Botan 3.6.1
Crypto and TLS for C&
sm4.cpp
Go to the documentation of this file.
1/*
2* SM4
3* (C) 2017 Ribose Inc
4* (C) 2018 Jack Lloyd
5*
6* Botan is released under the Simplified BSD License (see license.txt)
7*/
8
9#include <botan/internal/sm4.h>
10
11#include <botan/internal/cpuid.h>
12#include <botan/internal/loadstor.h>
13#include <botan/internal/rotate.h>
14
15namespace Botan {
16
17namespace {
18
19alignas(256) const uint8_t SM4_SBOX[256] = {
20 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A,
21 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF,
22 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80,
23 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19,
24 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D,
25 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00,
26 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40,
27 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55,
28 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23,
29 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C,
30 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A,
31 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A,
32 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D,
33 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48};
34
35/*
36* SM4_SBOX_T[j] == L(SM4_SBOX[j]).
37*
38* Each entry has the form 0xXXYYZZZZ where ZZ = XX ^ YY; can we take
39* advantage of this to create a smaller equivalent table?
40*
41* Additionally YY differs from SBOX[i] by at most 3 (64x 0, 96x 1, 64x 2, 32x 3)
42*/
43alignas(256) const uint32_t SM4_SBOX_T[256] = {
44 0x8ED55B5B, 0xD0924242, 0x4DEAA7A7, 0x06FDFBFB, 0xFCCF3333, 0x65E28787, 0xC93DF4F4, 0x6BB5DEDE, 0x4E165858,
45 0x6EB4DADA, 0x44145050, 0xCAC10B0B, 0x8828A0A0, 0x17F8EFEF, 0x9C2CB0B0, 0x11051414, 0x872BACAC, 0xFB669D9D,
46 0xF2986A6A, 0xAE77D9D9, 0x822AA8A8, 0x46BCFAFA, 0x14041010, 0xCFC00F0F, 0x02A8AAAA, 0x54451111, 0x5F134C4C,
47 0xBE269898, 0x6D482525, 0x9E841A1A, 0x1E061818, 0xFD9B6666, 0xEC9E7272, 0x4A430909, 0x10514141, 0x24F7D3D3,
48 0xD5934646, 0x53ECBFBF, 0xF89A6262, 0x927BE9E9, 0xFF33CCCC, 0x04555151, 0x270B2C2C, 0x4F420D0D, 0x59EEB7B7,
49 0xF3CC3F3F, 0x1CAEB2B2, 0xEA638989, 0x74E79393, 0x7FB1CECE, 0x6C1C7070, 0x0DABA6A6, 0xEDCA2727, 0x28082020,
50 0x48EBA3A3, 0xC1975656, 0x80820202, 0xA3DC7F7F, 0xC4965252, 0x12F9EBEB, 0xA174D5D5, 0xB38D3E3E, 0xC33FFCFC,
51 0x3EA49A9A, 0x5B461D1D, 0x1B071C1C, 0x3BA59E9E, 0x0CFFF3F3, 0x3FF0CFCF, 0xBF72CDCD, 0x4B175C5C, 0x52B8EAEA,
52 0x8F810E0E, 0x3D586565, 0xCC3CF0F0, 0x7D196464, 0x7EE59B9B, 0x91871616, 0x734E3D3D, 0x08AAA2A2, 0xC869A1A1,
53 0xC76AADAD, 0x85830606, 0x7AB0CACA, 0xB570C5C5, 0xF4659191, 0xB2D96B6B, 0xA7892E2E, 0x18FBE3E3, 0x47E8AFAF,
54 0x330F3C3C, 0x674A2D2D, 0xB071C1C1, 0x0E575959, 0xE99F7676, 0xE135D4D4, 0x661E7878, 0xB4249090, 0x360E3838,
55 0x265F7979, 0xEF628D8D, 0x38596161, 0x95D24747, 0x2AA08A8A, 0xB1259494, 0xAA228888, 0x8C7DF1F1, 0xD73BECEC,
56 0x05010404, 0xA5218484, 0x9879E1E1, 0x9B851E1E, 0x84D75353, 0x00000000, 0x5E471919, 0x0B565D5D, 0xE39D7E7E,
57 0x9FD04F4F, 0xBB279C9C, 0x1A534949, 0x7C4D3131, 0xEE36D8D8, 0x0A020808, 0x7BE49F9F, 0x20A28282, 0xD4C71313,
58 0xE8CB2323, 0xE69C7A7A, 0x42E9ABAB, 0x43BDFEFE, 0xA2882A2A, 0x9AD14B4B, 0x40410101, 0xDBC41F1F, 0xD838E0E0,
59 0x61B7D6D6, 0x2FA18E8E, 0x2BF4DFDF, 0x3AF1CBCB, 0xF6CD3B3B, 0x1DFAE7E7, 0xE5608585, 0x41155454, 0x25A38686,
60 0x60E38383, 0x16ACBABA, 0x295C7575, 0x34A69292, 0xF7996E6E, 0xE434D0D0, 0x721A6868, 0x01545555, 0x19AFB6B6,
61 0xDF914E4E, 0xFA32C8C8, 0xF030C0C0, 0x21F6D7D7, 0xBC8E3232, 0x75B3C6C6, 0x6FE08F8F, 0x691D7474, 0x2EF5DBDB,
62 0x6AE18B8B, 0x962EB8B8, 0x8A800A0A, 0xFE679999, 0xE2C92B2B, 0xE0618181, 0xC0C30303, 0x8D29A4A4, 0xAF238C8C,
63 0x07A9AEAE, 0x390D3434, 0x1F524D4D, 0x764F3939, 0xD36EBDBD, 0x81D65757, 0xB7D86F6F, 0xEB37DCDC, 0x51441515,
64 0xA6DD7B7B, 0x09FEF7F7, 0xB68C3A3A, 0x932FBCBC, 0x0F030C0C, 0x03FCFFFF, 0xC26BA9A9, 0xBA73C9C9, 0xD96CB5B5,
65 0xDC6DB1B1, 0x375A6D6D, 0x15504545, 0xB98F3636, 0x771B6C6C, 0x13ADBEBE, 0xDA904A4A, 0x57B9EEEE, 0xA9DE7777,
66 0x4CBEF2F2, 0x837EFDFD, 0x55114444, 0xBDDA6767, 0x2C5D7171, 0x45400505, 0x631F7C7C, 0x50104040, 0x325B6969,
67 0xB8DB6363, 0x220A2828, 0xC5C20707, 0xF531C4C4, 0xA88A2222, 0x31A79696, 0xF9CE3737, 0x977AEDED, 0x49BFF6F6,
68 0x992DB4B4, 0xA475D1D1, 0x90D34343, 0x5A124848, 0x58BAE2E2, 0x71E69797, 0x64B6D2D2, 0x70B2C2C2, 0xAD8B2626,
69 0xCD68A5A5, 0xCB955E5E, 0x624B2929, 0x3C0C3030, 0xCE945A5A, 0xAB76DDDD, 0x867FF9F9, 0xF1649595, 0x5DBBE6E6,
70 0x35F2C7C7, 0x2D092424, 0xD1C61717, 0xD66FB9B9, 0xDEC51B1B, 0x94861212, 0x78186060, 0x30F3C3C3, 0x897CF5F5,
71 0x5CEFB3B3, 0xD23AE8E8, 0xACDF7373, 0x794C3535, 0xA0208080, 0x9D78E5E5, 0x56EDBBBB, 0x235E7D7D, 0xC63EF8F8,
72 0x8BD45F5F, 0xE7C82F2F, 0xDD39E4E4, 0x68492121};
73
74inline uint32_t SM4_T_slow(uint32_t b) {
75 const uint32_t t = make_uint32(
76 SM4_SBOX[get_byte<0>(b)], SM4_SBOX[get_byte<1>(b)], SM4_SBOX[get_byte<2>(b)], SM4_SBOX[get_byte<3>(b)]);
77
78 // L linear transform
79 return t ^ rotl<2>(t) ^ rotl<10>(t) ^ rotl<18>(t) ^ rotl<24>(t);
80}
81
82inline uint32_t SM4_T(uint32_t b) {
83 return (SM4_SBOX_T[get_byte<0>(b)]) ^ rotr<8>(SM4_SBOX_T[get_byte<1>(b)]) ^ rotr<16>(SM4_SBOX_T[get_byte<2>(b)]) ^
84 rotr<24>(SM4_SBOX_T[get_byte<3>(b)]);
85}
86
87// Variant of T for key schedule
88inline uint32_t SM4_Tp(uint32_t b) {
89 const uint32_t t = make_uint32(
90 SM4_SBOX[get_byte<0>(b)], SM4_SBOX[get_byte<1>(b)], SM4_SBOX[get_byte<2>(b)], SM4_SBOX[get_byte<3>(b)]);
91
92 // L' linear transform
93 return t ^ rotl<13>(t) ^ rotl<23>(t);
94}
95
96template <size_t R, typename F>
97BOTAN_FORCE_INLINE void SM4_E(
98 uint32_t& B0, uint32_t& B1, uint32_t& B2, uint32_t& B3, const secure_vector<uint32_t>& RK, F& f) {
99 B0 ^= f(B1 ^ B2 ^ B3 ^ RK[4 * R + 0]);
100 B1 ^= f(B2 ^ B3 ^ B0 ^ RK[4 * R + 1]);
101 B2 ^= f(B3 ^ B0 ^ B1 ^ RK[4 * R + 2]);
102 B3 ^= f(B0 ^ B1 ^ B2 ^ RK[4 * R + 3]);
103}
104
105template <size_t R, typename F>
106BOTAN_FORCE_INLINE void SM4_E(uint32_t& B0,
107 uint32_t& B1,
108 uint32_t& B2,
109 uint32_t& B3,
110 uint32_t& C0,
111 uint32_t& C1,
112 uint32_t& C2,
113 uint32_t& C3,
114 const secure_vector<uint32_t>& RK,
115 F& f) {
116 B0 ^= f(B1 ^ B2 ^ B3 ^ RK[4 * R + 0]);
117 C0 ^= f(C1 ^ C2 ^ C3 ^ RK[4 * R + 0]);
118 B1 ^= f(B2 ^ B3 ^ B0 ^ RK[4 * R + 1]);
119 C1 ^= f(C2 ^ C3 ^ C0 ^ RK[4 * R + 1]);
120 B2 ^= f(B3 ^ B0 ^ B1 ^ RK[4 * R + 2]);
121 C2 ^= f(C3 ^ C0 ^ C1 ^ RK[4 * R + 2]);
122 B3 ^= f(B0 ^ B1 ^ B2 ^ RK[4 * R + 3]);
123 C3 ^= f(C0 ^ C1 ^ C2 ^ RK[4 * R + 3]);
124}
125
126template <size_t R, typename F>
127BOTAN_FORCE_INLINE void SM4_D(
128 uint32_t& B0, uint32_t& B1, uint32_t& B2, uint32_t& B3, const secure_vector<uint32_t>& RK, F& f) {
129 B0 ^= f(B1 ^ B2 ^ B3 ^ RK[4 * R + 3]);
130 B1 ^= f(B2 ^ B3 ^ B0 ^ RK[4 * R + 2]);
131 B2 ^= f(B3 ^ B0 ^ B1 ^ RK[4 * R + 1]);
132 B3 ^= f(B0 ^ B1 ^ B2 ^ RK[4 * R + 0]);
133}
134
135template <size_t R, typename F>
136BOTAN_FORCE_INLINE void SM4_D(uint32_t& B0,
137 uint32_t& B1,
138 uint32_t& B2,
139 uint32_t& B3,
140 uint32_t& C0,
141 uint32_t& C1,
142 uint32_t& C2,
143 uint32_t& C3,
144 const secure_vector<uint32_t>& RK,
145 F& f) {
146 B0 ^= f(B1 ^ B2 ^ B3 ^ RK[4 * R + 3]);
147 C0 ^= f(C1 ^ C2 ^ C3 ^ RK[4 * R + 3]);
148 B1 ^= f(B2 ^ B3 ^ B0 ^ RK[4 * R + 2]);
149 C1 ^= f(C2 ^ C3 ^ C0 ^ RK[4 * R + 2]);
150 B2 ^= f(B3 ^ B0 ^ B1 ^ RK[4 * R + 1]);
151 C2 ^= f(C3 ^ C0 ^ C1 ^ RK[4 * R + 1]);
152 B3 ^= f(B0 ^ B1 ^ B2 ^ RK[4 * R + 0]);
153 C3 ^= f(C0 ^ C1 ^ C2 ^ RK[4 * R + 0]);
154}
155
156} // namespace
157
158/*
159* SM4 Encryption
160*/
161void SM4::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
163
164#if defined(BOTAN_HAS_SM4_ARMV8)
165 if(CPUID::has_arm_sm4()) {
166 return sm4_armv8_encrypt(in, out, blocks);
167 }
168#endif
169
170#if defined(BOTAN_HAS_SM4_GFNI)
171 if(CPUID::has_gfni()) {
172 return sm4_gfni_encrypt(in, out, blocks);
173 }
174#endif
175
176 while(blocks >= 2) {
177 uint32_t B0 = load_be<uint32_t>(in, 0);
178 uint32_t B1 = load_be<uint32_t>(in, 1);
179 uint32_t B2 = load_be<uint32_t>(in, 2);
180 uint32_t B3 = load_be<uint32_t>(in, 3);
181
182 uint32_t C0 = load_be<uint32_t>(in, 4);
183 uint32_t C1 = load_be<uint32_t>(in, 5);
184 uint32_t C2 = load_be<uint32_t>(in, 6);
185 uint32_t C3 = load_be<uint32_t>(in, 7);
186
187 SM4_E<0>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T_slow);
188 SM4_E<1>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
189 SM4_E<2>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
190 SM4_E<3>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
191 SM4_E<4>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
192 SM4_E<5>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
193 SM4_E<6>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
194 SM4_E<7>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T_slow);
195
196 store_be(out, B3, B2, B1, B0, C3, C2, C1, C0);
197
198 in += 2 * BLOCK_SIZE;
199 out += 2 * BLOCK_SIZE;
200 blocks -= 2;
201 }
202
203 for(size_t i = 0; i != blocks; ++i) {
204 uint32_t B0 = load_be<uint32_t>(in, 0);
205 uint32_t B1 = load_be<uint32_t>(in, 1);
206 uint32_t B2 = load_be<uint32_t>(in, 2);
207 uint32_t B3 = load_be<uint32_t>(in, 3);
208
209 SM4_E<0>(B0, B1, B2, B3, m_RK, SM4_T_slow);
210 SM4_E<1>(B0, B1, B2, B3, m_RK, SM4_T);
211 SM4_E<2>(B0, B1, B2, B3, m_RK, SM4_T);
212 SM4_E<3>(B0, B1, B2, B3, m_RK, SM4_T);
213 SM4_E<4>(B0, B1, B2, B3, m_RK, SM4_T);
214 SM4_E<5>(B0, B1, B2, B3, m_RK, SM4_T);
215 SM4_E<6>(B0, B1, B2, B3, m_RK, SM4_T);
216 SM4_E<7>(B0, B1, B2, B3, m_RK, SM4_T_slow);
217
218 store_be(out, B3, B2, B1, B0);
219
220 in += BLOCK_SIZE;
221 out += BLOCK_SIZE;
222 }
223}
224
225/*
226* SM4 Decryption
227*/
228void SM4::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
230
231#if defined(BOTAN_HAS_SM4_ARMV8)
232 if(CPUID::has_arm_sm4()) {
233 return sm4_armv8_decrypt(in, out, blocks);
234 }
235#endif
236
237#if defined(BOTAN_HAS_SM4_GFNI)
238 if(CPUID::has_gfni()) {
239 return sm4_gfni_decrypt(in, out, blocks);
240 }
241#endif
242
243 while(blocks >= 2) {
244 uint32_t B0 = load_be<uint32_t>(in, 0);
245 uint32_t B1 = load_be<uint32_t>(in, 1);
246 uint32_t B2 = load_be<uint32_t>(in, 2);
247 uint32_t B3 = load_be<uint32_t>(in, 3);
248
249 uint32_t C0 = load_be<uint32_t>(in, 4);
250 uint32_t C1 = load_be<uint32_t>(in, 5);
251 uint32_t C2 = load_be<uint32_t>(in, 6);
252 uint32_t C3 = load_be<uint32_t>(in, 7);
253
254 SM4_D<7>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T_slow);
255 SM4_D<6>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
256 SM4_D<5>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
257 SM4_D<4>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
258 SM4_D<3>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
259 SM4_D<2>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
260 SM4_D<1>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T);
261 SM4_D<0>(B0, B1, B2, B3, C0, C1, C2, C3, m_RK, SM4_T_slow);
262
263 store_be(out, B3, B2, B1, B0, C3, C2, C1, C0);
264
265 in += 2 * BLOCK_SIZE;
266 out += 2 * BLOCK_SIZE;
267 blocks -= 2;
268 }
269
270 for(size_t i = 0; i != blocks; ++i) {
271 uint32_t B0 = load_be<uint32_t>(in, 0);
272 uint32_t B1 = load_be<uint32_t>(in, 1);
273 uint32_t B2 = load_be<uint32_t>(in, 2);
274 uint32_t B3 = load_be<uint32_t>(in, 3);
275
276 SM4_D<7>(B0, B1, B2, B3, m_RK, SM4_T_slow);
277 SM4_D<6>(B0, B1, B2, B3, m_RK, SM4_T);
278 SM4_D<5>(B0, B1, B2, B3, m_RK, SM4_T);
279 SM4_D<4>(B0, B1, B2, B3, m_RK, SM4_T);
280 SM4_D<3>(B0, B1, B2, B3, m_RK, SM4_T);
281 SM4_D<2>(B0, B1, B2, B3, m_RK, SM4_T);
282 SM4_D<1>(B0, B1, B2, B3, m_RK, SM4_T);
283 SM4_D<0>(B0, B1, B2, B3, m_RK, SM4_T_slow);
284
285 store_be(out, B3, B2, B1, B0);
286
287 in += BLOCK_SIZE;
288 out += BLOCK_SIZE;
289 }
290}
291
293 return !m_RK.empty();
294}
295
296/*
297* SM4 Key Schedule
298*/
299void SM4::key_schedule(std::span<const uint8_t> key) {
300 // System parameter or family key
301 const uint32_t FK[4] = {0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc};
302
303 const uint32_t CK[32] = {0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269, 0x70777E85, 0x8C939AA1, 0xA8AFB6BD,
304 0xC4CBD2D9, 0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249, 0x50575E65, 0x6C737A81,
305 0x888F969D, 0xA4ABB2B9, 0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229, 0x30373E45,
306 0x4C535A61, 0x686F767D, 0x848B9299, 0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209,
307 0x10171E25, 0x2C333A41, 0x484F565D, 0x646B7279};
308
310 K[0] = load_be<uint32_t>(key.data(), 0) ^ FK[0];
311 K[1] = load_be<uint32_t>(key.data(), 1) ^ FK[1];
312 K[2] = load_be<uint32_t>(key.data(), 2) ^ FK[2];
313 K[3] = load_be<uint32_t>(key.data(), 3) ^ FK[3];
314
315 m_RK.resize(32);
316 for(size_t i = 0; i != 32; ++i) {
317 K[i % 4] ^= SM4_Tp(K[(i + 1) % 4] ^ K[(i + 2) % 4] ^ K[(i + 3) % 4] ^ CK[i]);
318 m_RK[i] = K[i % 4];
319 }
320}
321
323 zap(m_RK);
324}
325
326size_t SM4::parallelism() const {
327#if defined(BOTAN_HAS_SM4_ARMV8)
328 if(CPUID::has_arm_sm4()) {
329 return 4;
330 }
331#endif
332
333#if defined(BOTAN_HAS_SM4_GFNI)
334 if(CPUID::has_gfni()) {
335 return 8;
336 }
337#endif
338
339 return 1;
340}
341
342std::string SM4::provider() const {
343#if defined(BOTAN_HAS_SM4_ARMV8)
344 if(CPUID::has_arm_sm4()) {
345 return "armv8";
346 }
347#endif
348
349#if defined(BOTAN_HAS_SM4_GFNI)
350 if(CPUID::has_gfni()) {
351 return "gfni";
352 }
353#endif
354
355 return "base";
356}
357
358} // namespace Botan
std::string provider() const override
Definition sm4.cpp:342
size_t parallelism() const override
Definition sm4.cpp:326
void decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const override
Definition sm4.cpp:228
bool has_keying_material() const override
Definition sm4.cpp:292
void encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const override
Definition sm4.cpp:161
void clear() override
Definition sm4.cpp:322
void assert_key_material_set() const
Definition sym_algo.h:139
#define BOTAN_FORCE_INLINE
Definition compiler.h:165
constexpr uint8_t get_byte(T input)
Definition loadstor.h:75
void zap(std::vector< T, Alloc > &vec)
Definition secmem.h:117
constexpr T rotl(T input)
Definition rotate.h:21
constexpr T rotr(T input)
Definition rotate.h:33
constexpr uint32_t make_uint32(uint8_t i0, uint8_t i1, uint8_t i2, uint8_t i3)
Definition loadstor.h:100
const SIMD_8x32 & b
std::vector< T, secure_allocator< T > > secure_vector
Definition secmem.h:61
constexpr auto store_be(ParamTs &&... params)
Definition loadstor.h:773
constexpr auto load_be(ParamTs &&... params)
Definition loadstor.h:530