introduced in 1.9.18, fixed in 1.11.27 and 1.10.11
* 2016-02-01 (CVE-2016-2194): Infinite loop in modular square root algorithm

The ressol function implements the Tonelli-Shanks algorithm for finding square roots could be sent into a nearly
infinite loop due to a misplaced conditional check. This could occur if a composite modulus is provided, as
this algorithm is only defined for primes. This function is exposed to attacker controlled input via the OS2ECP
function during ECC point decompression. Found by AFL

Introduced in 1.7.15, fixed in 1.11.27 and 1.10.11

16.7 2015

e 2015-11-04: TLS certificate authentication bypass

When the bugs affecting X.509 path validation were fixed in 1.11.22, a check in Creden-
tials_Manager::verify_certificate_chain was accidentally removed which caused path validation failures
not to be signaled to the TLS layer. So for affected versions, certificate authentication in TLS is bypassed. As a
workaround, applications can override the call and implement the correct check. Reported by Florent Le Coz in
GH #324

Introduced in 1.11.22, fixed in 1.11.24
* 2015-10-26 (CVE-2015-7824): Padding oracle attack on TLS

A padding oracle attack was possible against TLS CBC ciphersuites because if a certain length check on the
packet fields failed, a different alert type than one used for message authentication failure would be returned to
the sender. This check triggering would leak information about the value of the padding bytes and could be used
to perform iterative decryption.

16.7. 2015 305

Botan Reference Guide, Release 3.9.0

As with most such oracle attacks, the danger depends on the underlying protocol - HTTP servers are particularly
vulnerable. The current analysis suggests that to exploit it an attacker would first have to guess several bytes of
plaintext, but again this is quite possible in many situations including HTTP.

Found in a review by Sirrix AG and 3curity GmbH.
Introduced in 1.11.0, fixed in 1.11.22
2015-10-26 (CVE-2015-7825): Infinite loop during certificate path validation

When evaluating a certificate path, if a loop in the certificate chain was encountered (for instance where C1
certifies C2, which certifies C1) an infinite loop would occur eventually resulting in memory exhaustion. Found
in a review by Sirrix AG and 3curity GmbH.

Introduced in 1.11.6, fixed in 1.11.22
2015-10-26 (CVE-2015-7826): Acceptance of invalid certificate names
RFC 6125 specifies how to match a X.509v3 certificate against a DNS name for application usage.

Otherwise valid certificates using wildcards would be accepted as matching certain hostnames that should they
should not according to RFC 6125. For example a certificate issued for *.example.com should match foo.
example.com but not example.com or bar. foo.example.com. Previously Botan would accept such a cer-
tificate as also valid for bar. foo.example.com.

RFC 6125 also requires that when matching a X.509 certificate against a DNS name, the CN entry is only
compared if no subjectAlternativeName entry is available. Previously X509_Certificate::matches_dns_name
would always check both names.

Found in a review by Sirrix AG and 3curity GmbH.
Introduced in 1.11.0, fixed in 1.11.22
2015-10-26 (CVE-2015-7827): PKCS #1 v1.5 decoding was not constant time

During RSA decryption, how long decoding of PKCS #1 v1.5 padding took was input dependent. If these
differences could be measured by an attacker, it could be used to mount a Bleichenbacher million-message attack.
PKCS #1 v1.5 decoding has been rewritten to use a sequence of operations which do not contain any input-
dependent indexes or jumps. Notations for checking constant time blocks with ctgrind (https://github.com/agl/
ctgrind) were added to PKCS #1 decoding among other areas. Found in a review by Sirrix AG and 3curity
GmbH.

Fixed in 1.11.22 and 1.10.13. Affected all previous versions.
2015-08-03 (CVE-2015-5726): Crash in BER decoder

The BER decoder would crash due to reading from offset 0 of an empty vector if it encountered a BIT STRING
which did not contain any data at all. This can be used to easily crash applications reading untrusted ASN.1 data,
but does not seem exploitable for code execution. Found with afl.

Fixed in 1.11.19 and 1.10.10, affected all previous versions of 1.10 and 1.11
2015-08-03 (CVE-2015-5727): Excess memory allocation in BER decoder

The BER decoder would allocate a fairly arbitrary amount of memory in a length field, even if there was no
chance the read request would succeed. This might cause the process to run out of memory or invoke the OOM
killer. Found with afl.

Fixed in 1.11.19 and 1.10.10, affected all previous versions of 1.10 and 1.11

306

Chapter 16. Security Advisories

https://github.com/agl/ctgrind
https://github.com/agl/ctgrind

Botan Reference Guide, Release 3.9.0

16.8 2014

* 2014-04-10 (CVE-2014-9742): Insufficient randomness in Miller-Rabin primality check

A bug in the Miller-Rabin primality test resulted in only a single random base being used instead of a sequence
of such bases. This increased the probability that a non-prime would be accepted by is_prime or that a randomly
generated prime might actually be composite. The probability of a random 1024 bit number being incorrectly
classed as prime with a single base is around 2”-40. Reported by Jeff Marrison.

Introduced in 1.8.3, fixed in 1.10.8 and 1.11.9

16.8. 2014 307

Botan Reference Guide, Release 3.9.0

308 Chapter 16. Security Advisories

CHAPTER
SEVENTEEN

THREAT MODEL

It is somewhat difficult to fully articulate a threat model for any library since it may be used in different contexts. How-
ever, this document attempts to clearly state which attackers are considered in-scope (and thus which countermeasures
are in place), and which are not.

The basic threat model Botan is written for is described well in “The Program Counter Security Model” (Molnar,
Piotrowski, Schultz, Wagner).

We assume an attacker exists who is capable of colocating their attack code on the same CPU (eg via SMT) and
performing analysis based on side channels in cache, TLB or branch predictor resources. A somewhat stronger model
is in the context of SGX enclaves, where it is practical for an attacker to cause code in an SGX enclave to single-step
the execution and precisely measure each conditional jump and memory access.

This also covers the (weaker) threat model of an attacker on the same LAN who is performing attacks based purely on
timing of operations.

Wherever possible, code that manipulates secret data (for example when generating an ECDSA signature or decrypting
an AES ciphertext) is written to be “constant time”; avoiding any conditional jumps or memory accesses where the
predicate is (derived from) secret information. Botan uses extensive annotations (CT : : poison) to indicate which values
are secret, and uses automated analysis (currently using valgrind similar to Adam Langley’s ctgrind idea, though
support for other tools is welcome) to verify that the assembly created by the compiler in fact avoids all conditional
jumps or memory accesses that might leak secrets. This testing step is essential as some compilers (notably Clang) are
excellent at performing range analysis of values and will sometimes generate conditional jumps even when the code as
written appears to avoid such operations. Botan’s CI runs these tests automatically against GCC and Clang on x86-64
and aarch64, with a range of different optimization levels.

Some algorithms have a structure which allows for very practical blinding/re-randomization of the operations. This is
used as an additional countermeasure in case some particular combination of compiler, compiler options, and target
architecture results in a conditional jump being inserted in an unexpected place. For example during ECDSA signing,
the inversion of k, the scalar multiplication of g*k and the recombination of x * r + m are all blinded, even though
all of the relevant arithmetic operations are written and tested to avoid side channels.

For more about specific side channel countermeasures, see Side Channels.

Do keep in mind that side channels are intrinsically a property of the hardware computer system which is executing
the code. Thus while a variety of best-effort countermeasures and analysis tools are in place, the absence of any kind
of side channel cannot be guaranteed by a software library on it’s own. It can only be verified with a specific compiled
binary on a specific hardware platform.

17.1 Out Of Scope

* Speculative execution attacks such as Spectre are out of scope since countermeasures are incredibly costly, and
there is currently no way to verify that any such countermeasures, once applied, are effective.

309

Botan Reference Guide, Release 3.9.0

* Attacks based on ALU side channels (such as contention on the multiplication unit leaking the Hamming weight
of the multiplier) are currently out of scope, though randomized blinding may be helpful in some circumstances.

» Power analysis attacks and EM side channel attacks are considered out of scope. Preventing these attacks requires
hardware support and a system-wide view of how leakage is handled. That said, blinding and rerandomization
may provide some protection against such attacks. Patches which make it easier to use Botan in a system which
must address these issues would be accepted.

310 Chapter 17. Threat Model

CHAPTER
EIGHTEEN

SIDE CHANNELS

Many cryptographic systems can be easily broken by side channels. This document notes side channel protections
which are currently implemented, as well as areas of the code which are known to be vulnerable to side channels. The
latter are obviously all open for future improvement.

The following text assumes the reader is already familiar with cryptographic implementations, side channel attacks,
and common countermeasures.

18.1 Modular Exponentiation

Modular exponentiation uses a fixed window algorithm with Montgomery representation. A side channel silent table
lookup is used to access the precomputed powers. The caller provides the maximum possible bit length of the exponent,
and the exponent is zero-padded as required. For example, in a DSA signature with 256-bit q, the caller will specify a
maximum length of exponent of 256 bits, even if the k that was generated was 250 bits. This avoids leaking the length
of the exponent through the number of loop iterations. See monty_exp.cpp and monty.cpp

Karatsuba multiplication algorithm avoids any conditional branches; in cases where different operations must be per-
formed it instead uses masked operations. See mp_karat.cpp for details.

The Montgomery reduction is written to run in constant time. The final reduction is handled with a masked subtraction.
See mp_monty.cpp.

18.2 Barrett Reduction

The Barrett reduction code is written to avoid input dependent branches. The Barrett algorithm only works for inputs
up to a certain size, and larger values fall back on a different (slower) division algorithm. This secondary algorithm
is also const time, but the branch allows detecting when a value larger than 27{2k} was reduced, where k is the word
length of the modulus. This leaks only the size of the two values, and not anything else about their value.

18.3 RSA

Blinding is always used to protect private key operations (there is no way to turn it off). Both base blinding and exponent
blinding are used.

For base blinding, as an optimization, instead of choosing a new random mask and inverse with each decryption, both
the mask and its inverse are simply squared to choose the next blinding factor. This is much faster than computing a
fresh value each time, and the additional relation is thought to provide only minimal useful information for an attacker.
Every BOTAN_BLINDING_REINIT_INTERVAL (default 64) operations, a new starting point is chosen.

Exponent blinding uses new values for each signature, with 64 bit masks.

RSA signing uses the CRT optimization, which is much faster but vulnerable to trivial fault attacks [RsaFault] which
can result in the key being entirely compromised. To protect against this (or any other computational error which would

311

Botan Reference Guide, Release 3.9.0

have the same effect as a fault attack in this case), after every private key operation the result is checked for consistency
with the public key. This introduces only slight additional overhead and blocks most fault attacks; it is possible to use
a second fault attack to bypass this verification, but such a double fault attack requires significantly more control on
the part of an attacker than a BellCore style attack, which is possible if any error at all occurs during either modular
exponentiation involved in the RSA signature operation.

RSA key generation is also prone to side channel vulnerabilities due to the need to calculate the CRT parameters.
The GCD computation, LCM computations, modulo, and inversion of g modulo p are all done via constant time
algorithms. An additional inversion, of e modulo phi(n), is also required. This one is somewhat more complicated
because phi (n) is even and the primary constant time algorithm for inversions only works for odd moduli.

When e is equal to 65537, we use Arazi’s inversion algorithm [GedFree] which is fast and quite simple to run in constant
time.

For general e, the inversion proceeds using a technique based on the CRT - phi (n) is factored to 2**k * o for some
k > 1 and some odd o. Then e is inverted modulo 2**k and also modulo o. The inversion modulo 2**k is done via
a specialized constant-time algorithm which only works for powers of 2. Then the two inversions are combined using
the CRT. This process does leak the value of k; when generating keys Botan chooses p and g so that k is always 1.

See blinding.cpp, rsa.cpp, and mod_inv.cpp

18.4 Decryption of PKCS #1 v1.5 Ciphertexts

This padding scheme is used with RSA, and is very vulnerable to errors. In a scenario where an attacker can repeatedly
present RSA ciphertexts, and a legitimate key holder will attempt to decrypt each ciphertext and simply indicates to
the attacker if the PKCS padding was valid or not (without revealing any additional information), the attacker can use
this behavior as an oracle to perform iterative decryption of arbitrary RSA ciphertexts encrypted under that key. This
is the famous million message attack [MillionMsg]. A side channel such as a difference in time taken to handle valid
and invalid RSA ciphertexts is enough to mount the attack [MillionMsgTiming].

As afirst step, the PKCS v1.5 decoding operation runs without any conditional jumps or indexes, with the only variance
in runtime being based on the length of the public modulus, which is public information.

Preventing the attack in full requires some application level changes. In protocols which know the expected length of
the encrypted key, PK_Decryptor provides the function decrypt_or_random which first generates a random fake key,
then decrypts the presented ciphertext, then in constant time either copies out the random key or the decrypted plaintext
depending on if the ciphertext was valid or not (valid padding and expected plaintext length). Then in the case of an
attack, the protocol will carry on with a randomly chosen key, which will presumably cause total failure in a way that
does not allow an attacker to distinguish (via any timing or other side channel, nor any error messages specific to the
one situation vs the other) if the RSA padding was valid or invalid.

One very important user of PKCS #1 v1.5 encryption is the TLS protocol. In TLS, some extra versioning information
is embedded in the plaintext message, along with the key. It turns out that this version information must be treated
in an identical (constant-time) way with the PKCS padding, or again the system is broken. [VersionOracle]. This is
supported by a special version of PK_Decryptor::decrypt_or_random that additionally allows verifying one or more
content bytes, in addition to the PKCS padding.

See eme_pkcs.cpp and pubkey.cpp.

18.5 Verification of PKCS #1 v1.5 Signatures

One way of verifying PKCS #1 v1.5 signature padding is to decode it with an ASN.1 BER parser. However such a
design commonly leads to accepting signatures besides the (single) valid RSA PKCS #1 v1.5 signature for any given
message, because often the BER parser accepts variations of the encoding which are actually invalid. It also needlessly
exposes the BER parser to untrusted inputs.

312 Chapter 18. Side Channels

Botan Reference Guide, Release 3.9.0

It is safer and simpler to instead re-encode the hash value we are expecting using the PKCS #1 v1.5 encoding rules,
and const time compare our expected encoding with the output of the RSA operation. So that is what Botan does.

See emsa_pkcs.cpp.

18.6 OAEP

RSA OAEP is (PKCS#1 v2) is the recommended version of RSA encoding standard, because it is not directly vulnerable
to Bleichenbacher attack. However, if implemented incorrectly, a side channel can be presented to an attacker and create
an oracle for decrypting RSA ciphertexts [OaepTiming].

This attack is avoided in Botan by making the OAEP decoding operation run without any conditional jumps or indexes,
with the only variance in runtime coming from the length of the RSA key (which is public information).

See eme_oaep.cpp.

18.7 ECC point decoding

The API function EC_AffinePoint::deserialize, which is used to convert byte strings to ECC points, verifies that all
points satisfy the ECC curve equation. Points that do not satisfy the equation are invalid, and can sometimes be used
to break protocols ([InvalidCurve] [InvalidCurveTLS]).

The implementation is in the file pcurves_impl.h as AffineCurvePoint::deserialize

18.8 ECC scalar multiplication

Several elliptic curve scalar multiplication algorithms are implemented to accomodate different use cases. The im-
plementations can be found in pcurves_impl.h as PrecomputedBaseMulTable, WindowedMulTable, and Windowed-
Mul2Table.

WindowedMul2Table additionally implements a variable time scalar multiplication; this is used only for verify-
ing signatures. In the public API this is invoked using the functions EC_Group::Mul2Table::mul2_vartime and
EC_Group::Mul2Table::mul2_vartime_x_mod_order_eq

All other scalar multiplication algorithms are written to avoid timing and cache based side channels. Multiplication al-
gorithms intended for use with secret inputs also use scalar blinding and point rerandomization techniques [CoronDpa]
as additional precautions. See BlindedScalarBits in pcurves_impl.h

The base point multiplication algorithm is a comb-like technique which precomputes successive powers of the base
point. During the online phase, elements from this table are added together. The elements of the table are accessed by
masked lookups, so as not to leak information about bits of the scalar via a cache side channel.

The variable point multiplication algorithms use a fixed-window double-and-add algorithm. The table of precomputed
multiples is accessed using a masked lookup which should not leak information about the secret scalar to side channels.

For details see pcurves_impl.h in src/lib/math/pcurves/pcurves_impl

18.9 ECDH

ECDH verifies that all input points received from the other party satisfy the curve equation, preventing twist attacks.

18.6. OAEP 313

Botan Reference Guide, Release 3.9.0

18.10 ECDSA

Inversion of the ECDSA nonce k must be done in constant time, as any leak of even a single bit of the nonce can be
sufficient to allow recovering the private key. The inversion makes use of Fermat’s little theorem.

In addition to being constant time, the inversion and portions of the scalar arithmetic use blinding. The inverse of k is
computed as (k*z)A-1 * z, and the computation of s, normally ((x * r) + m)/k, is computed instead as ((((x

*z) *r)y + m* z)) / k) / z forarandom z.

18.11 x25519

The x25519 code is independent of the main Weierstrass form ECC code, instead based on curve25519-donna-c64.c by
Adam Langley. The code seems immune to cache based side channels. It does make use of integer multiplications; on
some old CPUs these multiplications take variable time and might allow a side channel attack. This is not considered
a problem on modern processors.

The x25519 implementation does not currently include blinding or point rerandomization.

18.12 TLS CBC ciphersuites

The original TLS v1.0 CBC Mac-then-Encrypt mode is vulnerable to an oracle attack. If an attacker can distinguish
padding errors through different error messages [TlsCbcOracle] or via a side channel attack like [Lucky13], they can
abuse the server as a decryption oracle.

The side channel protection for Lucky13 follows the approach proposed in the Luckyl3 paper. It is not perfectly
constant time, but does hide the padding oracle in practice. Tools to test TLS CBC decoding are included in the timing
tests. See https://github.com/randombit/botan/pull/675 for more information.

The Encrypt-then-MAC extension, which completely avoids the side channel, is implemented and used by default for
CBC ciphersuites.

18.13 CBC mode padding

In theory, any good protocol protects CBC ciphertexts with a MAC. But in practice, some protocols are not good and
cannot be fixed immediately. To avoid making a bad problem worse, the code to handle decoding CBC ciphertext
padding bytes runs in constant time, depending only on the block size of the cipher.

18.14 base64 decoding

Base64 (and related encodings base32, base58 and hex) are sometimes used to encode or decode secret data. To avoid
possible side channels which might leak key material during the encoding or decoding process, these functions avoid
any input-dependent table lookups.

18.15 AES

Some x86, ARMv8 and POWER processors support AES instructions which are fast and are thought to be side channel
silent. These instructions are used when available.

On CPUs which do not have hardware AES instructions but do support SIMD vectors with a byte shuffle (including
x86’s SSSE3, ARM’s NEON and PowerPC AltiVec), a version of AES is implemented which is side channel silent.
This implementation is based on code by Mike Hamburg [VectorAes], see aes_vperm.cpp.

314 Chapter 18. Side Channels

https://github.com/randombit/botan/pull/675

Botan Reference Guide, Release 3.9.0

On all other processors, a constant time bitsliced implementation is used. This is typically slower than the vector
permute implementation, and additionally for best performance multiple blocks must be processed in parellel. So
modes such as CTR, GCM or XTS are relatively fast, but others such as CBC encryption suffer.

18.16 GCM

On platforms that support a carryless multiply instruction (ARMvS8 and recent x86), GCM is fast and constant time.

On all other platforms, GCM uses an algorithm based on precomputing all powers of H from 1 to 128. Then for every
bit of the input a mask is formed which allows conditionally adding that power without leaking information via a cache
side channel. There is also an SSSE3 variant of this algorithm which is somewhat faster on processors which have
SSSE3 but no AES-NI instructions.

18.17 OCB

It is straightforward to implement OCB mode in a efficient way that does not depend on any secret branches or lookups.
See ocb.cpp for the implementation.

18.18 Poly1305

The Poly 1305 implementation does not have any secret lookups or conditionals. The code is based on the public domain
version by Andrew Moon.

18.19 DES/3DES

The DES implementation relies on table lookups but they are limited to tables which are exactly 64 bytes in size.
On systems with 64 byte (or larger) cache lines, these should not leak information. It may still be vulnerable to side
channels on processors which leak cache line access offsets via cache bank conflicts; vulnerable hardware includes
Sandy Bridge processors, but not later Intel or AMD CPUs.

18.20 Twofish

This algorithm uses table lookups with secret sboxes. No cache-based side channel attack on Twofish has ever been
published, but it is possible nobody sufficiently skilled has ever tried.

18.21 ChaCha20, Serpent, Threefish, ...

Some algorithms including ChaCha, Salsa, Serpent and Threefish are ‘naturally’ silent to cache and timing side channels
on all recent processors.

18.22 IDEA

IDEA encryption, decryption, and key schedule are implemented to take constant time regardless of their inputs.

18.23 Hash Functions

Most hash functions included in Botan such as MD5, SHA-1, SHA-2, SHA-3, Skein, and BLAKE2 do not require
any input-dependent memory lookups, and so seem to not be affected by common CPU side channels. However the
implementations of Whirlpool and Streebog use table lookups and probably can be attacked by side channels.

18.16. GCM 315

Botan Reference Guide, Release 3.9.0

18.24 Memory comparisons

The function same_mem in header mem_ops.h provides a constant-time comparison function. It is used when com-
paring MAC:s or other secret values. It is also exposed for application use.

18.25 Memory zeroizing

There is no way in portable C/C++ to zero out an array before freeing it, in such a way that it is guaranteed that the
compiler will not elide the ‘additional’ (seemingly unnecessary) writes to zero out the memory.

The function secure_scrub_memory (in mem_ops.cpp) uses some system specific trick to zero out an array. If possible
an OS provided routine (such as Rt1SecureZeroMemory or explicit_bzero) is used.

On other platforms, the trick of referencing memset through a volatile function pointer is used. This approach is not
guaranteed to work on all platforms, and currently there is no systematic check of the resulting binary function that
it is compiled as expected. But, it is the best approach currently known and has been verified to work as expected on
common platforms.

18.26 Stack Scrubbing

GCC 14 and newer can emit code that scrubs the stack frames of functions that handle sensitive information [GCCstrub]
after they returned to the caller. This can reduce the time window for sniffing sensitive information from a process.

Botan can apply this to certain core routines of fundamental algorithms. For now this feature is an opt-in. Configure
with —enable-stack-scrubbing to benefit from this feature if you are using a compatible version of GCC.

18.27 Memory allocation

Botan’s secure_vector type is a std::vector with a custom allocator. The allocator calls secure_scrub_memory before
freeing memory.

Some operating systems support an API call to lock a range of pages into memory, such that they will never be swapped
out (mlock on POSIX, VirtualLock on Windows). On many POSIX systems mlock is only usable by root, but on
Linux, FreeBSD and possibly other systems a small amount of memory can be locked by processes without extra
credentials.

If available, Botan uses such a region for storing key material. A page-aligned block of memory is allocated and locked,
then the memory is scrubbed before freeing. This memory pool is used by secure_vector when available. It can be
disabled at runtime setting the environment variable BOTAN_MLOCK_POOL_SIZE to 0.

18.28 Side Channel Analysis Tools

Currently the main tool used by the Botan developers for testing for side channels at runtime is valgrind; valgrind’s
runtime API is used to taint memory values, and any jumps or indexes using data derived from these values will cause
a valgrind warning. This technique was first used by Adam Langley in ctgrind. See header ct_utils.h.

There is a self-test of the constant time annotations in src/ct_selftest.
To check, install valgrind, configure the build with —with-valgrind, and run the tests.

There is also a test utility built into the command line util, timing_test, which runs an operation on several different
inputs many times in order to detect simple timing differences. The output can be processed using the Mona timing
report library (https://github.com/seecurity/mona-timing-report). To run a timing report (here for example pow_mod):

316 Chapter 18. Side Channels

https://github.com/seecurity/mona-timing-report

Botan Reference Guide, Release 3.9.0

[$ botan timing_test pow_mod > pow_mod.raw J

This must be run from a checkout of the source, or otherwise the option --test-data-dir= must be used to point to
the expected input files.

Build and run the Mona report as:

$ git clone https://github.com/seecurity/mona-timing-report.git

$ cd mona-timing-report

$ ant

$ java -jar ReportingTool.jar --lowerBound=0.4 --upperBound=0.5 --inputFile=pow_mod.raw -
- -name=PowMod

This will produce plots and an HTML file in subdirectory starting with reports_ followed by a representation of the
current date and time.

Finally there is a tool to perform timing tests of RSA decryption using the MARVIN toolkit (https://github.com/
tomato42/marvin-toolkit):

[$ botan marvin_test marvin_key marvin_datadir --runs=100000 J

Consult the documentation for MARVIN for more about how to run this.

18.29 References

[Aes256Sc] Neve, Tiri “On the complexity of side-channel attacks on AES-256" (https://eprint.iacr.org/2007/318.pdf)

[AesCacheColl] Bonneau, Mironov “Cache-Collision Timing Attacks Against AES” (http://www.jbonneau.com/doc/
BMO06-CHES-aes_cache_timing.pdf)

[CoronDpa] Coron, ‘“Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems” (https://
citeseerx.ist.psu.edu/document?doi=4d5d6dfdb582c0d695953e92c408f2377a6c9039)

[GCCstrub] GCC Stack Scrubbing (https://gcc.gnu.org/onlinedocs/gec-14.2.0/gecc/Common-Type- Attributes.html#
index-strub-type-attribute)

[GcdFree] Joye, Paillier “GCD-Free Algorithms for Computing Modular Inverses” (https://marcjoye.github.io/papers/
JP03gcdfree.pdf)

[InvalidCurve] Biehl, Meyer, Miiller: Differential fault attacks on elliptic curve cryptosystems (https://www.iacr.org/
archive/crypto2000/18800131/18800131.pdf)

[InvalidCurveTLS] Jager, Schwenk, Somorovsky: Practical Invalid Curve Attacks on TLS-ECDH (https://www.nds.
rub.de/research/publications/ESORICS15/)

[SafeCurves] Bernstein, Lange: SafeCurves: choosing safe curves for elliptic-curve cryptography. (https://safecurves.
cr.yp.to)

[Lucky13] AlFardan, Paterson “Lucky Thirteen: Breaking the TLS and DTLS Record Protocols” (http://www.isg.rhul.
ac.uk/tls/TLStiming.pdf)

[MillionMsg] Bleichenbacher “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard
PKCS1” (https://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf)

[MillionMsgTiming] Meyer, Somorovsky, Weiss, Schwenk, Schinzel, Tews: Revisiting SSL/TLS Imple-
mentations: New Bleichenbacher Side Channels and Attacks (https://www.nds.rub.de/research/publications/
mswsst2014-bleichenbacher-usenix 14/)

[OaepTiming] Manger, “A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as
Standardized in PKCS #1 v2.0” (http://archiv.infsec.ethz.ch/education/fs08/secsem/MangerO1.pdf)

18.29. References 317

https://github.com/tomato42/marvin-toolkit
https://github.com/tomato42/marvin-toolkit
https://eprint.iacr.org/2007/318.pdf
http://www.jbonneau.com/doc/BM06-CHES-aes_cache_timing.pdf
http://www.jbonneau.com/doc/BM06-CHES-aes_cache_timing.pdf
https://citeseerx.ist.psu.edu/document?doi=4d5d6dfdb582c0d695953e92c408f2377a6c9039
https://citeseerx.ist.psu.edu/document?doi=4d5d6dfdb582c0d695953e92c408f2377a6c9039
https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/Common-Type-Attributes.html#index-strub-type-attribute
https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/Common-Type-Attributes.html#index-strub-type-attribute
https://marcjoye.github.io/papers/JP03gcdfree.pdf
https://marcjoye.github.io/papers/JP03gcdfree.pdf
https://www.iacr.org/archive/crypto2000/18800131/18800131.pdf
https://www.iacr.org/archive/crypto2000/18800131/18800131.pdf
https://www.nds.rub.de/research/publications/ESORICS15/
https://www.nds.rub.de/research/publications/ESORICS15/
https://safecurves.cr.yp.to
https://safecurves.cr.yp.to
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf
https://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf
https://www.nds.rub.de/research/publications/mswsst2014-bleichenbacher-usenix14/
https://www.nds.rub.de/research/publications/mswsst2014-bleichenbacher-usenix14/
http://archiv.infsec.ethz.ch/education/fs08/secsem/Manger01.pdf

Botan Reference Guide, Release 3.9.0

[RsaFault] Boneh, Demillo, Lipton “On the importance of checking cryptographic protocols for faults” (https://
citeseerx.ist.psu.edu/document?repid=rep | &type=pdf&doi=7622200b9459a8c0e25e74ce7316c2402862¢919)

[RandomMonty] Le, Tan, Tunstall “Randomizing the Montgomery Powering Ladder” (https://eprint.iacr.org/2015/
657)

[VectorAes] Hamburg, “Accelerating AES with Vector Permute Instructions™ https://shiftleft.org/papers/vector_aes/
vector_aes.pdf

[VersionOracle] Klima, Pokorny, Rosa “Attacking RSA-based Sessions in SSL/TLS” (https://eprint.iacr.org/2003/052)

318 Chapter 18. Side Channels

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7622200b9459a8c0e25e74ce7316c2402862e919
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7622200b9459a8c0e25e74ce7316c2402862e919
https://eprint.iacr.org/2015/657
https://eprint.iacr.org/2015/657
https://shiftleft.org/papers/vector_aes/vector_aes.pdf
https://shiftleft.org/papers/vector_aes/vector_aes.pdf
https://eprint.iacr.org/2003/052

CHAPTER
NINETEEN

DEVELOPER REFERENCE

This section contains information useful to people making contributions to the library

19.1 Notes for New Contributors

19.1.1 Source Code Layout

Under src there are directories

1ib is the library itself, more on that below

cli is the command line application botan

tests contain what you would expect. Input files go under tests/data.
python/botan3.py is the Python ctypes wrapper

bogo_shim contains the shim binary and configuration for BoringSSL’'s TLS test suite
(https://github.com/google/boringssl/tree/master/ssl/test)

fuzzer contains fuzz targets for various modules of the library
ct_selftest has some tests to validate constant time checker tools (e.g. valgrind)

build-data contains files read by the configure script. For example build-data/cc/gcc. txt describes var-
ious gcc options.

examples contains usage examples used in the documentation.

scripts contains misc scripts: install, distribution, various codegen things. Scripts controlling CI go under
scripts/ci.

configs contains configuration files tools like pylint

editors contains configuration files for editors like vscode and emacs

Under doc one finds the sources of this documentation

19.1.2 Library Layout

Under src/1ib are several directories

asnl is the DER encoder/decoder

base defines some high level types

block contains the block cipher implementations
codec has hex, base64, base32, base58

compat a (partial) compatibility layer for the libsodium API

319

https://github.com/google/boringssl/tree/master/ssl/test

Botan Reference Guide, Release 3.9.0

* compression has the compression wrappers (zlib, bzip2, Izma)
* entropy has various entropy sources used by some of the RNGs
e ffi is the C99 API

e filters is a filter/pipe API for data transforms

* hash contains the hash function implementations

 kdf contains the key derivation functions

* mac contains the message authentication codes

* math is the big integer math library. It is divided into three parts: mp which are the low level algorithms; bigint
which is a C++ wrapper around mp, and numbertheory which contains higher level algorithms like primality
testing and exponentiation

* misc contains odds and ends: format preserving encryption, SRP, threshold secret sharing, all or nothing trans-
form, and others

* modes contains block cipher modes (CBC, GCM, etc)

» passhash contains password hashing algorithms for authentication
¢ pbkdf contains password hashing algorithms for key derivation

* pk_pad contains padding schemes for public key algorithms

* prov contains bindings to external libraries such as PKCS #11

» psk_db contains a generic interface for a Pre-Shared-Key database
* pubkey contains the public key algorithms

* rng contains the random number generators

* stream contains the stream ciphers

* tls contains the TLS implementation

e utils contains various utility functions and types

* x509 is X.509 certificates, PKCS #10 requests, OCSP

Each of these folders can contain subfolders which are treated as modules if they contain an info.txt file. These
submodules have an implicit dependency on their parent module. The chapter Understanding configure.py contains
more information on Botan’s module architecture.

19.1.3 Sending patches

All contributions should be submitted as pull requests via GitHub (https://github.com/randombit/botan). If you are
planning a large change, open a discussion ticket on github before starting out to make sure you are on the right path.
And once you have something written, even if it is not complete/ready to go, feel free to open a draft PR for early review
and comment.

If possible please sign your git commits using a PGP key. See https://git-scm.com/book/en/v2/
Git-Tools-Signing- Your- Work for instructions on how to set this up.

Depending on what your change is, your PR should probably also include an update to news . rst with a note explaining
the change. If your change is a simple bug fix, a one sentence description is perhaps sufficient. If there is an existing
ticket on GitHub with discussion or other information, reference it in your change note as ‘GH #000’.

Update doc/credits. txt with your information so people know what you did!

If you are interested in contributing but don’t know where to start check out doc/dev_ref/todo.rst for some ideas
- these are changes we would almost certainly accept once they’ve passed code review.

320 Chapter 19. Developer Reference

https://github.com/randombit/botan
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work
https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work

Botan Reference Guide, Release 3.9.0

Also, try building and testing it on whatever hardware you have handy, especially unusual platforms, or using C++
compilers other than the regularly tested GCC, Clang, and Visual Studio.

19.1.4 FFIl Additions

If adding a new function declaration to ££i.h, the same PR must also add the same declaration in the Python binding
botan3.py, in addition the new API functionality must be exposed to Python and a test written in Python.

19.1.5 Git Usage

Do NOT merge master into your topic branch, this creates needless commits and noise in history. Instead, as needed,
rebase your branch against master (git rebase -i master) and force push the branch to update the PR. If the GitHub
PR page does not report any merge conflicts and nobody asks you to rebase, you don’t need to rebase.

Try to keep your history clean and use rebase to squash your commits as needed. If your diff is less than roughly 100
lines, it should probably be a single commit. Only split commits as needed to help with review/understanding of the
change.

Occasionally we apply and commit updated clang-format rules to the code base. To avoid cluttering the git blame
output with these intrusive commits, we maintain a list of them in src/configs/git-blame-ignore-revs. To use
it, either manually add --ignore-revs-file=to your git blame command, or configure it to be used in your local
checkout, like so:

git config --local blame.ignoreRevsFile src/configs/git-blame-ignore-revs
git config --local blame.markIgnoredLines true

19.1.6 Python

Scripts should be in Python 3 whenever possible.

For configure.py (and helper scripts install.py, cleanup.py and build_docs.py) the target is stock (no modules outside
the standard library) CPython 3.x. Support for PyPy, etc is great when viable (in the sense of not causing problems for
3.x, and not requiring huge blocks of version dependent code). As running this program successfully is required for a
working build, making it as portable as possible is considered key.

The python wrapper botan3.py targets CPython 3.x, and latest PyPy. Note that a single file is used to avoid dealing
with any of Python’s various crazy module distribution issues.

For random scripts not typically run by an end-user (codegen, visualization, and so on) there isn’t any need to worry
about platform independence. Here it’s fine to depend on any useful modules such as graphviz or matplotlib, regardless
if it is available from a stock CPython install.

19.1.7 Build Tools and Hints

If you don’t already use it for all your C/C++ development, install ccache (or on Windows, sccache) right now, and
configure a large cache on a fast disk. It allows for very quick rebuilds by caching the compiler output.

Use --enable-sanitizers= flag to enable various sanitizer checks. Supported values including “address” and “un-
defined” for GCC and Clang. GCC also supports “iterator” (checked iterators), and Clang supports “memory” (MSan)
and “coverage” (for fuzzing).

On Linux if you have the 1cov and gcov tools installed, then running ./src/scripts/ci_build.py coverage
will produce a coverage enabled build, run the tests, test the fuzzers against a corpus, and produce an HTML report of
total coverage. This coverage build requires the development headers for zlib, bzip2, liblzma, TrouSerS (libtspi), and
Sqlite3.

19.1. Notes for New Contributors 321

Botan Reference Guide, Release 3.9.0

19.1.8 Editor Integrations

The folder src/editors contains configuration files for a few editors. To make use of them, create symlinks of those
into the root of your local Botan repository. For example, to enable integration with VSCode and configure the editor
using editorconfig, you can do the following:

cd /home/you/projects/botan
In -s src/editors/vscode .vscode
In -s src/editors/editorconfig .editorconfig

code .

With the recommended extensions installed, you should now have a good starting point for working with Botan in
VSCode.

19.1.9 Copyright Notice

At the top of any new file add a comment with a copyright and a reference to the license, for example:

/:‘r
* (C) 202x <You>

* Botan is released under the Simplified BSD License (see license.txt)

:'c/

If you are making a substantial or non-trivial change to an existing file, add or update your own copyright statement at
the top of each file.

19.1.10 Style Conventions

When writing your code remember the need for it to be easily understood by reviewers and auditors, both at the time
of the patch submission and in the future.

Avoid complicated template metaprogramming where possible. It has its places but should be used judiciously.

When designing a new API (for use either by library users or just internally) try writing out the calling code first. That is,
write out some code calling your idealized API, then just implement that API. This can often help avoid cut-and-paste
by creating the correct abstractions needed to solve the problem at hand.

The C++11 auto keyword is very convenient but only use it when the type truly is obvious (considering also the
potential for unexpected integer conversions and the like, such as an apparent uint8_t being promoted to an int).

Unless there is a specific reason otherwise (eg due to calling some C API which requires exactly a long* be provided)
integer types should be either (u) intXX_t or size_t. If the variable is used for integer values of “no particular size”,
as in the loop for(some_type i = 0; i != 100; ++i) then the type should be size_t. Use one of the specific
size integer types only when there is a algorithmic/protocol reason to use an integer of that size. For example if a
parsing a protocol that uses 16-bit integer fields to encode a length, naturally one would use uint16_t there.

If a variable is defined and not modified, declare it const. Some exception for very short-lived variables, but generally
speaking being able to read the declaration and know it will not be modified is useful.

Use override annotations whenever overriding a virtual function. If introducing a new type that is not intended for
further derivation, mark it final.

Avoid explicit new or (especially) explicit delete: use RAII, make_unique, etc.
Use m_ prefix on all member variables.

clang-format is used for all C++ formatting. The configuration is in .clang-format in the root directory. You can
rerun the formatter using make fmt, by invoking the script src/scripts/dev_tools/run_clang_format.py or

322 Chapter 19. Developer Reference

Botan Reference Guide, Release 3.9.0

using an appropriate editor configuration from src/editors. If the output would be truly horrible, it is allowed to
disable formatting for a specific area using // clang-format off annotations.

Note

Since the output of clang-format varies from version to version, we currently require using exactly clang-format
17.

Use braces on both sides of if/else blocks, even if only using a single statement.

Avoid using namespace declarations, even inside of single functions. One allowed exception is using namespace
std: :placeholders in functions which use std: :bind. (But, don’t use std: :bind - use a lambda instead).

Use : : to explicitly refer to the global namespace (eg, when calling an OS or external library function like : :select
or ::sqlite3_open).

19.1.11 Use of External Dependencies

Compiler Dependencies

The library should always be as functional as possible when compiled with just Standard C++20. However, feel free to
use the full language.

Use of compiler extensions is fine whenever appropriate; this is typically restricted to a single file or an internal header.
Compiler extensions used currently include native uint128_t, SIMD intrinsics, inline asm syntax and so on, so there
are some existing examples of appropriate use.

Generally intrinsics or inline asm is preferred over bare assembly to avoid calling convention issues among different
platforms; the improvement in maintainability is seen as worth any potential performance tradeoff. One risk with
intrinsics is that the compiler might rewrite your clever const-time SIMD into something with a conditional jump, but
code intended to be const-time should in any case be annotated (using CT: :poison) so it can be checked at runtime
with tools.

Operating System Dependencies

If you’re adding a small OS dependency in some larger piece of code, try to contain the actual non-portable operations
to utils/os_utils.* and then call them from there.

As a policy, operating systems which are not supported by their original vendor are not supported by Botan either.
Patches that complicate the code in order to support obsolete operating systems will likely be rejected. In writing OS
specific code, feel free to assume roughly POSIX 2008, or for Windows, Windows 8 /Server 2012 (which are as of this
writing the oldest versions still supported by Microsoft).

Some operating systems, such as OpenBSD, only support the latest release. For such cases, it’s acceptable to add code
that requires APIs added in the most recent release of that OS as soon as the release is available.

Library Dependencies
Any external library dependency - even optional ones - is met with as one PR submitter put it “great skepticism”.

At every API boundary there is potential for confusion that does not exist when the call stack is all contained within
the boundary. So the additional API really needs to pull its weight. For example a simple text parser or such which
can be trivially implemented is not really for consideration. As a rough idea of the bar, equate the viewed cost of an
external dependency as at least 1000 additional lines of code in the library. That is, if the library really does need this
functionality, and it can be done in the library for less than that, then it makes sense to just write the code. Yup.

Currently the (optional) external dependencies of the library are several compression libraries (zlib, bzip2, 1zma),
sqlite3 database, Trousers (TPM 1.2 integration), TSS2 (TPM 2.0 integration) plus various operating system utilities

19.1. Notes for New Contributors 323

Botan Reference Guide, Release 3.9.0

like basic filesystem operations. These provide major pieces of functionality which seem worth the trouble of main-
taining an integration with.

At this point the most plausible examples of an appropriate new external dependency are all deeper integrations with
system level cryptographic interfaces (CommonCrypto, CryptoAPI, /dev/crypto, iOS keychain, etc)

19.2 Understanding configure.py

Botan’s build is handled with a custom Python script, configure.py. This document tries to explain how configure
works.

Note

You only need to read this if you are modifying the library, or debugging some problem with your build. For how
to use it, see Building The Library.

19.2.1 Build Structure

Modules are a group of related source and header files, which can be individually enabled or disabled at build time.
Modules can depend on other modules; if a dependency is not available then the module itself is also removed from the
list. Examples of modules in the existing codebase are asnl and x509, Since x509 depends on (among other things)
asnl, disabling asnl will also disable x509.

Most modules define one or more macros, which application code can use to detect the modules presence or absence.
The value of each macro is a datestamp, in the form YYYYMMDD which indicates the last time this module changed
in a way that would be visible to an application. For example if a class gains a new function, the datestamp should be
incremented. That allows applications to detect if the new feature is available.

19.2.2 What configure.py does

First, all command line options are parsed.

Then all of the files giving information about target CPUs, compilers, etc are parsed and sanity checked.
In calculate_cc_min_version the compiler version is detected using the preprocessor.

Then in check_compiler_arch the target architecture are detected, again using the preprocessor.

Now that the target is identified and options have been parsed, the modules to include into the artifact are picked, in
ModulesChooser.

In create_template_vars, a dictionary of variables is created which describe different aspects of the build. These
are serialized to build/build_config. json.

Up until this point no changes have been made on disk. This occurs in do_io_for_build. Build output directories
are created, and header files are linked into build/include/botan. Templates are processed to create the Makefile,
build.h and other artifacts.

19.2.3 When Modifying configure.py

Run ./src/scripts/ci_build.py lint to run Pylint checks after any change.

324 Chapter 19. Developer Reference

Botan Reference Guide, Release 3.9.0

19.2.4 Template Language

Various output files are generated by processing input files using a simple template language. All input files are stored
in src/build-data and use the suffix .in. Anything not recognized as a template command is passed through to the
output unmodified. The template elements are:

* Variable substitution, %{variable_name}. The configure script creates many variables for various purposes,
this allows getting their value within the output. If a variable is not defined, an error occurs.

If a variable reference ends with |upper, the value is uppercased before being inserted into the template output.

Using |concat:<some string> as a suffix, it is possible to conditionally concatenate the variable value with a
static string defined in the template. This is useful for compiler switches that require a template-defined parameter
value. If the substitution value is not set (i.e. “empty”), also the static concatenation value is omitted.

e Iteration, %{for variable} block %{endfor}. This iterates over alist and repeats the block as many times as
itis included. Variables within the block are expanded. The two template elements %{for ...} and %{endfor}
must appear on lines with no text before or after.

¢ Conditional inclusion, %{if variable} block %{endif}. If the variable named is defined and true (in the
Python sense of the word; if the variable is empty or zero it is considered false), then the block will be included
and any variables expanded. As with the for loop syntax, both the start and end of the conditional must be on
their own lines with no additional text.

19.2.5 Build.h

The build.h header file is generated and overwritten each time the configure.py script is executed. This header can
be included in any header or source file and provides plenty of compile-time information in the form of preprocessor
#defines.

It is helpful to check which modules are included in the current build of the library via macro defines of the form
“BOTAN_HAS” followed by the module name. Also, it contains version information macros and compile-time library
configurations.

19.2.6 Adding a new module

Create a directory in the appropriate place and create a info. txt file.

19.2.7 Syntax of info.txt

Warning

The syntax described here is documented to make it easier to use and understand, but it is not considered part of
the public API contract. That is, the developers are allowed to change the syntax at any time on the assumption that
all users are contained within the library itself. If that happens this document will be updated.

Modules and files describing information about the system use the same parser and have common syntactical elements.
Comments begin with ‘#” and continue to end of line.
There are three main types: maps, lists, and variables.

A map has a syntax like:

<MAP_NAME>
NAME1 -> VALUE1
NAME2 -> VALUE2

(continues on next page)

19.2. Understanding configure.py 325

Botan Reference Guide, Release 3.9.0

(continued from previous page)

</MAP_NAME>

The interpretation of the names and values will depend on the map’s name and what type of file is being parsed.

A list has similar syntax, it just doesn’t have values:

<LIST_NAME>
ELEM1
ELEM2

</LIST_NAME>

Lastly there are single value variables like:

VAR1 SomeValue
VAR2 "Quotes Can Be Used (And will be stripped out)"
VAR3 42

Variables can have string, integer or boolean values. Boolean values are specified with ‘yes’ or ‘no’.

19.2.8 Module Syntax

The info. txt files have the following elements. Not all are required; a minimal file for a module with no dependencies
might just contain a macro define and module_info.

Lists:
e comment and warning provides block-comments which are displayed to the user at build time.

e requires is a list of module dependencies. An os_features can be specified as a condition for needing
the dependency by writing it before the module name and separated by a 7, e.g. rtlgenrandom?dyn_load.

* header:internal is the list of headers (from the current module) which are internal-only.

header:public is a the list of headers (from the current module) which should be exported for public use.
If neither header:internal nor header:public are used then all headers in the current directory are
assumed internal.

Note
If you omit a header from both internal and public lists, it will be ignored.

* header:external is used when naming headers which are included in the source tree but might be re-
placed by an external version. This is used for the PKCS11 headers.

e arch is a list of architectures this module may be used on.

L]

isa lists ISA features which must be enabled to use this module. Can be proceeded by an arch name
followed by a : if it is only needed on a specific architecture, e.g. x86_64:ssse3.

cc is a list of compilers which can be used with this module. If the compiler name is suffixed with a version
(like “gcc:5.0”) then only compilers with that minimum version can use the module. If you need to exclude
just one specific compiler (for example because that compiler miscompiles the code in the module), you
can prefix a compiler name with ! - like !msvc.

326 Chapter 19. Developer Reference

Botan Reference Guide, Release 3.9.0

* os_features is a list of OS features which are required in order to use this module. Each line can specify
one or more features combined with ‘,’. Alternatives can be specified on additional lines.

Maps:

e defines is a map from macros to datestamps. These macros will be defined in the generated build.h.

* module_info contains documentation-friendly information about the module. Available mappings:

— name must contain a human-understandable name for the module

— brief may provide a short description about the module’s contents

— type specifies the type of the module (defaults to Public)

* Public Library users can directly interact with this module. E.g. they may enable or disable the

module at will during build.

% Internal Library users cannot directly interact with this module. Typically, it does not expose
any public API and is enabled as a dependency of other modules. Explicitly disabling an internal

module explicitly disables all dependent modules.

Virtual This module does not contain any implementation but acts as a container for other sub-
modules. It cannot be interacted with by the library user and cannot be depended upon directly.

— lifecycle specifies the module’s lifecycle (defaults to Stable)

Stable The module is stable and will not change in a way that would break backwards compati-

bility.

Experimental The module is experimental and may change in a way that would break back-
wards compatibility. Not enabled in a default build. Either use --enable-modules or

--enable-experimental-features.

* Deprecated The module is deprecated and will be removed in a future release.
It remains to be enabled in a default build. Either use --disable-modules or

--disable-deprecated-features.

* libs specifies additional libraries which should be linked if this module is included. It maps from the OS

name to a list of libraries (comma seperated).

» frameworks is a macOS/iOS specific feature which maps from an OS name to a framework.

Variables:

¢ load_on Can take on values never, always, auto, dep or vendor. TODO describe the behavior of these

¢ endian Required endian for the module (any (default), little, big)

An example:

Disable this by default
load_on never

<isa>
sse2
</isa>

<defines>
DEFINE1 -> 20180104
DEFINE2 -> 20190301
</defines>

(continues on next page)

19.2. Understanding configure.py

327

Botan Reference Guide, Release 3.9.0

(continued from previous page)

<module_info>

name -> "This Is Just To Say"

brief -> "Contains a poem by William Carlos Williams'
</module_info>

<comment>

I have eaten
the plums
that were in
the icebox
</comment>

<warning>
There are no more plums
</warning>

<header:public>
headerl.h
</header:public>

<header:internal>
header_helper.h
whatever.h
</header:internal>

<arch>
x86_64
</arch>

<cc>
gcc:4.9 # gcc 4.8 doesn't work for <reasons>
clang
</cc>

Can work with POSIX+getentropy or Win32
<os_features>

posixl,getentropy

win32

</os_features>

<frameworks>
macos -> FramyMcFramerson
</frameworks>

<libs>
gnx -> foo,bar,baz
solaris -> socket
</1libs>

328 Chapter 19. Developer Reference

Botan Reference Guide, Release 3.9.0

19.2.9 Supporting a new CPU type
CPU information is stored in src/build-data/arch.

There is also a file src/build-data/detect_arch. cpp which is used for build-time architecture detection using the
compiler preprocessor. Supporting this is optional but recommended.

Lists:
* aliases is alist of alternative names for the CPU architecture.
* isa_extensions is a list of possible ISA extensions that can be used on this architecture. For example
x86-64 has extensions “sse2”, “ssse3”, “avx2”, “aesni”, ...
Variables:

* endian if defined should be “little” or “big”. This can also be controlled or overridden at build time.

e family can specify a family group for several related architecture. For example both x86_32 and x86_64
use family of “x86”.

* wordsize is the default wordsize, which controls the size of limbs in the multi precision integers. If not
set, defaults to 32.

19.2.10 Supporting a new compiler

Compiler information is stored in src/build-data/cc. Looking over those files will probably help understanding,
especially the ones for GCC and Clang which are most complete.

In addition to the info file, for compilers there is a file src/build-data/detect_version.cpp. The configure.
py script runs the preprocessor over this file to attempt to detect the compiler version. Supporting this is not strictly
necessary.

Maps:

* binary_link_commands gives the command to use to run the linker, it maps from operating system name
to the command to use. It uses the entry “default” for any OS not otherwise listed.

¢ cpu_flags_no_debug unused, will be removed

* cpu_flags used to emit CPU specific flags, for example LLVM bitcode target uses -emit-11lvm flag.
Rarely needed.

e isa_flags maps from CPU extensions (like NEON or AES-NI) to compiler flags which enable that ex-
tension. These have the same name as the ISA flags listed in the architecture files.

e 1lib_flags has a single possible entry “debug” which if set maps to additional flags to pass when building
a debug library. Rarely needed.

* mach_abi_linking specifies flags to enable when building and linking on a particular CPU. This is usually
flags that modify ABI. There is a special syntax supported here “all!losl,archl,0s2,arch2” which allows
setting ABI flags which are used for all but the named operating systems and/or architectures.

* sanitizers is a map of sanitizers the compiler supports. It must include “default” which is a list of
sanitizers to include by default when sanitizers are requested. The other keys should map to compiler flags.

e so_link_commands maps from operating system to the command to use to build a shared object.

e ct_value_barrier chooses how the compiler should implement constant-time value barriers, see
ct_utils.h for details.

Variables:

* binary_name the default name of the compiler binary.

19.2. Understanding configure.py 329

Botan Reference Guide, Release 3.9.0

linker_name the name of the linker to use with this compiler.

macro_name a macro of the for BOTAN_BUILD_COMPILER_IS_XXX will be defined.
output_to_object (default “-0”) gives the compiler option used to name the output object.
output_to_exe (default “-0”) gives the compiler option used to name the output object.

add_include_dir_option (default “-I”’) gives the compiler option used to specify an additional include
dir.

add_lib_dir_option (default “-L”) gives the compiler option used to specify an additional library dir.
add_sysroot_option gives the compiler option used to specify the sysroot.

add_lib_option (default “-1%s”) gives the compiler option to link in a library. %s will be replaced with
the library name.

add_framework_option (default “-framework™) gives the compiler option to add a macOS framework.
preproc_flags (default “-E”) gives the compiler option used to run the preprocessor.

compile_flags (default “-c”) gives the compiler option used to compile a file.

debug_info_flags (default “-g”) gives the compiler option used to enable debug info.
optimization_flags gives the compiler optimization flags to use.

size_optimization_flags gives compiler optimization flags to use when compiling for size. If not set
then --optimize-for-size will use the default optimization flags.

sanitizer_optimization_flags gives compiler optimization flags to use when building with sanitiz-
ers.

coverage_flags gives the compiler flags to use when generating coverage information.
stack_protector_flags gives compiler flags to enable stack overflow checking.
shared_flags gives compiler flags to use when generation shared libraries.

lang_flags gives compiler flags used to enable the required version of C++.
lang_binary_linker_flags gives flags to be passed to the linker when creating a binary
warning_flags gives warning flags to enable.

maintainer_warning_flags gives extra warning flags to enable during maintainer mode builds.

visibility_build_flags gives compiler flags to control symbol visibility when generation shared li-
braries.

visibility_attribute gives the attribute to use in the BOTAN_DLL macro to specify visibility when
generation shared libraries.

ninja_header_deps_style style of include dependency tracking for Ninja, see also https://ninja-build.
org/manual.html#ref_headers.

header_deps_flag flag to write out dependency information in the style required by
ninja_header_deps_style.

header_deps_out flag to specify name of the dependency output file.
ar_command gives the command to build static libraries

ar_options gives the options to pass to ar_command, if not set here takes this from the OS specific
information.

ar_output_to gives the flag to pass to ar_command to specify where to output the static library.

330

Chapter 19. Developer Reference

https://ninja-build.org/manual.html#ref_headers
https://ninja-build.org/manual.html#ref_headers

Botan Reference Guide, Release 3.9.0

werror_flags gives the complier flags to treat warnings as errors.

19.2.11 Supporting a new OS

Operating system information is stored in src/build-data/os.

Lists:

L]

Variables:

aliases is alist of alternative names which will be accepted

target_features is a list of target specific OS features. Some of these are supported by many OSes
(for example “posix1”’) others are specific to just one or two OSes (such as “getauxval”). Adding a value
here causes a new macro BOTAN_TARGET_OS_HAS_XXX to be defined at build time. Use configure.py
--list-os-features to list the currently defined OS features.

feature_macros is a list of macros to define.

ar_command gives the command to build static libraries

ar_options gives the options to pass to ar_command

ar_output_to gives the flag to pass to ar_command to specify where to output the static library.
bin_dir (default “bin”) specifies where binaries should be installed, relative to install_root.
cli_exe_name (default “botan’) specifies the name of the command line utility.
default_compiler specifies the default compiler to use for this OS.

doc_dir (default “doc”) specifies where documentation should be installed, relative to install_root
header_dir (default “include”) specifies where include files should be installed, relative to install_root
install_root (default “/usr/local”) specifies where to install by default.

lib_dir (default “lib”) specifies where library should be installed, relative to install_root.
lib_prefix (default “lib”) prefix to add to the library name

library_name

man_dir specifies where man files should be installed, relative to install_root

obj_suffix (default “0”) specifies the suffix used for object files

132

program_suffix (default ‘) specifies the suffix used for executables

shared_lib_symlinks (default “yes) specifies if symbolic names should be created from the base and
patch soname to the library name.

soname_pattern_abi

soname_pattern_base

soname_pattern_patch

soname_suffix file extension to use for shared library if soname_pattern_base is not specified.
static_suffix (default “a”) file extension to use for static library.

use_stack_protector (default “true”) specify if by default stack smashing protections should be en-
abled.

uses_pkg_config (default “yes”) specify if by default a pkg-config file should be created.

19.2. Understanding configure.py 331

Botan Reference Guide, Release 3.9.0

19.3 Test Framework

Botan uses a custom-built test framework. Some portions of it are quite similar to assertion-based test frameworks such
as Catch or Gtest, but it also includes many features which are well suited for testing cryptographic algorithms.

The intent is that the test framework and the test suite evolve symbiotically; as a general rule of thumb if a new function
would make the implementation of just two distinct tests simpler, it is worth adding to the framework on the assumption
it will prove useful again. Feel free to propose changes to the test system.

When writing a new test, there are three key classes that are used, namely Test, Test::Result, and
Text_Based_Test. A Test (or Text_Based_Test) runs and returns one or more Test: :Result.

19.3.1 Namespaces in Test

The test code lives in a distinct namespace (Botan_Tests) and all code in the tests which calls into the library should
use the namespace prefix Botan: : rather than a using namespace declaration. This makes it easier to see where the
test is actually invoking the library, and makes it easier to reuse test code for applications.

19.3.2 Test Data

The test framework is heavily data driven. As of this writing, there is about 1 Mib of test code and 17 MiB of test data.
For most (though certainly not all) tests, it is better to add a data file representing the input and outputs, and run the
tests over it. Data driven tests make adding or editing tests easier, for example by writing scripts which produce new
test data and output it in the expected format.

19.3.3 Test
class Test

virtual std::vector<7est::Result> run() =0
This is the key function of a Test: it executes and returns a list of results. Almost all other functions on
Test are static functions which just serve as helper functions for run.

static std::string read_data_file(const std::string &path)
Return the contents of a data file and return it as a string.

static std::vector<uint8_t> read_binary_data_file(const std::string &path)
Return the contents of a data file and return it as a vector of bytes.

static std::string data_f£ile (const std::string &what)
An alternative to read_data_file and read_binary_file, use only as a last result, typically for library
APIs which themselves accept a filename rather than a data blob.

static bool run_long_tests() const

Returns true if the user gave option --run-long-tests. Use this to gate particularly time-intensive tests.

static Botan::RandomNumberGenerator &rng ()

Returns a reference to a fast, not cryptographically secure random number generator. It is deterministicly
seeded with the seed logged by the test runner, so it is possible to reproduce results in “random” tests.

Tests are registered using the macro BOTAN_REGISTER_TEST which takes 2 arguments: the name of the test and the
name of the test class. For example given a Test instance named MyTest, use:

[BOTAN_REGISTER_TEST("mytest", MyTest);

All test names should contain only lowercase letters, numbers, and underscore.

332 Chapter 19. Developer Reference

Botan Reference Guide, Release 3.9.0

19.3.4 Test::Result

class Test: :Result
A Test::Result records one or more tests on a particular topic (say “AES-128/CBC” or “ASN.1 date parsing”).
Most of the test functions return true or false if the test was successful or not; this allows performing conditional
blocks as a result of earlier tests:

if(result.test_eq("first value", produced, expected))

{

// further tests that rely on the initial test being correct

}

Only the most commonly used functions on Test: :Result are documented here, see the header tests.h for
more.

Test: :Result(const std::string &who)

Create a test report on a particular topic. This will be displayed in the test results.
bool test_success()

Report a test that was successful.
bool test_success(const std::string ¬e)

Report a test that was successful, including some comment.

bool test_failure(const std::string &err)

Report a test failure of some kind. The error string will be logged.

bool test_failure (const std::string &what, const std::string &error)
Report a test failure of some kind, with a description of what failed and what the error was.

void test_failure(const std::string &what, const uint8_t buf[], size_t buf_len)

Report a test failure due to some particular input, which is provided as arguments. Normally this is only
used if the test was using some randomized input which unexpectedly failed, since if the input is hardcoded
or from a file it is easier to just reference the test number.

bool test_eq(const std::string &what, const std::string &produced, const std::string &expected)
Compare to strings for equality.

bool test_ne(const std::string &what, const std::string &produced, const std::string &expected)

Compare to strings for non-equality.

bool test_eq(const char *producer, const std::string &what, const uint8_t produced[], size_t produced_len,
const uint8_t expected[], size_t expected_len)

Compare two arrays for equality.

bool test_ne(const char *producer, const std::string &what, const uint8_t produced|[], size_t produced_len,
const uint8_t expected[], size_t expected_len)

Compare two arrays for non-equality.

bool test_eq(const std::string &producer, const std::string &what, const std::vector<uint8_t> &produced,
const std::vector<uint8_t> &expected)

Compare two vectors for equality.

bool test_ne(const std::string &producer, const std::string &what, const std::vector<uint8_t> &produced,
const std::vector<uint8_t> &expected)

Compare two vectors for non-equality.

19.3. Test Framework 333

Botan Reference Guide, Release 3.9.0

bool confirm(const std::string &what, bool expr)
Test that some expression evaluates to true.

template<typename T>

bool test_not_null (const std::string &what, 7" *ptr)
Verify that the pointer is not null.

bool test_lt(const std::string &what, size_t produced, size_t expected)
Test that produced < expected.

bool test_lte(const std::string &what, size_t produced, size_t expected)
Test that produced <= expected.

bool test_gt (const std::string &what, size_t produced, size_t expected)
Test that produced > expected.

bool test_gte(const std::string &what, size_t produced, size_t expected)
Test that produced >= expected.

bool test_throws (const std::string &what, std::function<void()> fn)
Call a function and verify it throws an exception of some kind.

bool test_throws (const std::string &what, const std::string &expected, std::function<void()> fn)

Call a function and verify it throws an exception of some kind and that the exception message exactly equals
expected.

19.3.5 Text_Based Test

A Text_Based_Text runs tests that are produced from a text file with a particular format which looks somewhat like
an INI-file:

Comments begin with # and continue to end of line
[Header]

Test 1

Keyl = Valuel

Key2 = Value2

Test 2
Keyl = Valuel
Key2 = Value2

class VarMap
An object of this type is passed to each invocation of the text-based test. It is used to access the test variables.
All access takes a key, which is one of the strings which was passed to the constructor of Text_Based_Text.
Accesses are either required (get_req_foo), in which case an exception is throwing if the key is not set, or
optional (get_opt_£foo) in which case the test provides a default value which is returned if the key was not set
for this particular instance of the test.
std::vector<uint8_t> get_req_bin(const std::string &key) const

Return a required binary string. The input is assumed to be hex encoded.

std::vector<uint8_t> get_opt_bin(const std::string &key) const

Return an optional binary string. The input is assumed to be hex encoded.

std::vector<std::vector<uint8_t>> get_req_bin_list (const std::string &key) const

334 Chapter 19. Developer Reference

Botan Reference Guide, Release 3.9.0

Botan::BigInt get_req_bn(const std::string &key) const

Return a required BigInt. The input can be decimal or (with “0x” prefix) hex encoded.

Botan::Biglnt get_opt_bn(const std::string &key, const Botan::BigInt &def_value) const

Return an optional BigInt. The input can be decimal or (with “Ox” prefix) hex encoded.

std::string get_req_str(const std::string &key) const

Return a required text string.

std::string get_opt_str(const std::string &key, const std::string &def_value) const

Return an optional text string.

size_t get_req_sz(const std::string &key) const

Return a required integer. The input should be decimal.

size_t get_opt_sz(const std::string &key, const size_t def_value) const

Return an optional integer. The input should be decimal.

class Text_Based_Test : public 7est

Text_Based_Test (const std::string &input_file, const std::string &required_keys, const std::string
&optional_keys ="")

This constructor is

Note

The final element of required_keys is the “output key”, that is the key which signifies the boundary
between one test and the next. When this key is seen, run_one_test will be invoked. In the test input
file, this key must always appear least for any particular test. All the other keys may appear in any order.

Test::Result run_one_test (const std::string &header, const VarMap &vars)

Runs a single test and returns the result of it. The header parameter gives the value (if any) set in a
[Header] block. This can be useful to distinguish several types of tests within a single file, for example
“[Valid]” and “[Invalid]”.

bool clear_between_callbacks () const

By default this function returns false. If it returns true, then when processing the data in the file, variables
are not cleared between tests. This can be useful when several tests all use some common parameters.

19.3.6 Test Runner

If you are simply writing a new test there should be no need to modify the runner, however it can be useful to be aware
of its abilities.

The runner can run tests concurrently across many cores. By default single threaded execution is used, but you can use
--test-threads option to specify the number of threads to use. If you use --test-threads=0 then the runner will
probe the number of active CPUs and use that (but limited to at most 16). If you want to run across many cores on a
large machine, explicitly specify a thread count. The speedup is close to linear.

The RNG used in the tests is deterministic, and the seed is logged for each execution. You can cause the random
sequence to repeat using --drbg-seed option.

19.3. Test Framework 335

Botan Reference Guide, Release 3.9.0

Note

Currently the RNG is seeded just once at the start of execution. So you must run the exact same sequence of tests
as the original test run in order to get reproducible results.

If you are trying to track down a bug that happens only occasionally, two very useful options are --test-runs and
--abort-on-first-fail. The first takes an integer and runs the specified test cases that many times. The second
causes abort to be called on the very first failed test. This is sometimes useful when tracing a memory corruption bug.

19.4 Continuous Integration and Automated Testing

19.4.1 CI Build Script

The Github Actions builds are orchestrated using a script src/scripts/ci_build.py. This allows one to easily
reproduce the CI process on a local machine.

19.4.2 Repository Configuration

Specific configuration for test dependencies and Cl-related global settings are centralized in src/configs/
repo_config.env. This file is pulled into the CI environment using the python script src/scripts/repo_config.
py.

If one needs direct access to the configuration variables (without relying on environment variables in CI), use src/
scripts/repo_config.py in one of the following ways:

1. From the command line:

print all key-value pairs, like: VAR=VALUE\n...
python3 src/scripts/repo_config.py all

print the value of a specific key
python3 src/scripts/repo_config.py get VAR

list all available variables in repo_config.env
python3 src/scripts/repo_config.py list

L

2. As a python module (assuming the script is in the PYTHONPATH):

from repo_config import RepoConfig
config = RepoConfig()
print (config['VAR'])

19.4.3 Github Actions

https://github.com/randombit/botan/actions/workflows/ci.yml

Github Actions is the primary CI, and tests the Linux, Windows, macOS, and iOS builds. Among other things it runs
tests using valgrind, cross-compilation for various architectures (currently including ARM and PPC64), MinGW build,
and a build that produces the coverage report.

The Github Actions configuration is in .github/workflows/ci.yml which executes platform dependent
setup scripts src/scripts/ci/setup_gh_actions.sh or src/scripts/ci/setup_gh_actions.psl and ...
/setup_gh_actions_after_vcvars.psl to install needed packages and detect certain platform specifics like com-
piler cache locations.

336 Chapter 19. Developer Reference

https://github.com/randombit/botan/actions/workflows/ci.yml

Botan Reference Guide, Release 3.9.0

Then src/scripts/ci_build.py is invoked to steer the actual build and test runs.

19.4.4 Github Actions (nightly)

https://github.com/randombit/botan/actions/workflows/nightly.yml

Some checks are just too slow to include in the main CI builds. These are instead delegated to a scheduled job that runs
every night against master.

Currently these checks include a full run of valgrind (the valgrind build in CI only runs a subset of the tests), and a
run of clang-tidy with all warnings (that we are currently clean for) enabled. Each of these jobs takes about an hour
to run. In the main CI, we aim to have no job take more than half an hour.

19.4.5 OSS-Fuzz
https://github.com/google/oss-fuzz/

0SS-Fuzz is a distributed fuzzer run by Google. Every night, the fuzzer harnesses in src/fuzzer are built and run
on many machines, with any findings reported to the developers via email.

19.5 Fuzzing The Library

Botan comes with a set of fuzzing endpoints which can be used to test the library.

19.5.1 Fuzzing with libFuzzer

As of Clang Version 6.0 libFuzzer is automatically included in the compiler. Therefore you don’t need to install any
new software. You can build the fuzzers by running

$./configure.py --cc=clang --build-fuzzer=libfuzzer --enable-sanitizers=fuzzer
$ make fuzzers

The option —enable-sanitizers=fuzzer compiles the library for coverage-guided fuzzing. You can add additional san-
itizers like address, undefined and memory or with/without additional information during building by either adding
—unsafe-fuzzer-mode or —with-debug-info. The coverage sanitizer is not compatible with this configuration.

If you want to link additional libraries you can use the —with-fuzzer-lib option while configuring the build with con-
figure.py. The fuzzer binaries will be in build/fuzzer. Simply pick one and run it, optionally also passing a directory
containing corpus inputs. Running

$ make fuzzer_corpus
downloads a specific corpus from https://github.com/randombit/crypto-corpus.git. Together with
$./src/scripts/test_fuzzers.py fuzzer_corpus build/fuzzer

you can test the Fuzzers.

19.5.2 Fuzzing with AFL++

Please make sure that you have installed AFL++ according to https://afiplus.plus/building/. The version of Clang should
match the version of afl-clang-fast++/ afl-clang-fast. You can fuzz with AFL++ in LLVM mode (https://github.com/
AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.llvm.md) by running

$./configure.py --cc=clang --with-sanitizers --build-fuzzer=afl --unsafe-fuzzer-mode --
—.cc-bin=afl-clang-fast++
$ make fuzzers

19.5. Fuzzing The Library 337

https://github.com/randombit/botan/actions/workflows/nightly.yml
https://github.com/google/oss-fuzz/
https://github.com/randombit/crypto-corpus.git
https://aflplus.plus/building/
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.llvm.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.llvm.md

Botan Reference Guide, Release 3.9.0

For AFL++ in GCC mode make sure that you have afl-g++-fast installed. Otherwise follow https://github.com/
AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.gcc_plugin.md to build and install it. You can con-
figure the build by running

$./configure.py --cc=gcc --with-sanitizers --build-fuzzer=afl --unsafe-fuzzer-mode --cc-
—bin=afl-g++-fast
$ make fuzzers

The fuzzer binaries will be in build/fuzzer. To run them you need to run under afi-fuzz:

[$ afl-fuzz -i corpus_path -o output_path ./build/fuzzer/binary

19.5.3 Fuzzing with TLS-Attacker

TLS-Attacker (https://github.com/RUB-NDS/TLS- Attacker) includes a mode for fuzzing TLS servers. A prebuilt copy
of TLS-Attacker is available in a git repository:

[$ git clone --depth 1 https://github.com/randombit/botan-ci-tools.git

To run it against Botan’s server:

$./configure.py --with-sanitizers
$ make botan
$./src/scripts/run_tls_attacker.py ./botan ./botan-ci-tools

Output and logs from the fuzzer are placed into /tmp. See the TLS-Attacker documentation for more information about
how to use this tool.

19.5.4 Input Corpus
AFL requires an input corpus, and libFuzzer can certainly make good use of it.
Some other crypto corpus repositories include

* https://github.com/randombit/crypto-corpus

* https://github.com/mozilla/nss-fuzzing-corpus

* https://github.com/google/boringssl/tree/master/fuzz

19.5.5 Adding new fuzzers
New fuzzers are created by adding a source file to src/fuzzers which have the signature:
void fuzz(std::span<const uint8_t> in)

After adding your fuzzer, rerun . /configure.py and build.

19.6 Release Process and Checklist

Releases are done quarterly, normally on the first non-holiday Tuesday of February, May, August, and November. A
feature freeze goes into effect starting 8 days before the release (ie the Monday of the week prior).

Note

This information is only useful if you are a developer of botan who is creating a new release of the library.

338 Chapter 19. Developer Reference

https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.gcc_plugin.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.gcc_plugin.md
https://github.com/RUB-NDS/TLS-Attacker
https://github.com/randombit/crypto-corpus
https://github.com/mozilla/nss-fuzzing-corpus
https://github.com/google/boringssl/tree/master/fuzz

Botan Reference Guide, Release 3.9.0

19.6.1 Pre Release Checks

In the week prior to a release, after feature freeze goes into effect
¢ [] Check that the version number in src/build-data/version. txt is correct.
¢ [] Confirm that the release notes in news.rst are accurate and complete.
* [] Diff ffi.h vs the previous release; is a new FFI version required?

* [] Do maintainer-mode builds with Clang and GCC to catch any warnings

[] Test build configurations using src/scripts/test_all_configs.py
e [] Test a few builds on platforms not in CI (eg OpenBSD, FreeBSD, Solaris)
* [] Update relevant third party test suites (eg Limbo and BoGo)

19.6.2 Tag the Release
At the time the release is created
[] Update the release date in news.rst
* [] Update readme.rst with the new release URL/date

* [] Check in those changes then backport to the release branch:

$ git commit readme.rst news.rst -m "Update for 3.8.2 release"
$ git checkout release-3

$ git merge master

$ git tag 3.8.2

19.6.3 Build The Release Tarballs

* []Run src/scripts/dist.py to create the tarball, with the tag as argument:

[$ src/scripts/dist.py 3.8.2

* [1 Do a final build/test of the generated tarball.

* [] Save the generated tarball to the release archive:

$ cd botan-releases

$ sha256sum Botan-3.8.2.tar.xz >> sha256sums.txt
$ git add .

$ git commit -m "Release version 3.8.2"

$ git push origin master

19.6.4 Push to GitHub

* [] Push the release-3 and master branches, including the new tag:

[$ git push origin --tags release-3 master

19.6. Release Process and Checklist

339

Botan Reference Guide, Release 3.9.0

19.6.5 Update The Website

The website content is created by src/scripts/website.py.

The website is mirrored automatically from a git repository which must be updated:

$ git checkout git@botan.randombit.net:/srv/git/botan-website.git
$./src/scripts/website.py --output-dir botan-website

$ cd botan-website

$ git add .

$ git commit -m "Update for 3.8.2"

$ git push origin master

19.7 Todo List

Feel free to take one of these on if it interests you. Before starting out on something, send an email to the dev list or

open a discussion ticket on GitHub to make sure you’re on the right track.

Request a new feature by opening a pull request to update this file.

19.7.1 New Ciphers/Hashes/MACs
* GCM-SIV (RFC 8452)
* EME* tweakable block cipher (https://eprint.iacr.org/2004/125)
* PMAC
» SIV-PMAC
* Threefish-1024
* Skein-MAC
» FFX format preserving encryption (NIST 800-38G)
e Adiantum (https://eprint.iacr.org/2018/720)
« HPKE (RFC 9180)
* Blake3

19.7.2 Hardware Specific Optimizations
* Stiched AES/GCM mode for CPUs supporting both AES and CLMUL
* GFNI implementations for: Camellia, SEED, ARIA
* NEON/VMX/LSX support for the SIMD based GHASH
* Poly1305 using AVX2
e SM3 using x86 SM3-NI
e SM3 using AVX2/BMI2
* Constant time bitsliced DES
* SIMD evaluation of SHA-2 and SHA-3 compression functions
* Improved Salsa implementations (SIMD_4x32 and/or AVX2)
* Add CLMUL/PMULL implementations for CRC24

340 Chapter 19.

Developer Reference

https://eprint.iacr.org/2004/125
https://eprint.iacr.org/2018/720

Botan Reference Guide, Release 3.9.0

* Add support for ARMv8.4-A SHA-3 and SM3 instructions
POWERS SHA-2 extensions (GH #1486 + #1487)

* Add support for RISC-V crypto extensions
¢ Add support for using Loongarch64 LASX (256-bit SIMD)

19.7.3 Public Key Crypto, Math

* Short vector optimization for BigInt

BLS12-381 pairing, BLS signatures

* Identity based encryption
¢ Paillier homomorphic cryptosystem

New PAKE:s (pending CFRG bakeoff results)

SPHINX password store (https://eprint.iacr.org/2018/695)

19.7.4 Utility Functions
» Constant time base32/base64/hex are optimized using SWAR; apply this to base58
* Make Memory_Pool more concurrent (currently uses a global lock)

* Guarded integer type to prevent overflow bugs

19.7.5 External Providers
* Add support for iOS keychain access
» Extend support for TPM 2.0 (PCR, NVRAM, Policies, etc)

19.7.6 TLS

e Make DTLS support optional at build time
e Make TLS 1.2 support optional at build time
* Improve/optimize DTLS defragmentation and retransmission

¢ Make RSA optional at build time

Make finite field DH optional at build time

* Certificate Transparency extensions

* TLS supplemental authorization data (RFC 4680, RFC 5878)
DTLS-SCTP (RFC 6083)

19.7.7 PKIX
¢ Further tests of validation API (see GH #785)
* X.509 policy constraints

* OCSP responder logic

19.7. Todo List 341

https://eprint.iacr.org/2018/695

Botan Reference Guide, Release 3.9.0

19.7.8 New Protocols / Formats
* Noise protocol
¢ ACME protocol (needs a story for JSON)
* Cryptographic Message Syntax (RFC 5652)
 Fernet symmetric encryption (https://cryptography.io/en/latest/fernet/)
* RNCryptor format (https://github.com/RNCryptor/RNCryptor-Spec)
» Age format (https://age-encryption.org/vl)

 Useful OpenPGP subset 1: symmetrically encrypted files. Not aiming to process arbitrary OpenPGP, but rather
produce something that happens to be readable by gpg and is relatively simple to process for decryption. Require
AEAD mode (EAX/OCB).

 Useful OpenPGP subset 2: Process OpenPGP public keys
 Useful OpenPGP subset 3: Verification of OpenPGP signatures

19.7.9 Cleanups
* Unicode path support on Windows (GH #1615)

* The X.509 path validation tests have much duplicated logic

19.7.10 New C APIs
* PKCS10 requests
* Certificate signing
* CRLs
* Expose TLS
» Expose secret sharing
* Expose deterministic PRNG
* base32
* base58
* DL_Group
* EC_Group

19.7.11 Build/Test

* Support hardcoding all test vectors into the botan-test binary so it can run as a standalone item (copied to a
device, etc)

* Run iOS binary under simulator in CI
* Run Android binary under simulator in CI

* Add support for vxWorks

342 Chapter 19. Developer Reference

https://cryptography.io/en/latest/fernet/
https://github.com/RNCryptor/RNCryptor-Spec
https://age-encryption.org/v1

Botan Reference Guide, Release 3.9.0

19.7.12 CLI

* Add a --completion option to dump autocomplete info, write support for autocompletion in bash/zsh.

» Change fls_server to be a tty<->socket app, like tls_client is, instead of a bogus echo server.

e encrypt | decrypt tools providing password based file encryption

* Add ECM factoring

* Clone of minisign signature utility

 Password store utility

e TOTP calculator

* Clone of magic wormhole

* ACVP client (https://github.com/usnistgov/ACVP)

19.7.13 Documentation

¢ Always needs help

19.8 OS Features

A summary of OS features as defined in src/build-data/os.

aix
android
cygwin
dragonfly
emscripten
freebsd
generic
haiku
hpux
hurd
ios
linux
1lvm
macos
mingw
netbsd
none
openbsd
anx
solaris
uwp
windows

co S fE s sl e ERE e B g e

Feature a

alloc_conceal
apple_keychain
arc4random

atomics X

el

X
X

X X X X

continues on next page

19.8. OS Features

343

https://github.com/usnistgov/ACVP

Botan Reference Guide, Release 3.9.0

Table 1 - continued from previous page

Feature a a c d e f g h h h i I | m m n n o q s

auxinfo X

cap_enter X

ccrandom X

certificate_store X

clock_gettime X X X X X X X X X X X X X
commoncrypto X X

crypto_ng

dev_random X X X X X
elf_aux_info

explicit_bzero X
explicit_memset X
filesystem X X X X X X X X X X X
getauxval X

getentropy X

getrandom X

pledge

posix1 X
posix_mlock X
pretl

proc_fs X X
rtlgenrandom X
rtlsecurezeromemory

sandbox_proc X
setppriv
sockets
thread_local
threads
virtual_lock
win32
winsock2

>
>
>

X <X
o
o
o

ol
ol
>

XX
ol
>
ol

el
el
el
e lelel
<o
el

el le
ol
el
el
el lel
ol
el
el le
e lelel
el

el ol

<

>

Il

Note

This file is auto generated by src/scripts/gen_os_features.py. Dont modify it manually.

19.9 Private OID Assighments

The library uses some OIDs under a private arc assigned by IANA, 1.3.6.1.4.1.25258

Values currently assigned are:

randombit OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 25258 }

publicKey OBJECT IDENTIFIER ::= { randombit 1 }

mceliece OBJECT IDENTIFIER ::= { publicKey 3 }

-- { publicKey 4 } previously used as private X25519

-- { publicKey 5 } previously used for XMSS draft 6
gost-3410-with-sha256 OBJECT IDENTIFIER ::= { publicKey 6 1 }

(continues on next page)

344 Chapter 19. Developer Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

frodokem-shake OBJECT IDENTIFIER ::= { publicKey 14 }
efrodokem-shake OBJECT IDENTIFIER ::= { publicKey 16 }
frodokem-aes OBJECT IDENTIFIER ::= { publicKey 15 }
efrodokem-aes OBJECT IDENTIFIER ::= { publicKey 17 }

frodokem-640-shake
frodokem-976-shake

frodokem-1344-shake

frodokem-640-aes
frodokem-976-aes
frodokem-1344-aes

OBJECT_IDENTIFIER :
OBJECT_IDENTIFIER :
OBJECT_IDENTIFIER :
OBJECT_IDENTIFIER :
OBJECT_IDENTIFIER :
OBJECT_IDENTIFIER :

frodokem-shake
frodokem-shake
frodokem-shake
frodokem-aes
frodokem-aes
frodokem-aes

efrodokem-640-shake OBJECT_IDENTIFIER :
efrodokem-976-shake OBJECT_IDENTIFIER :
efrodokem-1344-shake OBJECT_IDENTIFIER :

efrodokem-shake
efrodokem-shake
efrodokem-shake

efrodokem-640-aes
efrodokem-976-aes
efrodokem-1344-aes

OBJECT_IDENTIFIER :
OBJECT_IDENTIFIER :
OBJECT_IDENTIFIER :

efrodokem-aes
efrodokem-aes
efrodokem-aes

e e e e N

W N R WN R WNRFR WN R

S e e e e e o o b o b

kyber OBJECT IDENTIFIER ::= { publicKey 7 }
kyber-90s OBJECT IDENTIFIER ::= { publicKey 11 }
kyber-512 OBJECT IDENTIFIER ::= { kyber 1 }
kyber-768 OBJECT IDENTIFIER ::= { kyber 2 }
kyber-1024 OBJECT IDENTIFIER ::= { kyber 3 }
kyber-512-90s OBJECT IDENTIFIER ::= { kyber-90s 1 }
kyber-768-90s OBJECT IDENTIFIER ::= { kyber-90s 2 }
kyber-1024-90s OBJECT IDENTIFIER ::= { kyber-90s 3 }

Xmss OBJECT IDENTIFIER ::= { publicKey 8 }

-- The current dilithium implementation is compatible with the reference
-- implementation commit 3e9b9f1412f6c7435dbeb4el0692ea58f181ee51
dilithium OBJECT IDENTIFIER ::= { publicKey 9 }

dilithium-aes OBJECT IDENTIFIER ::= { publicKey 10 }

OBJECT IDENTIFIER ::=
dilithium-6x5 OBJECT IDENTIFIER ::=
dilithium-8x7 OBJECT IDENTIFIER ::=
dilithium-aes-4x4 OBJECT IDENTIFIER ::=
dilithium-aes-6x5 OBJECT IDENTIFIER ::=
dilithium-aes-8x7 OBJECT IDENTIFIER ::=

dilithium-4x4 dilithium 1 }
dilithium 2 }
dilithium 3 }
dilithium-aes 1 }
dilithium-aes 2 }
dilithium-aes 3 }

e N WS P R

SphincsPlus OBJECT IDENTIFIER ::= { publicKey 12 }
SphincsPlus-shake
SphincsPlus-sha?2

SphincsPlus-haraka OBJECT IDENTIFIER ::

OBJECT IDENTIFIER ::= { SphincsPlus 1 }
OBJECT IDENTIFIER ::= { SphincsPlus 2 }
{ SphincsPlus 3 }

SphincsPlus-shake-128s-r3.1 OBJECT IDENTIFIER ::= { SphincsPlus-shake256 1 }
SphincsPlus-shake-128f-r3.1 OBJECT IDENTIFIER ::= { SphincsPlus-shake256 2 }
SphincsPlus-shake-192s-r3.1 OBJECT IDENTIFIER ::= { SphincsPlus-shake256 3 }

(continues on next page)

19.9. Private OID Assignments 345

Botan Reference Guide, Release 3.9.0

SphincsPlus-shake-192f-r

SphincsPlus-shake-256f-r

SphincsPlus-sha2-128s-r3.
SphincsPlus-sha2-128f-r3.
SphincsPlus-sha2-192s-r3.

SphincsPlus-sha2-192f-r3

SphincsPlus-sha2-256s-r3.
SphincsPlus-sha2-256f-r3.

SphincsPlus-haraka-128s-r3.
SphincsPlus-haraka-128f-r3.
SphincsPlus-haraka-192s-r3.
SphincsPlus-haraka-192f-r3.
SphincsPlus-haraka-256s-r3.
SphincsPlus-haraka-256f-r3.

HSS-LMS-Private-Key OBJE

mceliece OBJECT IDENTIFI

3.1

3.1

T T T T Y

CT

ER ::=

IDENTIFIER :

mceliece6688128pc
mceliece6688128pct
mceliece6960119pc
mceliece6960119pct
mceliece8192128pc
mceliece8192128pct

symmetricKey OBJECT

ocbModes OBJECT IDENTIFIER :

aes-128-ocb
aes-192-ocb
aes-256-och

serpent-256-
twofish-256-
camellia-128-ocb
camellia-192-ocb
camellia-256-ocb

sivModes OBJECT IDENTIFIER

aes-128-siv
aes-192-siv
aes-256-siv

serpent-256-
twofish-256-
camellia-128-siv
camellia-192-siv
camellia-256-siv

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

OBJECT IDENTIFIER :
SphincsPlus-shake-256s-r3.1 OBJECT IDENTIFIER :
OBJECT IDENTIFIER :

1 OBJECT IDENTIFIER :
1 OBJECT IDENTIFIER :
1 OBJECT IDENTIFIER :
.1 OBJECT IDENTIFIER :
1 OBJECT IDENTIFIER :
1 OBJECT IDENTIFIER :

OBJECT IDENTIFIER :
OBJECT IDENTIFIER :
OBJECT IDENTIFIER :
OBJECT IDENTIFIER :
OBJECT IDENTIFIER :
OBJECT IDENTIFIER :

:= { publicKey 13 }

IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

ocb
ocb

OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT

siv
siv

IDENTIFIER :

IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::

IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::
IDENTIFIER ::

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{ publicKey 18 }

mceliece
mceliece
mceliece
mceliece
mceliece
mceliece

P P S

:= { randombit 3 }

:= { symmetricKey 2 }

ocbModes
ocbModes
ocbModes
ocbModes
ocbModes
ocbModes
ocbModes
ocbModes

0 NO U1 W WN -

::= { symmetricKey 4 }

sivModes
sivModes
sivModes
sivModes
sivModes
sivModes
sivModes
sivModes

0 NO VT b WN -

L O B e L L S S S R O

S e e e e e e

S VT D WN -

[R R L S W]

(continued from previous page)

:= { SphincsPlus-shake256 4 }
:= { SphincsPlus-shake256 5 }
:= { SphincsPlus-shake256 6 }

:= { SphincsPlus-sha256 1 }
:= { SphincsPlus-sha256 2 }
:= { SphincsPlus-sha256 3 }
:= { SphincsPlus-sha256 4 }
:= { SphincsPlus-sha256 5 }
:= { SphincsPlus-sha256 6 }

:= { SphincsPlus-haraka 1 }
:= { SphincsPlus-haraka 2 }
:= { SphincsPlus-haraka 3 }
:= { SphincsPlus-haraka 4 }
:= { SphincsPlus-haraka 5 }
:= { SphincsPlus-haraka 6 }

(continues on next page)

346

Chapter 19. Developer Reference

Botan Reference Guide, Release 3.9.0

(continued from previous page)

sm4-128-siv OBJECT IDENTIFIER ::= { sivModes 9 }
ellipticCurve OBJECT IDENTIFIER ::= { randombit 4 }
numsp256d1 OBJECT IDENTIFIER ::= { ellipticCurve 1 }
numsp384d1 OBJECT IDENTIFIER ::= { ellipticCurve 2 }
numsp512d1 OBJECT IDENTIFIER ::= { ellipticCurve 3 }

-- These are just for testing purposes internally in the library
-- and are not included in oids.txt

sm2test OBJECT IDENTIFIER ::= { ellipticCurve 5459250 }
1s018003 OBJECT IDENTIFIER ::= { ellipticCurve 18003 }

19.10 Custom Elliptic Curve

Some products or protocols use custom designed (or even classified) elliptic curve parameters.

The default way of supporting curves like this is to use the constructor of EC_Group which accepts the various param-
eters as integers. This uses the generic elliptic curve logic, which is already reasonably fast.

However in certain cases the best possible performance is required, perhaps because the hardware it is being deployed
on is old/underpowered. The library provides an escape hatch to support this, where a custom curve is supported using
the same curve-specific logic as used to implement common curves like P-256.

Warning

This process is documented for convenience but NOT OFFICIALLY SUPPORTED. If you need to use this, please
consider the life choices that brought you to this point.

The groups supported by the library are specified in a file src/build-data/ec_groups.txt, which contains entries
like

Name = secp256rl

OID = 1.2.840.10045.3.1.7

Impl = pcurve generic legacy

= OXFFFFFFFFO0000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF
= -3

= 0x5AC635D8AA3A93E7B3EBBD55769886BC651DO6BOCC53BOF63BCE3C3E27D2604B
= 0x6B17D1F2E12C4247F8BCE6GE563A440F277037D812DEB33A0F4A13945D898C296
= Ox4FE342E2FE1A7F9B8EE7EB4A7COF9E162BCE33576B315ECECBB6406837BF51F5
= OXFFFFFFFFOO000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551

=Z < Mm> "9

Note

Not all curve parameters can be supported by this process. In particular, it is required that
1) The prime field is between 192 and 512 bits, and a multiple of 32 bits.
2) The prime must be congruent to 3 modulo 4.

3) The group order must have the same bit length as the prime.

19.10. Custom Elliptic Curve 347

Botan Reference Guide, Release 3.9.0

4) The group must be prime order; no cofactors are allowed.

To add a new curve with curve specific optimizations, do the following:

1) Add a new block to ec_groups.txt specifying the parameters. The important value is that Impl contains
pcurve. If you only want to support the group using the new dedicated implementation that will be generated
in a later step, you can skip generic and legacy here.

2) Add the OID to src/build-data/oids.txt in the [ecc_param] block - the OID name should match the
value of Name in ec_groups.txt

3) Run ./src/scripts/dev_tools/gen_ec_groups.py. This script requires the Jinja2 template library, and
the program addchain from https://github.com/mmcloughlin/addchain

4) Run ./src/scripts/dev_tools/gen_oids.py to regenerate the OID lookup table

19.11 Checklist For Next Major Version
* Remove most/all explicitly deprecated modules, interfaces, and features. Check deprecated.rst plus
BOTAN_DEPRECATED annotations.
* Make the remaining PasswordHash interfaces internal

* Remove EC_Point/CurveGFp

19.11.1 Big Project: Public Key Split

Some complications of this aren’t going to become clear until we get into it...

A number of operations currently defined on Public_Key can be moved to Asymetric_Key, for example key_length and
algorithm_identifier.

Due to Private_Key deriving from Public_Key, the fingerprint functions are oddly named. Otherwise we can’t correctly
disambiguate sk->fingerprint(); should this be the fingerprint of the public or private key. With the split we can move
this to Asymetric_Key::fingerprint and know that the correct thing happens.

The public and private key encoding functions (pkcs8.h, x509_key.h) are also complicated by the combined keys. For
example we have to use PKCS8::PEM_encode(key) because key.PEM_encode() would be ambigious (similar situation
as with the fingerprint APIs currently). Once the key types are split, we can move all of this to the key types themselves,
or again (for the shared cases, like unencrypted PEM) to Asymetric_Key.

Decoding also can become simpler. We could consider moving to a model that doesn’t use DataSource? Maybe just a
span even?

Put _ prefixes on all of the internal operations getters (create_signature_op, etc)

19.12 Reading List

These are papers, articles and books that are interesting or useful from the perspective of crypto implementation.

19.12.1 Papers

Implementation Techniques

e “Randomizing the Montgomery Powering Ladder” Le, Tan, Tunstall https://eprint.iacr.
org/2015/657 A variant of Algorithm 7 is wused for GF(p) point multplications when
BOTAN_POINTGFP_BLINDED_MULTIPLY_USE_MONTGOMERY_LADDER is set

348 Chapter 19. Developer Reference

https://github.com/mmcloughlin/addchain
https://eprint.iacr.org/2015/657
https://eprint.iacr.org/2015/657

Botan Reference Guide, Release 3.9.0

* “Accelerating AES with vector permute instructions” Mike Hamburg https://shiftleft.org/papers/vector_aes/ His
public doman assembly code was rewritten into SSS3 intrinsics for aes_ssse3.

» “Elliptic curves and their implementation” Langley http://www.imperialviolet.org/2010/12/04/ecc.html De-
scribes sparse representations for ECC math

Random Number Generation

e “On Extract-then-Expand Key Derivation Functions and an HMAC-based KDF” Hugo Krawczyk http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.8254 RNG design underlying HMAC_RNG

AES Side Channels

» “Software mitigations to hedge AES against cache-based software side channel vulnerabilities” https://eprint.
iacr.org/2006/052.pdf

* “Cache Games - Bringing Access-Based Cache Attacks on AES to Practice” http://www.ieee-security.org/TC/
SP2011/PAPERS/2011/paper031.pdf

e “Cache-Collision Timing Attacks Against AES” Bonneau, Mironov http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.88.4753

Public Key Side Channels

* “Fast Elliptic Curve Multiplications Resistant against Side Channel Attacks” http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.98.1028 &rep=rep | &type=pdf

» “Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems” Coron http://www.jscoron.fr/
publications/dpaecc.pdf

* “Further Results and Considerations on Side Channel Attacks on RSA” Klima, Rosa https://eprint.iacr.org/2002/
071 Side channel attacks on RSA-KEM and MGF1-SHA1

* “Side-Channel Attacks on the McEliece and Niederreiter Public-Key Cryptosystems” Avanzi, Hoerder, Page,
and Tunstall https://eprint.iacr.org/2010/479

e “Minimum Requirements for Evaluating Side-Channel Attack Resistance of Elliptic Curve Implementa-
tions” BSI https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_
ECCGuide_e_pdf.pdf

19.12.2 Books

» “Handbook of Elliptic and Hyperelliptic Curve Cryptography” Cohen and Frey https://www.hyperelliptic.org/
HEHCC/ An excellent reference for ECC math, algorithms, and side channels

* “Post-Quantum Cryptography” Bernstein, Buchmann, Dahmen Covers code, lattice, and hash based cryptogra-
phy

19.12.3 Standards

* IEEE 1363 http://grouper.iecee.org/groups/1363/ Very influential early in the library lifetime, so a lot of termi-
nology used in the public key (such as “EME” for message encoding) code comes from here.

* ISO/IEC 18033-2 http://www.shoup.net/iso/std4.pdf RSA-KEM, PSEC-KEM
» NIST SP 800-108 http://csrc.nist.gov/publications/nistpubs/800-108/sp800- 108.pdf KDF schemes

e NIST SP 800-90A http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf HMAC_DRBG,
Hash_DRBG, CTR_DRBG, maybe one other thing?

19.12. Reading List 349

https://shiftleft.org/papers/vector_aes/
http://www.imperialviolet.org/2010/12/04/ecc.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.8254
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.8254
https://eprint.iacr.org/2006/052.pdf
https://eprint.iacr.org/2006/052.pdf
http://www.ieee-security.org/TC/SP2011/PAPERS/2011/paper031.pdf
http://www.ieee-security.org/TC/SP2011/PAPERS/2011/paper031.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.4753
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.4753
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.1028&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.1028&rep=rep1&type=pdf
http://www.jscoron.fr/publications/dpaecc.pdf
http://www.jscoron.fr/publications/dpaecc.pdf
https://eprint.iacr.org/2002/071
https://eprint.iacr.org/2002/071
https://eprint.iacr.org/2010/479
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_ECCGuide_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_ECCGuide_e_pdf.pdf
https://www.hyperelliptic.org/HEHCC/
https://www.hyperelliptic.org/HEHCC/
http://grouper.ieee.org/groups/1363/
http://www.shoup.net/iso/std4.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

Botan Reference Guide, Release 3.9.0

19.13 Mistakes Were Made

These are mistakes made early on in the project’s history which are difficult to fix now, but mentioned in the hope they
may serve as an example for others.

19.13.1 C++ API

As an implementation language, I still think C++ is the best choice (or at least the best choice available in early *00s) at
offering good performance, reasonable abstractions, and low overhead. But the user API should have been pure C with
opaque structs (rather like the FFI layer, which was added much later). Then an expressive C++ API could be built on
top of the C API. This would have given us a stable ABI, allowed C applications to use the library, and (these days)
make it easier to progressively rewrite the library in Rust.

19.13.2 Public Algorithm Specific Classes

Classes like AES_128 and SHA_256 should never have been exposed to applications. Intead such operations should
have been accessible only via the higher level interfaces (here BlockCipher and HashFunction). This would substantially
reduce the overall API and ABI surface.

[These interfaces were made internal in 3.0]

19.13.3 Header Directories

It would have been better to install all headers as X/header.h where X is the base dir in the source, eg block/aes128.
h, hash/md5.h, ...

19.13.4 Exceptions

Constant ABI headaches from this, and it impacts performance and makes APIs harder to understand. Should have
been handled with a result<> type instead.

Alternatively, and possibly more practically, there should have not been any exception hierarchy (or at least not one
visible to users) - instead only the high level Exception type with contains an error type enum.

19.13.5 Virtual inheritance

This was used in the public key interfaces and the hierarchy is a tangle. Public and private keys should be distinct
classes, with a function on private keys that creates a new object corresponding to the public key.

[This is planned to be fixed in Botan4]

19.13.6 Cipher Interface

The cipher interface taking a secure_vector that it reads from and writes to was an artifact of an earlier design which
supported both compression and encryption in a single API. But it leads to inefficient copies.

(I am hoping this issue can be somewhat fixed by introducing a new cipher API and implementing the old API in terms
of the new one.)

19.13.7 Pipe Interface

On the surface this API seems very convenient and easy to use. And it is. But the downside is it makes the application
code totally opaque; some bytes go into a Pipe object and then come out the end transformed in some way. What
happens in between? Unless the Pipe was built in the same function and you can see the parameters to the constructor,
there is no way to find out.

The problems with the Pipe API are documented, and it is no longer used within the library itself. But since many
people seem to like it and many applications use it, we are stuck at least with maintaining it as it currently exists.

350 Chapter 19. Developer Reference

Botan Reference Guide, Release 3.9.0

19.13.8 License

MIT is more widely used and doesn’t have the ambiguity surrounding the various flavors of BSD.

19.13. Mistakes Were Made 351

	Getting Started
	Examples
	Books and other references

	Project Goals
	Non-Goals

	Support Information
	Supported Platforms
	Branch Support Status
	Getting Help

	Building The Library
	Configuring the Build
	Common Build Targets
	Cross Compiling
	On Unix
	On macOS
	On Windows
	Ninja Support
	For iOS using XCode
	For Android
	Emscripten (WebAssembly)
	Supporting Older Distros
	Other Build-Related Tasks
	Building The Documentation
	The Amalgamation Build
	Modules Relying on Third Party Libraries
	Multiple Builds
	Setting Distribution Info
	Local Configuration Settings
	Enabling or Disabling Use of Certain OS Features
	Feature Check Macros

	Building Applications
	Unix
	Windows
	CMake

	Language Wrappers
	Building the Python wrappers

	Minimized Builds
	Configure Script Options
	--cpu=CPU
	--os=OS
	--cc=COMPILER
	--cc-min-version=MAJOR.MINOR
	--cc-bin=BINARY
	--cc-abi-flags=FLAGS
	--cxxflags=FLAGS
	--extra-cxxflags=FLAGS
	--ldflags=FLAGS
	--ar-command=AR
	--ar-options=AR_OPTIONS
	--msvc-runtime=RT
	--compiler-cache
	--with-os-features=FEAT
	--without-os-features=FEAT
	--enable-experimental-features
	--disable-experimental-features
	--enable-deprecated-features
	--disable-deprecated-features
	--system-cert-bundle=PATH
	--with-debug-info
	--with-sanitizers
	--enable-sanitizers=SAN
	--without-stack-protector
	--enable-stack-scrubbing
	--with-coverage-info
	--disable-shared-library
	--disable-static-library
	--optimize-for-size
	--no-optimizations
	--debug-mode
	--amalgamation
	--name-amalgamation
	--with-build-dir=DIR
	--with-external-includedir=DIR
	--with-external-libdir=DIR
	--define-build-macro
	--with-sysroot-dir=DIR
	--link-method=METHOD
	--with-local-config=FILE
	--distribution-info=STRING
	--maintainer-mode
	--werror-mode
	--no-install-python-module
	--with-python-versions=N.M
	--with-valgrind
	--unsafe-fuzzer-mode
	--build-fuzzers=TYPE
	--with-fuzzer-lib=LIB
	--build-targets=BUILD_TARGETS
	--without-documentation
	--with-sphinx
	--with-pdf
	--with-rst2man
	--with-doxygen
	--module-policy=POL
	--enable-modules=MODS
	--disable-modules=MODS
	--minimized-build
	--with-boost
	--with-bzip2
	--with-lzma
	--with-zlib
	--with-commoncrypto
	--with-sqlite3
	--with-tpm
	--with-tpm2
	--program-suffix=SUFFIX
	--library-suffix=SUFFIX
	--prefix=DIR
	--docdir=DIR
	--bindir=DIR
	--libdir=DIR
	--mandir=DIR
	--includedir=DIR
	--list-modules

	Semantic Versioning
	Exception #1: Deriving from Library Classes
	Exception #2: BOTAN_UNSTABLE_API
	Exception #3: Experimental modules
	Exception #4: Any function starting with _

	Botan 2.x to 3.x Migration
	Headers
	Errata: pk_ops.h

	Build Artifacts
	TLS
	Build modules
	Removed Functionality
	enum classes
	Callbacks
	tls_record_received() / tls_emit_data()
	tls_session_established()
	tls_verify_cert_chain()
	tls_modify_extensions() / tls_examine_extensions()
	tls_dh_agree() / tls_ecdh_agree() / tls_decode_group_param()

	Policy
	choose_key_exchange_group()
	session_ticket_lifetime()

	Credentials Manager
	find_cert_chain(), cert_chain() and cert_chain_single_type()
	private_key_for()

	Session and Ticket Handling
	New API of Session Manager
	The Session Object and its Handle

	Algorithms Removed
	Certificate API shared_ptr
	All Or Nothing Package Transform
	Exception Changes
	X.509 Certificate Info Access
	OCSP Response Validation
	Use of enum class
	ASN.1 enums
	Cipher Mode Granularity
	“SHA-160” and “SHA1”
	PointGFp
	X509::load_key
	PKCS11_Request::subject_public_key and X509_Certificate::subject_public_key
	choose_sig_format removed
	DLIES Constructors
	Credentials_Manager::private_key_for
	OID operator+
	RSA with “EMSA1” padding
	ECDSA/DSA with “EMSA1” padding
	Signature Algorithm OIDs
	Public Key Signature Padding
	Discrete Logarithm Key Changes
	XMSS Signature Changes
	Random Number Generator

	OpenSSL 1.1 to Botan 3.x Migration
	General Remarks
	X.509
	Random Number Generation
	Hash Functions
	Symmetric Encryption
	Asymmetric Encryption
	Asymmetric Signatures

	API Reference
	Footguns
	Static Objects
	Multithreaded Access
	Use of fork

	Versioning
	Memory container
	Random Number Generators
	RNG Types
	System_RNG
	AutoSeeded_RNG
	HMAC_DRBG
	ChaCha_RNG
	Processor_RNG
	TPM_RNG & TPM2_RNG
	PKCS11_RNG
	Jitter_RNG

	Entropy Sources
	Custom Entropy Sources
	Fork Safety

	Hash Functions and Checksums
	Code Example
	Available Hash Functions
	BLAKE2b
	BLAKE2s
	GOST-34.11
	Keccak-1600
	MD4
	MD5
	RIPEMD-160
	SHA-1
	SHA-256
	SHA-512
	SHA-3
	SHAKE (SHAKE-128, SHAKE-256)
	Skein-512
	SM3
	Streebog (Streebog-256, Streebog-512)
	Whirlpool

	Hash Function Combiners and Modifiers
	Parallel
	Comp4P
	Truncated

	Checksums
	Adler32
	CRC24
	CRC32

	Block Ciphers
	Code Example
	Available Ciphers
	AES
	ARIA
	Blowfish
	Camellia
	Cascade
	CAST-128
	DES and 3DES
	GOST-28147-89
	IDEA
	Kuznyechik
	Lion
	Noekeon
	SEED
	Serpent
	SHACAL2
	SM4
	Threefish-512
	Twofish

	Stream Ciphers
	Code Example
	Available Stream Ciphers
	CTR-BE
	OFB
	ChaCha
	Salsa20
	SHAKE-128
	RC4

	Message Authentication Codes (MAC)
	Code Examples
	Available MACs
	Blake2B MAC
	CMAC
	GMAC
	HMAC
	KMAC
	Poly1305
	SipHash
	X9.19-MAC

	Cipher Modes
	Code Example
	Available Unauthenticated Cipher Modes
	CBC
	CFB
	XTS

	AEAD Mode
	Available AEAD Modes
	CCM
	ChaCha20Poly1305
	EAX
	GCM
	OCB
	SIV

	Public Key Cryptography
	Key Objects
	Public Key Algorithms
	RSA
	ECDSA
	ECDH, DH, X25519 and X448
	ML-DSA (FIPS 204)
	ML-KEM (FIPS 203)
	Ed25519 and Ed448
	XMSS
	HSS-LMS
	SLH-DSA (FIPS 205)
	FrodoKEM
	McEliece
	Classic McEliece
	ElGamal
	DSA
	ECGDSA, ECKCDSA, SM2, GOST-34.10

	Creating New Private Keys
	Generic Method
	Creating A New RSA Private Key
	Creating A New EC Private Key
	Creating A New Finite Field DL Private Key

	Serializing Private Keys Using PKCS #8
	Serializing Public Keys
	DL_Group
	Code Example: DL_Group

	Key Checking
	Public Key Encryption/Decryption
	Code Example: RSA Encryption
	Available encryption padding schemes
	OAEP
	PKCS #1 v1.5 Type 2 (encryption)
	Raw EME

	Public Key Signature Schemes
	Code Example: ECDSA Signature
	RSA signature padding schemes
	PKCS #1 v1.5 Type 1 (signature)
	Probabilistic signature scheme (PSS)
	ISO-9796-2
	X9.31
	Raw

	Signature with Hash
	Ed25519 and Ed448 Variants

	Key Agreement
	Code Example: ECDH Key Agreement

	Key Encapsulation
	Code Example: ML-KEM

	HyMES McEliece cryptosystem
	Classic McEliece KEM
	eXtended Merkle Signature Scheme (XMSS)
	Code Example: XMSS

	Hierarchical Signature System with Leighton-Micali Hash-Based Signatures (HSS-LMS)

	X.509 Certificates and CRLs
	X.509 Distinguished Names
	X.509v3 Extensions
	Certificate Revocation Lists
	Certificate Stores

	In Memory Certificate Store
	System Certificate Stores
	Flatfile Certificate Stores
	SQL-backed Certificate Stores
	Path Validation
	Code Example
	Creating New Certificates

	Generating CRLs
	Self-Signed Certificates
	Creating PKCS #10 Requests
	Certificate Options
	OCSP Requests

	Transport Layer Security (TLS)
	TLS Channels
	TLS Clients
	Code Example: TLS Client

	TLS Servers
	Code Example: TLS Server

	TLS Sessions
	TLS Session Managers
	In Memory Session Manager
	Noop Session Mananger
	SQLite3 Session Manager
	Stateless Session Manager
	Hybrid Session Manager

	TLS Policies
	TLS Ciphersuites
	TLS Alerts
	TLS Protocol Version
	Post-quantum-secure key exchange
	Code Example: Hybrid TLS Client

	TLS Custom Key Exchange Mechanisms
	Code Example: TLS Client using Custom Curve

	TLS Stream
	Code Examples: HTTPS Client using Boost Beast

	TLS Session Encryption

	Credentials Manager
	SRP Authentication
	Preshared Keys

	BigInt
	Key Derivation Functions (KDF)
	Code Example
	Available KDFs
	HKDF
	KDF1-18033
	KDF1
	KDF2
	X9.42 PRF
	SP800-56A
	SP800-56C
	SP800-108
	TLS 1.2 PRF

	Password Based Key Derivation
	PasswordHash
	Code Examples
	Available Schemes
	General Recommendations
	PBKDF2
	Scrypt
	Argon2
	Bcrypt
	OpenPGP S2K

	PBKDF

	AES Key Wrapping
	RFC 3394 Interface

	Password Hashing
	Argon2
	Bcrypt
	Passhash9

	Cryptobox
	Encryption using a passphrase

	Secure Remote Password
	PSK Database
	Pipe/Filter Message Processing
	Fork
	Chain
	Sources and Sinks
	Data Sources
	Data Sinks

	The Pipe API
	Initializing Pipe
	Giving Data to a Pipe
	Getting Output from a Pipe
	Pipe I/O for Unix File Descriptors

	Filter Catalog
	Keyed Filters
	Cipher Filters
	Hashes and MACs
	Encoders

	Writing New Filters

	Format Preserving Encryption
	Threshold Secret Sharing
	EC_Group
	Elliptic Curve Operations
	Lossless Data Compression
	External Providers
	Integrated Providers
	PKCS#11
	TPM 1.2
	TPM 2.0
	CommonCrypto

	Provider Interfaces
	Symmetric Algorithms
	Public Key Algorithms

	PKCS#11
	Low Level API
	Preface
	Error Handling

	Getting started

	High Level API
	Module
	Slot
	Session
	Objects
	RSA
	ECDSA
	ECDH
	RNG
	Token Management Functions
	X.509
	Tests
	Tested/Supported Smartcards

	Trusted Platform Module (TPM)
	TPM 2.0 Wrappers
	TPM 2.0 Context
	TPM 2.0 Sessions
	TPM 2.0 Random Number Generator
	Asymmetric Keys hosted by a TPM 2.0
	Botan as a TPM2-TSS Crypto Backend
	TPM 2.0 Example

	TPM 1.2 Wrappers

	One Time Passwords
	HOTP
	TOTP

	Roughtime
	libsodium Compatible Interfaces
	ZFEC Forward Error Correction
	FFI (C Binding)
	Rules of Engagement
	Return Codes
	Versioning
	FFI Versions

	View Functions
	Utility Functions
	Random Number Generators
	Block Ciphers
	Hash Functions
	Message Authentication Codes
	Symmetric Ciphers
	PBKDF
	KDF
	Multiple Precision Integers
	Password Hashing
	Object Identifiers
	EC Groups
	Public Key Creation, Import and Export
	RSA specific functions
	DSA specific functions
	ElGamal specific functions
	Diffie-Hellman specific functions
	Public Key Encryption/Decryption
	Signature Generation
	Signature Verification
	Key Agreement
	Public Key Encapsulation
	TPM 2.0 Functions
	X.509 Certificates
	X.509 Certificate Revocation Lists
	ZFEC (Forward Error Correction)

	Environment Variables
	Python Binding
	Versioning
	Random Number Generators
	Hash Functions
	Message Authentication Codes
	Ciphers
	Bcrypt
	PBKDF
	Scrypt
	KDF
	Public Key
	Private Key
	Public Key Operations
	TPM 2.0 Bindings
	Multiple Precision Integers (MPI)
	Object Identifiers (OID)
	EC Groups
	Format Preserving Encryption (FE1 scheme)
	HOTP
	X509Cert
	X509CRL

	Command Line Interface
	Outline
	Hash Function
	Password Hash
	HMAC
	Encryption
	Public Key Cryptography
	X.509
	TLS Server/Client
	Number Theory
	PSK Database
	Secret Sharing
	Data Encoding/Decoding
	Forward Error Correction
	Miscellaneous Commands

	Hardware Acceleration
	x86
	ARM
	PowerPC
	Loongarch64
	Configuring Acceleration

	Deprecated Features
	Platform Support Deprecations
	TLS Protocol Deprecations
	Elliptic Curve Deprecations
	Deprecated Modules
	Other Deprecated Functionality
	Deprecated Headers

	Development Roadmap
	Near Term Plans
	Botan2
	Botan3
	Botan4

	Credits
	ABI Stability
	Notes for Distributors
	Recommended Options
	Set Path to the System CA bundle
	Set Distribution Info
	CMake Integration
	Minimize Distribution Patches

	Security Advisories
	2024
	2022
	2020
	2018
	2017
	2016
	2015
	2014

	Threat Model
	Out Of Scope

	Side Channels
	Modular Exponentiation
	Barrett Reduction
	RSA
	Decryption of PKCS #1 v1.5 Ciphertexts
	Verification of PKCS #1 v1.5 Signatures
	OAEP
	ECC point decoding
	ECC scalar multiplication
	ECDH
	ECDSA
	x25519
	TLS CBC ciphersuites
	CBC mode padding
	base64 decoding
	AES
	GCM
	OCB
	Poly1305
	DES/3DES
	Twofish
	ChaCha20, Serpent, Threefish, …
	IDEA
	Hash Functions
	Memory comparisons
	Memory zeroizing
	Stack Scrubbing
	Memory allocation
	Side Channel Analysis Tools
	References

	Developer Reference
	Notes for New Contributors
	Source Code Layout
	Library Layout
	Sending patches
	FFI Additions
	Git Usage
	Python
	Build Tools and Hints
	Editor Integrations
	Copyright Notice
	Style Conventions
	Use of External Dependencies
	Compiler Dependencies
	Operating System Dependencies
	Library Dependencies

	Understanding configure.py
	Build Structure
	What configure.py does
	When Modifying configure.py
	Template Language
	Build.h
	Adding a new module
	Syntax of info.txt
	Module Syntax
	Supporting a new CPU type
	Supporting a new compiler
	Supporting a new OS

	Test Framework
	Namespaces in Test
	Test Data
	Test
	Test::Result
	Text_Based_Test
	Test Runner

	Continuous Integration and Automated Testing
	CI Build Script
	Repository Configuration
	Github Actions
	Github Actions (nightly)
	OSS-Fuzz

	Fuzzing The Library
	Fuzzing with libFuzzer
	Fuzzing with AFL++
	Fuzzing with TLS-Attacker
	Input Corpus
	Adding new fuzzers

	Release Process and Checklist
	Pre Release Checks
	Tag the Release
	Build The Release Tarballs
	Push to GitHub
	Update The Website

	Todo List
	New Ciphers/Hashes/MACs
	Hardware Specific Optimizations
	Public Key Crypto, Math
	Utility Functions
	External Providers
	TLS
	PKIX
	New Protocols / Formats
	Cleanups
	New C APIs
	Build/Test
	CLI
	Documentation

	OS Features
	Private OID Assignments
	Custom Elliptic Curve
	Checklist For Next Major Version
	Big Project: Public Key Split

	Reading List
	Papers
	Implementation Techniques
	Random Number Generation
	AES Side Channels
	Public Key Side Channels

	Books
	Standards

	Mistakes Were Made
	C++ API
	Public Algorithm Specific Classes
	Header Directories
	Exceptions
	Virtual inheritance
	Cipher Interface
	Pipe Interface
	License

