Botan 3.9.0
Crypto and TLS for C&
sm4.cpp
Go to the documentation of this file.
1/*
2* SM4
3* (C) 2017 Ribose Inc
4* (C) 2018 Jack Lloyd
5*
6* Botan is released under the Simplified BSD License (see license.txt)
7*/
8
9#include <botan/internal/sm4.h>
10
11#include <botan/internal/loadstor.h>
12#include <botan/internal/rotate.h>
13
14#if defined(BOTAN_HAS_CPUID)
15 #include <botan/internal/cpuid.h>
16#endif
17
18namespace Botan {
19
20namespace {
21
22alignas(256) const uint8_t SM4_SBOX[256] = {
23 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A,
24 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF,
25 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80,
26 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19,
27 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D,
28 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00,
29 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40,
30 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55,
31 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23,
32 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C,
33 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A,
34 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A,
35 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D,
36 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48};
37
38/*
39* SM4_SBOX_T[j] == L(SM4_SBOX[j]).
40*
41* Each entry has the form 0xXXYYZZZZ where ZZ = XX ^ YY; can we take
42* advantage of this to create a smaller equivalent table?
43*
44* Additionally YY differs from SBOX[i] by at most 3 (64x 0, 96x 1, 64x 2, 32x 3)
45*/
46alignas(256) const uint32_t SM4_SBOX_T[256] = {
47 0x8ED55B5B, 0xD0924242, 0x4DEAA7A7, 0x06FDFBFB, 0xFCCF3333, 0x65E28787, 0xC93DF4F4, 0x6BB5DEDE, 0x4E165858,
48 0x6EB4DADA, 0x44145050, 0xCAC10B0B, 0x8828A0A0, 0x17F8EFEF, 0x9C2CB0B0, 0x11051414, 0x872BACAC, 0xFB669D9D,
49 0xF2986A6A, 0xAE77D9D9, 0x822AA8A8, 0x46BCFAFA, 0x14041010, 0xCFC00F0F, 0x02A8AAAA, 0x54451111, 0x5F134C4C,
50 0xBE269898, 0x6D482525, 0x9E841A1A, 0x1E061818, 0xFD9B6666, 0xEC9E7272, 0x4A430909, 0x10514141, 0x24F7D3D3,
51 0xD5934646, 0x53ECBFBF, 0xF89A6262, 0x927BE9E9, 0xFF33CCCC, 0x04555151, 0x270B2C2C, 0x4F420D0D, 0x59EEB7B7,
52 0xF3CC3F3F, 0x1CAEB2B2, 0xEA638989, 0x74E79393, 0x7FB1CECE, 0x6C1C7070, 0x0DABA6A6, 0xEDCA2727, 0x28082020,
53 0x48EBA3A3, 0xC1975656, 0x80820202, 0xA3DC7F7F, 0xC4965252, 0x12F9EBEB, 0xA174D5D5, 0xB38D3E3E, 0xC33FFCFC,
54 0x3EA49A9A, 0x5B461D1D, 0x1B071C1C, 0x3BA59E9E, 0x0CFFF3F3, 0x3FF0CFCF, 0xBF72CDCD, 0x4B175C5C, 0x52B8EAEA,
55 0x8F810E0E, 0x3D586565, 0xCC3CF0F0, 0x7D196464, 0x7EE59B9B, 0x91871616, 0x734E3D3D, 0x08AAA2A2, 0xC869A1A1,
56 0xC76AADAD, 0x85830606, 0x7AB0CACA, 0xB570C5C5, 0xF4659191, 0xB2D96B6B, 0xA7892E2E, 0x18FBE3E3, 0x47E8AFAF,
57 0x330F3C3C, 0x674A2D2D, 0xB071C1C1, 0x0E575959, 0xE99F7676, 0xE135D4D4, 0x661E7878, 0xB4249090, 0x360E3838,
58 0x265F7979, 0xEF628D8D, 0x38596161, 0x95D24747, 0x2AA08A8A, 0xB1259494, 0xAA228888, 0x8C7DF1F1, 0xD73BECEC,
59 0x05010404, 0xA5218484, 0x9879E1E1, 0x9B851E1E, 0x84D75353, 0x00000000, 0x5E471919, 0x0B565D5D, 0xE39D7E7E,
60 0x9FD04F4F, 0xBB279C9C, 0x1A534949, 0x7C4D3131, 0xEE36D8D8, 0x0A020808, 0x7BE49F9F, 0x20A28282, 0xD4C71313,
61 0xE8CB2323, 0xE69C7A7A, 0x42E9ABAB, 0x43BDFEFE, 0xA2882A2A, 0x9AD14B4B, 0x40410101, 0xDBC41F1F, 0xD838E0E0,
62 0x61B7D6D6, 0x2FA18E8E, 0x2BF4DFDF, 0x3AF1CBCB, 0xF6CD3B3B, 0x1DFAE7E7, 0xE5608585, 0x41155454, 0x25A38686,
63 0x60E38383, 0x16ACBABA, 0x295C7575, 0x34A69292, 0xF7996E6E, 0xE434D0D0, 0x721A6868, 0x01545555, 0x19AFB6B6,
64 0xDF914E4E, 0xFA32C8C8, 0xF030C0C0, 0x21F6D7D7, 0xBC8E3232, 0x75B3C6C6, 0x6FE08F8F, 0x691D7474, 0x2EF5DBDB,
65 0x6AE18B8B, 0x962EB8B8, 0x8A800A0A, 0xFE679999, 0xE2C92B2B, 0xE0618181, 0xC0C30303, 0x8D29A4A4, 0xAF238C8C,
66 0x07A9AEAE, 0x390D3434, 0x1F524D4D, 0x764F3939, 0xD36EBDBD, 0x81D65757, 0xB7D86F6F, 0xEB37DCDC, 0x51441515,
67 0xA6DD7B7B, 0x09FEF7F7, 0xB68C3A3A, 0x932FBCBC, 0x0F030C0C, 0x03FCFFFF, 0xC26BA9A9, 0xBA73C9C9, 0xD96CB5B5,
68 0xDC6DB1B1, 0x375A6D6D, 0x15504545, 0xB98F3636, 0x771B6C6C, 0x13ADBEBE, 0xDA904A4A, 0x57B9EEEE, 0xA9DE7777,
69 0x4CBEF2F2, 0x837EFDFD, 0x55114444, 0xBDDA6767, 0x2C5D7171, 0x45400505, 0x631F7C7C, 0x50104040, 0x325B6969,
70 0xB8DB6363, 0x220A2828, 0xC5C20707, 0xF531C4C4, 0xA88A2222, 0x31A79696, 0xF9CE3737, 0x977AEDED, 0x49BFF6F6,
71 0x992DB4B4, 0xA475D1D1, 0x90D34343, 0x5A124848, 0x58BAE2E2, 0x71E69797, 0x64B6D2D2, 0x70B2C2C2, 0xAD8B2626,
72 0xCD68A5A5, 0xCB955E5E, 0x624B2929, 0x3C0C3030, 0xCE945A5A, 0xAB76DDDD, 0x867FF9F9, 0xF1649595, 0x5DBBE6E6,
73 0x35F2C7C7, 0x2D092424, 0xD1C61717, 0xD66FB9B9, 0xDEC51B1B, 0x94861212, 0x78186060, 0x30F3C3C3, 0x897CF5F5,
74 0x5CEFB3B3, 0xD23AE8E8, 0xACDF7373, 0x794C3535, 0xA0208080, 0x9D78E5E5, 0x56EDBBBB, 0x235E7D7D, 0xC63EF8F8,
75 0x8BD45F5F, 0xE7C82F2F, 0xDD39E4E4, 0x68492121};
76
77inline uint32_t SM4_T_slow(uint32_t b) {
78 const uint32_t t = make_uint32(
79 SM4_SBOX[get_byte<0>(b)], SM4_SBOX[get_byte<1>(b)], SM4_SBOX[get_byte<2>(b)], SM4_SBOX[get_byte<3>(b)]);
80
81 // L linear transform
82 return t ^ rotl<2>(t) ^ rotl<10>(t) ^ rotl<18>(t) ^ rotl<24>(t);
83}
84
85inline uint32_t SM4_T(uint32_t b) {
86 return (SM4_SBOX_T[get_byte<0>(b)]) ^ rotr<8>(SM4_SBOX_T[get_byte<1>(b)]) ^ rotr<16>(SM4_SBOX_T[get_byte<2>(b)]) ^
87 rotr<24>(SM4_SBOX_T[get_byte<3>(b)]);
88}
89
90// Variant of T for key schedule
91inline uint32_t SM4_Tp(uint32_t b) {
92 const uint32_t t = make_uint32(
93 SM4_SBOX[get_byte<0>(b)], SM4_SBOX[get_byte<1>(b)], SM4_SBOX[get_byte<2>(b)], SM4_SBOX[get_byte<3>(b)]);
94
95 // L' linear transform
96 return t ^ rotl<13>(t) ^ rotl<23>(t);
97}
98
99template <size_t R, typename F>
100BOTAN_FORCE_INLINE void SM4_E(
101 uint32_t& B0, uint32_t& B1, uint32_t& B2, uint32_t& B3, const secure_vector<uint32_t>& RK, F& f) {
102 B0 ^= f(B1 ^ B2 ^ B3 ^ RK[4 * R + 0]);
103 B1 ^= f(B2 ^ B3 ^ B0 ^ RK[4 * R + 1]);
104 B2 ^= f(B3 ^ B0 ^ B1 ^ RK[4 * R + 2]);
105 B3 ^= f(B0 ^ B1 ^ B2 ^ RK[4 * R + 3]);
106}
107
108template <size_t R, typename F>
109BOTAN_FORCE_INLINE void SM4_E(uint32_t& B0,
110 uint32_t& B1,
111 uint32_t& B2,
112 uint32_t& B3,
113 uint32_t& C0,
114 uint32_t& C1,
115 uint32_t& C2,
116 uint32_t& C3,
117 const secure_vector<uint32_t>& RK,
118 F& f) {
119 B0 ^= f(B1 ^ B2 ^ B3 ^ RK[4 * R + 0]);
120 C0 ^= f(C1 ^ C2 ^ C3 ^ RK[4 * R + 0]);
121 B1 ^= f(B2 ^ B3 ^ B0 ^ RK[4 * R + 1]);
122 C1 ^= f(C2 ^ C3 ^ C0 ^ RK[4 * R + 1]);
123 B2 ^= f(B3 ^ B0 ^ B1 ^ RK[4 * R + 2]);
124 C2 ^= f(C3 ^ C0 ^ C1 ^ RK[4 * R + 2]);
125 B3 ^= f(B0 ^ B1 ^ B2 ^ RK[4 * R + 3]);
126 C3 ^= f(C0 ^ C1 ^ C2 ^ RK[4 * R + 3]);
127}
128
129template <size_t R, typename F>
130BOTAN_FORCE_INLINE void SM4_D(
131 uint32_t& B0, uint32_t& B1, uint32_t& B2, uint32_t& B3, const secure_vector<uint32_t>& RK, F& f) {
132 B0 ^= f(B1 ^ B2 ^ B3 ^ RK[4 * R + 3]);
133 B1 ^= f(B2 ^ B3 ^ B0 ^ RK[4 * R + 2]);
134 B2 ^= f(B3 ^ B0 ^ B1 ^ RK[4 * R + 1]);
135 B3 ^= f(B0 ^ B1 ^ B2 ^ RK[4 * R + 0]);
136}
137
138template <size_t R, typename F>
139BOTAN_FORCE_INLINE void SM4_D(uint32_t& B0,
140 uint32_t& B1,
141 uint32_t& B2,
142 uint32_t& B3,
143 uint32_t& C0,
144 uint32_t& C1,
145 uint32_t& C2,
146 uint32_t& C3,
147 const secure_vector<uint32_t>& RK,
148 F& f) {
149 B0 ^= f(B1 ^ B2 ^ B3 ^ RK[4 * R + 3]);
150 C0 ^= f(C1 ^ C2 ^ C3 ^ RK[4 * R + 3]);
151 B1 ^= f(B2 ^ B3 ^ B0 ^ RK[4 * R + 2]);
152 C1 ^= f(C2 ^ C3 ^ C0 ^ RK[4 * R + 2]);
153 B2 ^= f(B3 ^ B0 ^ B1 ^ RK[4 * R + 1]);
154 C2 ^= f(C3 ^ C0 ^ C1 ^ RK[4 * R + 1]);
155 B3 ^= f(B0 ^ B1 ^ B2 ^ RK[4 * R + 0]);
156 C3 ^= f(C0 ^ C1 ^ C2 ^ RK[4 * R + 0]);
157}
158
159} // namespace
160
161/*
162* SM4 Encryption
163*/
164void SM4::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
166
167#if defined(BOTAN_HAS_SM4_ARMV8)
169 return sm4_armv8_encrypt(in, out, blocks);
170 }
171#endif
172
173#if defined(BOTAN_HAS_SM4_X86)
175 return sm4_x86_encrypt(in, out, blocks);
176 }
177#endif
178
179#if defined(BOTAN_HAS_SM4_GFNI)
181 return sm4_gfni_encrypt(in, out, blocks);
182 }
183#endif
184
185 while(blocks >= 2) {
186 uint32_t B0 = load_be<uint32_t>(in, 0);
187 uint32_t B1 = load_be<uint32_t>(in, 1);
188 uint32_t B2 = load_be<uint32_t>(in, 2);
189 uint32_t B3 = load_be<uint32_t>(in, 3);
190
191 uint32_t C0 = load_be<uint32_t>(in, 4);
192 uint32_t C1 = load_be<uint32_t>(in, 5);
193 uint32_t C2 = load_be<uint32_t>(in, 6);
194 uint32_t C3 = load_be<uint32_t>(in, 7);
195
196 SM4_E<0>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T_slow);
197 SM4_E<1>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
198 SM4_E<2>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
199 SM4_E<3>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
200 SM4_E<4>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
201 SM4_E<5>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
202 SM4_E<6>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
203 SM4_E<7>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T_slow);
204
205 store_be(out, B3, B2, B1, B0, C3, C2, C1, C0);
206
207 in += 2 * BLOCK_SIZE;
208 out += 2 * BLOCK_SIZE;
209 blocks -= 2;
210 }
211
212 for(size_t i = 0; i != blocks; ++i) {
213 uint32_t B0 = load_be<uint32_t>(in, 0);
214 uint32_t B1 = load_be<uint32_t>(in, 1);
215 uint32_t B2 = load_be<uint32_t>(in, 2);
216 uint32_t B3 = load_be<uint32_t>(in, 3);
217
218 SM4_E<0>(B0, B1, B2, B3, m_RK, SM4_T_slow);
219 SM4_E<1>(B0, B1, B2, B3, m_RK, SM4_T);
220 SM4_E<2>(B0, B1, B2, B3, m_RK, SM4_T);
221 SM4_E<3>(B0, B1, B2, B3, m_RK, SM4_T);
222 SM4_E<4>(B0, B1, B2, B3, m_RK, SM4_T);
223 SM4_E<5>(B0, B1, B2, B3, m_RK, SM4_T);
224 SM4_E<6>(B0, B1, B2, B3, m_RK, SM4_T);
225 SM4_E<7>(B0, B1, B2, B3, m_RK, SM4_T_slow);
226
227 store_be(out, B3, B2, B1, B0);
228
229 in += BLOCK_SIZE;
230 out += BLOCK_SIZE;
231 }
232}
233
234/*
235* SM4 Decryption
236*/
237void SM4::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
239
240#if defined(BOTAN_HAS_SM4_ARMV8)
242 return sm4_armv8_decrypt(in, out, blocks);
243 }
244#endif
245
246#if defined(BOTAN_HAS_SM4_X86)
248 return sm4_x86_decrypt(in, out, blocks);
249 }
250#endif
251
252#if defined(BOTAN_HAS_SM4_GFNI)
254 return sm4_gfni_decrypt(in, out, blocks);
255 }
256#endif
257
258 while(blocks >= 2) {
259 uint32_t B0 = load_be<uint32_t>(in, 0);
260 uint32_t B1 = load_be<uint32_t>(in, 1);
261 uint32_t B2 = load_be<uint32_t>(in, 2);
262 uint32_t B3 = load_be<uint32_t>(in, 3);
263
264 uint32_t C0 = load_be<uint32_t>(in, 4);
265 uint32_t C1 = load_be<uint32_t>(in, 5);
266 uint32_t C2 = load_be<uint32_t>(in, 6);
267 uint32_t C3 = load_be<uint32_t>(in, 7);
268
269 SM4_D<7>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T_slow);
270 SM4_D<6>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
271 SM4_D<5>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
272 SM4_D<4>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
273 SM4_D<3>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
274 SM4_D<2>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
275 SM4_D<1>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
276 SM4_D<0>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T_slow);
277
278 store_be(out, B3, B2, B1, B0, C3, C2, C1, C0);
279
280 in += 2 * BLOCK_SIZE;
281 out += 2 * BLOCK_SIZE;
282 blocks -= 2;
283 }
284
285 for(size_t i = 0; i != blocks; ++i) {
286 uint32_t B0 = load_be<uint32_t>(in, 0);
287 uint32_t B1 = load_be<uint32_t>(in, 1);
288 uint32_t B2 = load_be<uint32_t>(in, 2);
289 uint32_t B3 = load_be<uint32_t>(in, 3);
290
291 SM4_D<7>(B0, B1, B2, B3, m_RK, SM4_T_slow);
292 SM4_D<6>(B0, B1, B2, B3, m_RK, SM4_T);
293 SM4_D<5>(B0, B1, B2, B3, m_RK, SM4_T);
294 SM4_D<4>(B0, B1, B2, B3, m_RK, SM4_T);
295 SM4_D<3>(B0, B1, B2, B3, m_RK, SM4_T);
296 SM4_D<2>(B0, B1, B2, B3, m_RK, SM4_T);
297 SM4_D<1>(B0, B1, B2, B3, m_RK, SM4_T);
298 SM4_D<0>(B0, B1, B2, B3, m_RK, SM4_T_slow);
299
300 store_be(out, B3, B2, B1, B0);
301
302 in += BLOCK_SIZE;
303 out += BLOCK_SIZE;
304 }
305}
306
308 return !m_RK.empty();
309}
310
311/*
312* SM4 Key Schedule
313*/
314void SM4::key_schedule(std::span<const uint8_t> key) {
315 // System parameter or family key
316 const uint32_t FK[4] = {0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc};
317
318 const uint32_t CK[32] = {0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269, 0x70777E85, 0x8C939AA1, 0xA8AFB6BD,
319 0xC4CBD2D9, 0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249, 0x50575E65, 0x6C737A81,
320 0x888F969D, 0xA4ABB2B9, 0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229, 0x30373E45,
321 0x4C535A61, 0x686F767D, 0x848B9299, 0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209,
322 0x10171E25, 0x2C333A41, 0x484F565D, 0x646B7279};
323
325 K[0] = load_be<uint32_t>(key.data(), 0) ^ FK[0];
326 K[1] = load_be<uint32_t>(key.data(), 1) ^ FK[1];
327 K[2] = load_be<uint32_t>(key.data(), 2) ^ FK[2];
328 K[3] = load_be<uint32_t>(key.data(), 3) ^ FK[3];
329
330 m_RK.resize(32);
331 for(size_t i = 0; i != 32; ++i) {
332 K[i % 4] ^= SM4_Tp(K[(i + 1) % 4] ^ K[(i + 2) % 4] ^ K[(i + 3) % 4] ^ CK[i]);
333 m_RK[i] = K[i % 4];
334 }
335}
336
338 zap(m_RK);
339}
340
341size_t SM4::parallelism() const {
342#if defined(BOTAN_HAS_SM4_ARMV8)
344 return 4;
345 }
346#endif
347
348#if defined(BOTAN_HAS_SM4_GFNI)
350 return 8;
351 }
352#endif
353
354 return 1;
355}
356
357std::string SM4::provider() const {
358#if defined(BOTAN_HAS_SM4_ARMV8)
359 if(auto feat = CPUID::check(CPUID::Feature::SM4)) {
360 return *feat;
361 }
362#endif
363
364#if defined(BOTAN_HAS_SM4_GFNI)
365 if(auto feat = CPUID::check(CPUID::Feature::GFNI)) {
366 return *feat;
367 }
368#endif
369
370 return "base";
371}
372
373} // namespace Botan
static std::optional< std::string > check(CPUID::Feature feat)
Definition cpuid.h:67
static bool has(CPUID::Feature feat)
Definition cpuid.h:94
std::string provider() const override
Definition sm4.cpp:357
size_t parallelism() const override
Definition sm4.cpp:341
void decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const override
Definition sm4.cpp:237
bool has_keying_material() const override
Definition sm4.cpp:307
void encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const override
Definition sm4.cpp:164
void clear() override
Definition sm4.cpp:337
#define BOTAN_FORCE_INLINE
Definition compiler.h:87
constexpr uint8_t get_byte(T input)
Definition loadstor.h:79
void zap(std::vector< T, Alloc > &vec)
Definition secmem.h:134
BOTAN_FORCE_INLINE constexpr T rotr(T input)
Definition rotate.h:35
constexpr uint32_t make_uint32(uint8_t i0, uint8_t i1, uint8_t i2, uint8_t i3)
Definition loadstor.h:104
BOTAN_FORCE_INLINE constexpr T rotl(T input)
Definition rotate.h:23
std::vector< T, secure_allocator< T > > secure_vector
Definition secmem.h:69
constexpr auto store_be(ParamTs &&... params)
Definition loadstor.h:745
constexpr auto load_be(ParamTs &&... params)
Definition loadstor.h:504