Botan 2.19.1
Crypto and TLS for C&
Public Types | Public Member Functions | Static Public Member Functions | List of all members
Botan::PointGFp Class Referencefinal

#include <point_gfp.h>

Public Types

enum  { WORKSPACE_SIZE = 8 }
 
enum  Compression_Type { UNCOMPRESSED = 0 , COMPRESSED = 1 , HYBRID = 2 }
 

Public Member Functions

void add (const PointGFp &other, std::vector< BigInt > &workspace)
 
void add (const word x_words[], size_t x_size, const word y_words[], size_t y_size, const word z_words[], size_t z_size, std::vector< BigInt > &workspace)
 
void add_affine (const PointGFp &other, std::vector< BigInt > &workspace)
 
void add_affine (const word x_words[], size_t x_size, const word y_words[], size_t y_size, std::vector< BigInt > &workspace)
 
PointGFp double_of (std::vector< BigInt > &workspace) const
 
std::vector< uint8_t > encode (PointGFp::Compression_Type format) const
 
void force_affine ()
 
BigInt get_affine_x () const
 
BigInt get_affine_y () const
 
const CurveGFpget_curve () const
 
const BigIntget_x () const
 
const BigIntget_y () const
 
const BigIntget_z () const
 
bool is_affine () const
 
bool is_zero () const
 
void mult2 (std::vector< BigInt > &workspace)
 
void mult2i (size_t i, std::vector< BigInt > &workspace)
 
PointGFpnegate ()
 
bool on_the_curve () const
 
PointGFpoperator*= (const BigInt &scalar)
 
PointGFpoperator+= (const PointGFp &rhs)
 
PointGFpoperator-= (const PointGFp &rhs)
 
PointGFpoperator= (const PointGFp &)=default
 
PointGFpoperator= (PointGFp &&other)
 
bool operator== (const PointGFp &other) const
 
PointGFp plus (const PointGFp &other, std::vector< BigInt > &workspace) const
 
 PointGFp ()=default
 
 PointGFp (const CurveGFp &curve)
 
 PointGFp (const CurveGFp &curve, const BigInt &x, const BigInt &y)
 
 PointGFp (const PointGFp &)=default
 
 PointGFp (PointGFp &&other)
 
void randomize_repr (RandomNumberGenerator &rng)
 
void randomize_repr (RandomNumberGenerator &rng, secure_vector< word > &ws)
 
void swap (PointGFp &other)
 
void swap_coords (BigInt &new_x, BigInt &new_y, BigInt &new_z)
 
PointGFp zero () const
 

Static Public Member Functions

static void force_all_affine (std::vector< PointGFp > &points, secure_vector< word > &ws)
 

Detailed Description

This class represents one point on a curve of GF(p)

Definition at line 47 of file point_gfp.h.

Member Enumeration Documentation

◆ anonymous enum

anonymous enum
Enumerator
WORKSPACE_SIZE 

Definition at line 56 of file point_gfp.h.

56{ WORKSPACE_SIZE = 8 };

◆ Compression_Type

Enumerator
UNCOMPRESSED 
COMPRESSED 
HYBRID 

Definition at line 50 of file point_gfp.h.

50 {
51 UNCOMPRESSED = 0,
52 COMPRESSED = 1,
53 HYBRID = 2
54 };

Constructor & Destructor Documentation

◆ PointGFp() [1/5]

Botan::PointGFp::PointGFp ( )
default

Construct an uninitialized PointGFp

Referenced by mult2(), mult2i(), and operator-=().

◆ PointGFp() [2/5]

Botan::PointGFp::PointGFp ( const CurveGFp curve)
explicit

Construct the zero point

Parameters
curveThe base curve

Definition at line 18 of file point_gfp.cpp.

18 :
19 m_curve(curve),
20 m_coord_x(0),
21 m_coord_y(curve.get_1_rep()),
22 m_coord_z(0)
23 {
24 // Assumes Montgomery rep of zero is zero
25 }

◆ PointGFp() [3/5]

Botan::PointGFp::PointGFp ( const PointGFp )
default

Copy constructor

◆ PointGFp() [4/5]

Botan::PointGFp::PointGFp ( PointGFp &&  other)
inline

Move Constructor

Definition at line 77 of file point_gfp.h.

78 {
79 this->swap(other);
80 }
void swap(PointGFp &other)
Definition: point_gfp.cpp:579

◆ PointGFp() [5/5]

Botan::PointGFp::PointGFp ( const CurveGFp curve,
const BigInt x,
const BigInt y 
)

Construct a point from its affine coordinates Prefer EC_Group::point(x,y) for this operation.

Parameters
curvethe base curve
xaffine x coordinate
yaffine y coordinate

Definition at line 27 of file point_gfp.cpp.

27 :
28 m_curve(curve),
29 m_coord_x(x),
30 m_coord_y(y),
31 m_coord_z(m_curve.get_1_rep())
32 {
33 if(x < 0 || x >= curve.get_p())
34 throw Invalid_Argument("Invalid PointGFp affine x");
35 if(y < 0 || y >= curve.get_p())
36 throw Invalid_Argument("Invalid PointGFp affine y");
37
38 secure_vector<word> monty_ws(m_curve.get_ws_size());
39 m_curve.to_rep(m_coord_x, monty_ws);
40 m_curve.to_rep(m_coord_y, monty_ws);
41 }
size_t get_ws_size() const
Definition: curve_gfp.h:138
const BigInt & get_1_rep() const
Definition: curve_gfp.h:144
void to_rep(BigInt &x, secure_vector< word > &ws) const
Definition: curve_gfp.h:156

References Botan::CurveGFp::get_p(), Botan::CurveGFp::get_ws_size(), and Botan::CurveGFp::to_rep().

Member Function Documentation

◆ add() [1/2]

void Botan::PointGFp::add ( const PointGFp other,
std::vector< BigInt > &  workspace 
)
inline

Point addition

Parameters
otherthe point to add to *this
workspacetemp space, at least WORKSPACE_SIZE elements

Definition at line 221 of file point_gfp.h.

222 {
223 BOTAN_ASSERT_NOMSG(m_curve == other.m_curve);
224
225 const size_t p_words = m_curve.get_p_words();
226
227 add(other.m_coord_x.data(), std::min(p_words, other.m_coord_x.size()),
228 other.m_coord_y.data(), std::min(p_words, other.m_coord_y.size()),
229 other.m_coord_z.data(), std::min(p_words, other.m_coord_z.size()),
230 workspace);
231 }
#define BOTAN_ASSERT_NOMSG(expr)
Definition: assert.h:68
size_t get_p_words() const
Definition: curve_gfp.h:136
void add(const PointGFp &other, std::vector< BigInt > &workspace)
Definition: point_gfp.h:221

References BOTAN_ASSERT_NOMSG, Botan::BigInt::data(), and Botan::BigInt::size().

Referenced by Botan::PointGFp_Var_Point_Precompute::mul(), Botan::PointGFp_Multi_Point_Precompute::multi_exp(), Botan::operator*(), operator+=(), and plus().

◆ add() [2/2]

void Botan::PointGFp::add ( const word  x_words[],
size_t  x_size,
const word  y_words[],
size_t  y_size,
const word  z_words[],
size_t  z_size,
std::vector< BigInt > &  workspace 
)

Point addition. Array version.

Parameters
x_wordsthe words of the x coordinate of the other point
x_sizesize of x_words
y_wordsthe words of the y coordinate of the other point
y_sizesize of y_words
z_wordsthe words of the z coordinate of the other point
z_sizesize of z_words
workspacetemp space, at least WORKSPACE_SIZE elements

Definition at line 173 of file point_gfp.cpp.

177 {
178 if(all_zeros(x_words, x_size) & all_zeros(z_words, z_size))
179 return;
180
181 if(is_zero())
182 {
183 m_coord_x.set_words(x_words, x_size);
184 m_coord_y.set_words(y_words, y_size);
185 m_coord_z.set_words(z_words, z_size);
186 return;
187 }
188
189 resize_ws(ws_bn, m_curve.get_ws_size());
190
191 secure_vector<word>& ws = ws_bn[0].get_word_vector();
192 secure_vector<word>& sub_ws = ws_bn[1].get_word_vector();
193
194 BigInt& T0 = ws_bn[2];
195 BigInt& T1 = ws_bn[3];
196 BigInt& T2 = ws_bn[4];
197 BigInt& T3 = ws_bn[5];
198 BigInt& T4 = ws_bn[6];
199 BigInt& T5 = ws_bn[7];
200
201 /*
202 https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2
203 */
204
205 const BigInt& p = m_curve.get_p();
206
207 m_curve.sqr(T0, z_words, z_size, ws); // z2^2
208 m_curve.mul(T1, m_coord_x, T0, ws); // x1*z2^2
209 m_curve.mul(T3, z_words, z_size, T0, ws); // z2^3
210 m_curve.mul(T2, m_coord_y, T3, ws); // y1*z2^3
211
212 m_curve.sqr(T3, m_coord_z, ws); // z1^2
213 m_curve.mul(T4, x_words, x_size, T3, ws); // x2*z1^2
214
215 m_curve.mul(T5, m_coord_z, T3, ws); // z1^3
216 m_curve.mul(T0, y_words, y_size, T5, ws); // y2*z1^3
217
218 T4.mod_sub(T1, p, sub_ws); // x2*z1^2 - x1*z2^2
219
220 T0.mod_sub(T2, p, sub_ws);
221
222 if(T4.is_zero())
223 {
224 if(T0.is_zero())
225 {
226 mult2(ws_bn);
227 return;
228 }
229
230 // setting to zero:
231 m_coord_x.clear();
232 m_coord_y = m_curve.get_1_rep();
233 m_coord_z.clear();
234 return;
235 }
236
237 m_curve.sqr(T5, T4, ws);
238
239 m_curve.mul(T3, T1, T5, ws);
240
241 m_curve.mul(T1, T5, T4, ws);
242
243 m_curve.sqr(m_coord_x, T0, ws);
244 m_coord_x.mod_sub(T1, p, sub_ws);
245 m_coord_x.mod_sub(T3, p, sub_ws);
246 m_coord_x.mod_sub(T3, p, sub_ws);
247
248 T3.mod_sub(m_coord_x, p, sub_ws);
249
250 m_curve.mul(m_coord_y, T0, T3, ws);
251 m_curve.mul(T3, T2, T1, ws);
252
253 m_coord_y.mod_sub(T3, p, sub_ws);
254
255 m_curve.mul(T3, z_words, z_size, m_coord_z, ws);
256 m_curve.mul(m_coord_z, T3, T4, ws);
257 }
void set_words(const word w[], size_t len)
Definition: bigint.h:518
BigInt & mod_sub(const BigInt &y, const BigInt &mod, secure_vector< word > &ws)
Definition: big_ops2.cpp:93
void clear()
Definition: bigint.h:366
void mul(BigInt &z, const BigInt &x, const BigInt &y, secure_vector< word > &ws) const
Definition: curve_gfp.h:175
void sqr(BigInt &z, const BigInt &x, secure_vector< word > &ws) const
Definition: curve_gfp.h:186
const BigInt & get_p() const
Definition: curve_gfp.h:134
void mult2(std::vector< BigInt > &workspace)
Definition: point_gfp.cpp:279
bool is_zero() const
Definition: point_gfp.h:184

References Botan::BigInt::clear(), Botan::CurveGFp::get_1_rep(), Botan::CurveGFp::get_p(), Botan::CurveGFp::get_ws_size(), Botan::BigInt::is_zero(), is_zero(), Botan::BigInt::mod_sub(), Botan::CurveGFp::mul(), mult2(), Botan::BigInt::set_words(), and Botan::CurveGFp::sqr().

◆ add_affine() [1/2]

void Botan::PointGFp::add_affine ( const PointGFp other,
std::vector< BigInt > &  workspace 
)
inline

Point addition - mixed J+A

Parameters
otheraffine point to add - assumed to be affine!
workspacetemp space, at least WORKSPACE_SIZE elements

Definition at line 254 of file point_gfp.h.

255 {
256 BOTAN_ASSERT_NOMSG(m_curve == other.m_curve);
257 BOTAN_DEBUG_ASSERT(other.is_affine());
258
259 const size_t p_words = m_curve.get_p_words();
260 add_affine(other.m_coord_x.data(), std::min(p_words, other.m_coord_x.size()),
261 other.m_coord_y.data(), std::min(p_words, other.m_coord_y.size()),
262 workspace);
263 }
#define BOTAN_DEBUG_ASSERT(expr)
Definition: assert.h:123
void add_affine(const PointGFp &other, std::vector< BigInt > &workspace)
Definition: point_gfp.h:254

References BOTAN_ASSERT_NOMSG, BOTAN_DEBUG_ASSERT, Botan::BigInt::data(), is_affine(), and Botan::BigInt::size().

Referenced by Botan::PointGFp_Base_Point_Precompute::mul(), and Botan::PointGFp_Multi_Point_Precompute::multi_exp().

◆ add_affine() [2/2]

void Botan::PointGFp::add_affine ( const word  x_words[],
size_t  x_size,
const word  y_words[],
size_t  y_size,
std::vector< BigInt > &  workspace 
)

Point addition - mixed J+A. Array version.

Parameters
x_wordsthe words of the x coordinate of the other point
x_sizesize of x_words
y_wordsthe words of the y coordinate of the other point
y_sizesize of y_words
workspacetemp space, at least WORKSPACE_SIZE elements

Definition at line 90 of file point_gfp.cpp.

93 {
94 if(all_zeros(x_words, x_size) & all_zeros(y_words, y_size))
95 {
96 return;
97 }
98
99 if(is_zero())
100 {
101 m_coord_x.set_words(x_words, x_size);
102 m_coord_y.set_words(y_words, y_size);
103 m_coord_z = m_curve.get_1_rep();
104 return;
105 }
106
107 resize_ws(ws_bn, m_curve.get_ws_size());
108
109 secure_vector<word>& ws = ws_bn[0].get_word_vector();
110 secure_vector<word>& sub_ws = ws_bn[1].get_word_vector();
111
112 BigInt& T0 = ws_bn[2];
113 BigInt& T1 = ws_bn[3];
114 BigInt& T2 = ws_bn[4];
115 BigInt& T3 = ws_bn[5];
116 BigInt& T4 = ws_bn[6];
117
118 /*
119 https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2
120 simplified with Z2 = 1
121 */
122
123 const BigInt& p = m_curve.get_p();
124
125 m_curve.sqr(T3, m_coord_z, ws); // z1^2
126 m_curve.mul(T4, x_words, x_size, T3, ws); // x2*z1^2
127
128 m_curve.mul(T2, m_coord_z, T3, ws); // z1^3
129 m_curve.mul(T0, y_words, y_size, T2, ws); // y2*z1^3
130
131 T4.mod_sub(m_coord_x, p, sub_ws); // x2*z1^2 - x1*z2^2
132
133 T0.mod_sub(m_coord_y, p, sub_ws);
134
135 if(T4.is_zero())
136 {
137 if(T0.is_zero())
138 {
139 mult2(ws_bn);
140 return;
141 }
142
143 // setting to zero:
144 m_coord_x.clear();
145 m_coord_y = m_curve.get_1_rep();
146 m_coord_z.clear();
147 return;
148 }
149
150 m_curve.sqr(T2, T4, ws);
151
152 m_curve.mul(T3, m_coord_x, T2, ws);
153
154 m_curve.mul(T1, T2, T4, ws);
155
156 m_curve.sqr(m_coord_x, T0, ws);
157 m_coord_x.mod_sub(T1, p, sub_ws);
158
159 m_coord_x.mod_sub(T3, p, sub_ws);
160 m_coord_x.mod_sub(T3, p, sub_ws);
161
162 T3.mod_sub(m_coord_x, p, sub_ws);
163
164 m_curve.mul(T2, T0, T3, ws);
165 m_curve.mul(T0, m_coord_y, T1, ws);
166 T2.mod_sub(T0, p, sub_ws);
167 m_coord_y.swap(T2);
168
169 m_curve.mul(T0, m_coord_z, T4, ws);
170 m_coord_z.swap(T0);
171 }
void swap(BigInt &other)
Definition: bigint.h:161

References Botan::BigInt::clear(), Botan::CurveGFp::get_1_rep(), Botan::CurveGFp::get_p(), Botan::CurveGFp::get_ws_size(), Botan::BigInt::is_zero(), is_zero(), Botan::BigInt::mod_sub(), Botan::CurveGFp::mul(), mult2(), Botan::BigInt::set_words(), Botan::CurveGFp::sqr(), and Botan::BigInt::swap().

◆ double_of()

PointGFp Botan::PointGFp::double_of ( std::vector< BigInt > &  workspace) const
inline

Point doubling

Parameters
workspacetemp space, at least WORKSPACE_SIZE elements
Returns
*this doubled

Definition at line 309 of file point_gfp.h.

310 {
311 PointGFp x = (*this);
312 x.mult2(workspace);
313 return x;
314 }
PointGFp()=default

References mult2().

◆ encode()

std::vector< uint8_t > Botan::PointGFp::encode ( PointGFp::Compression_Type  format) const

EC2OSP - elliptic curve to octet string primitive

Parameters
formatwhich format to encode using

Definition at line 601 of file point_gfp.cpp.

602 {
603 if(is_zero())
604 return std::vector<uint8_t>(1); // single 0 byte
605
606 const size_t p_bytes = m_curve.get_p().bytes();
607
608 const BigInt x = get_affine_x();
609 const BigInt y = get_affine_y();
610
611 std::vector<uint8_t> result;
612
613 if(format == PointGFp::UNCOMPRESSED)
614 {
615 result.resize(1 + 2*p_bytes);
616 result[0] = 0x04;
617 BigInt::encode_1363(&result[1], p_bytes, x);
618 BigInt::encode_1363(&result[1+p_bytes], p_bytes, y);
619 }
620 else if(format == PointGFp::COMPRESSED)
621 {
622 result.resize(1 + p_bytes);
623 result[0] = 0x02 | static_cast<uint8_t>(y.get_bit(0));
624 BigInt::encode_1363(&result[1], p_bytes, x);
625 }
626 else if(format == PointGFp::HYBRID)
627 {
628 result.resize(1 + 2*p_bytes);
629 result[0] = 0x06 | static_cast<uint8_t>(y.get_bit(0));
630 BigInt::encode_1363(&result[1], p_bytes, x);
631 BigInt::encode_1363(&result[1+p_bytes], p_bytes, y);
632 }
633 else
634 throw Invalid_Argument("EC2OSP illegal point encoding");
635
636 return result;
637 }
static secure_vector< uint8_t > encode_1363(const BigInt &n, size_t bytes)
Definition: big_code.cpp:111
size_t bytes() const
Definition: bigint.cpp:281
BigInt get_affine_y() const
Definition: point_gfp.cpp:524
BigInt get_affine_x() const
Definition: point_gfp.cpp:505

References Botan::BigInt::bytes(), COMPRESSED, Botan::BigInt::encode_1363(), get_affine_x(), get_affine_y(), Botan::BigInt::get_bit(), Botan::CurveGFp::get_p(), HYBRID, is_zero(), and UNCOMPRESSED.

Referenced by Botan::ECIES_KA_Operation::derive_secret(), Botan::ECIES_Encryptor::ECIES_Encryptor(), Botan::EC_PrivateKey::private_key_bits(), and Botan::EC_PublicKey::public_key_bits().

◆ force_affine()

void Botan::PointGFp::force_affine ( )

Force this point to affine coordinates

Definition at line 485 of file point_gfp.cpp.

486 {
487 if(is_zero())
488 throw Invalid_State("Cannot convert zero ECC point to affine");
489
490 secure_vector<word> ws;
491
492 const BigInt z_inv = m_curve.invert_element(m_coord_z, ws);
493 const BigInt z2_inv = m_curve.sqr_to_tmp(z_inv, ws);
494 const BigInt z3_inv = m_curve.mul_to_tmp(z_inv, z2_inv, ws);
495 m_coord_x = m_curve.mul_to_tmp(m_coord_x, z2_inv, ws);
496 m_coord_y = m_curve.mul_to_tmp(m_coord_y, z3_inv, ws);
497 m_coord_z = m_curve.get_1_rep();
498 }
BigInt invert_element(const BigInt &x, secure_vector< word > &ws) const
Definition: curve_gfp.h:151
BigInt sqr_to_tmp(const BigInt &x, secure_vector< word > &ws) const
Definition: curve_gfp.h:213
BigInt mul_to_tmp(const BigInt &x, const BigInt &y, secure_vector< word > &ws) const
Definition: curve_gfp.h:206

References Botan::CurveGFp::get_1_rep(), Botan::CurveGFp::invert_element(), is_zero(), Botan::CurveGFp::mul_to_tmp(), and Botan::CurveGFp::sqr_to_tmp().

Referenced by force_all_affine().

◆ force_all_affine()

void Botan::PointGFp::force_all_affine ( std::vector< PointGFp > &  points,
secure_vector< word > &  ws 
)
static

Force all points on the list to affine coordinates

Definition at line 420 of file point_gfp.cpp.

422 {
423 if(points.size() <= 1)
424 {
425 for(size_t i = 0; i != points.size(); ++i)
426 points[i].force_affine();
427 return;
428 }
429
430 for(size_t i = 0; i != points.size(); ++i)
431 {
432 if(points[i].is_zero())
433 throw Invalid_State("Cannot convert zero ECC point to affine");
434 }
435
436 /*
437 For >= 2 points use Montgomery's trick
438
439 See Algorithm 2.26 in "Guide to Elliptic Curve Cryptography"
440 (Hankerson, Menezes, Vanstone)
441
442 TODO is it really necessary to save all k points in c?
443 */
444
445 const CurveGFp& curve = points[0].m_curve;
446 const BigInt& rep_1 = curve.get_1_rep();
447
448 if(ws.size() < curve.get_ws_size())
449 ws.resize(curve.get_ws_size());
450
451 std::vector<BigInt> c(points.size());
452 c[0] = points[0].m_coord_z;
453
454 for(size_t i = 1; i != points.size(); ++i)
455 {
456 curve.mul(c[i], c[i-1], points[i].m_coord_z, ws);
457 }
458
459 BigInt s_inv = curve.invert_element(c[c.size()-1], ws);
460
461 BigInt z_inv, z2_inv, z3_inv;
462
463 for(size_t i = points.size() - 1; i != 0; i--)
464 {
465 PointGFp& point = points[i];
466
467 curve.mul(z_inv, s_inv, c[i-1], ws);
468
469 s_inv = curve.mul_to_tmp(s_inv, point.m_coord_z, ws);
470
471 curve.sqr(z2_inv, z_inv, ws);
472 curve.mul(z3_inv, z2_inv, z_inv, ws);
473 point.m_coord_x = curve.mul_to_tmp(point.m_coord_x, z2_inv, ws);
474 point.m_coord_y = curve.mul_to_tmp(point.m_coord_y, z3_inv, ws);
475 point.m_coord_z = rep_1;
476 }
477
478 curve.sqr(z2_inv, s_inv, ws);
479 curve.mul(z3_inv, z2_inv, s_inv, ws);
480 points[0].m_coord_x = curve.mul_to_tmp(points[0].m_coord_x, z2_inv, ws);
481 points[0].m_coord_y = curve.mul_to_tmp(points[0].m_coord_y, z3_inv, ws);
482 points[0].m_coord_z = rep_1;
483 }
void force_affine()
Definition: point_gfp.cpp:485

References force_affine(), Botan::CurveGFp::get_1_rep(), Botan::CurveGFp::get_ws_size(), Botan::CurveGFp::invert_element(), is_zero(), Botan::CurveGFp::mul(), Botan::CurveGFp::mul_to_tmp(), Botan::BigInt::resize(), and Botan::CurveGFp::sqr().

Referenced by Botan::PointGFp_Multi_Point_Precompute::PointGFp_Multi_Point_Precompute().

◆ get_affine_x()

BigInt Botan::PointGFp::get_affine_x ( ) const

get affine x coordinate

Returns
affine x coordinate

Definition at line 505 of file point_gfp.cpp.

506 {
507 if(is_zero())
508 throw Illegal_Transformation("Cannot convert zero point to affine");
509
510 secure_vector<word> monty_ws;
511
512 if(is_affine())
513 return m_curve.from_rep_to_tmp(m_coord_x, monty_ws);
514
515 BigInt z2 = m_curve.sqr_to_tmp(m_coord_z, monty_ws);
516 z2 = m_curve.invert_element(z2, monty_ws);
517
518 BigInt r;
519 m_curve.mul(r, m_coord_x, z2, monty_ws);
520 m_curve.from_rep(r, monty_ws);
521 return r;
522 }
BigInt from_rep_to_tmp(const BigInt &x, secure_vector< word > &ws) const
Definition: curve_gfp.h:166
void from_rep(BigInt &x, secure_vector< word > &ws) const
Definition: curve_gfp.h:161
bool is_affine() const
Definition: point_gfp.cpp:500

References Botan::CurveGFp::from_rep(), Botan::CurveGFp::from_rep_to_tmp(), Botan::CurveGFp::invert_element(), is_affine(), is_zero(), Botan::CurveGFp::mul(), and Botan::CurveGFp::sqr_to_tmp().

Referenced by Botan::EC_Group::blinded_base_point_multiply_x(), encode(), operator==(), Botan::GOST_3410_PublicKey::public_key_bits(), and Botan::sm2_compute_za().

◆ get_affine_y()

BigInt Botan::PointGFp::get_affine_y ( ) const

get affine y coordinate

Returns
affine y coordinate

Definition at line 524 of file point_gfp.cpp.

525 {
526 if(is_zero())
527 throw Illegal_Transformation("Cannot convert zero point to affine");
528
529 secure_vector<word> monty_ws;
530
531 if(is_affine())
532 return m_curve.from_rep_to_tmp(m_coord_y, monty_ws);
533
534 const BigInt z2 = m_curve.sqr_to_tmp(m_coord_z, monty_ws);
535 const BigInt z3 = m_curve.mul_to_tmp(m_coord_z, z2, monty_ws);
536 const BigInt z3_inv = m_curve.invert_element(z3, monty_ws);
537
538 BigInt r;
539 m_curve.mul(r, m_coord_y, z3_inv, monty_ws);
540 m_curve.from_rep(r, monty_ws);
541 return r;
542 }

References Botan::CurveGFp::from_rep(), Botan::CurveGFp::from_rep_to_tmp(), Botan::CurveGFp::invert_element(), is_affine(), is_zero(), Botan::CurveGFp::mul(), Botan::CurveGFp::mul_to_tmp(), and Botan::CurveGFp::sqr_to_tmp().

Referenced by encode(), operator==(), Botan::GOST_3410_PublicKey::public_key_bits(), and Botan::sm2_compute_za().

◆ get_curve()

const CurveGFp & Botan::PointGFp::get_curve ( ) const
inline

Return base curve of this point

Returns
the curve over GF(p) of this point

You should not need to use this

Definition at line 327 of file point_gfp.h.

327{ return m_curve; }

◆ get_x()

const BigInt & Botan::PointGFp::get_x ( ) const
inline

Definition at line 156 of file point_gfp.h.

156{ return m_coord_x; }

◆ get_y()

const BigInt & Botan::PointGFp::get_y ( ) const
inline

Definition at line 157 of file point_gfp.h.

157{ return m_coord_y; }

◆ get_z()

const BigInt & Botan::PointGFp::get_z ( ) const
inline

Definition at line 158 of file point_gfp.h.

158{ return m_coord_z; }

◆ is_affine()

bool Botan::PointGFp::is_affine ( ) const

Definition at line 500 of file point_gfp.cpp.

501 {
502 return m_curve.is_one(m_coord_z);
503 }
bool is_one(const BigInt &x) const
Definition: curve_gfp.h:149

References Botan::CurveGFp::is_one().

Referenced by add_affine(), get_affine_x(), and get_affine_y().

◆ is_zero()

bool Botan::PointGFp::is_zero ( ) const
inline

Is this the point at infinity?

Returns
true, if this point is at infinity, false otherwise.

Definition at line 184 of file point_gfp.h.

184{ return m_coord_z.is_zero(); }
bool is_zero() const
Definition: bigint.h:421

Referenced by add(), add_affine(), Botan::EC_Group::blinded_base_point_multiply_x(), Botan::ECIES_KA_Operation::derive_secret(), encode(), force_affine(), force_all_affine(), get_affine_x(), get_affine_y(), mult2(), on_the_curve(), operator-=(), operator==(), and Botan::EC_Group::verify_public_element().

◆ mult2()

void Botan::PointGFp::mult2 ( std::vector< BigInt > &  workspace)

Point doubling

Parameters
workspacetemp space, at least WORKSPACE_SIZE elements

Definition at line 279 of file point_gfp.cpp.

280 {
281 if(is_zero())
282 return;
283
284 if(m_coord_y.is_zero())
285 {
286 *this = PointGFp(m_curve); // setting myself to zero
287 return;
288 }
289
290 resize_ws(ws_bn, m_curve.get_ws_size());
291
292 secure_vector<word>& ws = ws_bn[0].get_word_vector();
293 secure_vector<word>& sub_ws = ws_bn[1].get_word_vector();
294
295 BigInt& T0 = ws_bn[2];
296 BigInt& T1 = ws_bn[3];
297 BigInt& T2 = ws_bn[4];
298 BigInt& T3 = ws_bn[5];
299 BigInt& T4 = ws_bn[6];
300
301 /*
302 https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-1986-cc
303 */
304 const BigInt& p = m_curve.get_p();
305
306 m_curve.sqr(T0, m_coord_y, ws);
307
308 m_curve.mul(T1, m_coord_x, T0, ws);
309 T1.mod_mul(4, p, sub_ws);
310
311 if(m_curve.a_is_zero())
312 {
313 // if a == 0 then 3*x^2 + a*z^4 is just 3*x^2
314 m_curve.sqr(T4, m_coord_x, ws); // x^2
315 T4.mod_mul(3, p, sub_ws); // 3*x^2
316 }
317 else if(m_curve.a_is_minus_3())
318 {
319 /*
320 if a == -3 then
321 3*x^2 + a*z^4 == 3*x^2 - 3*z^4 == 3*(x^2-z^4) == 3*(x-z^2)*(x+z^2)
322 */
323 m_curve.sqr(T3, m_coord_z, ws); // z^2
324
325 // (x-z^2)
326 T2 = m_coord_x;
327 T2.mod_sub(T3, p, sub_ws);
328
329 // (x+z^2)
330 T3.mod_add(m_coord_x, p, sub_ws);
331
332 m_curve.mul(T4, T2, T3, ws); // (x-z^2)*(x+z^2)
333
334 T4.mod_mul(3, p, sub_ws); // 3*(x-z^2)*(x+z^2)
335 }
336 else
337 {
338 m_curve.sqr(T3, m_coord_z, ws); // z^2
339 m_curve.sqr(T4, T3, ws); // z^4
340 m_curve.mul(T3, m_curve.get_a_rep(), T4, ws); // a*z^4
341
342 m_curve.sqr(T4, m_coord_x, ws); // x^2
343 T4.mod_mul(3, p, sub_ws);
344 T4.mod_add(T3, p, sub_ws); // 3*x^2 + a*z^4
345 }
346
347 m_curve.sqr(T2, T4, ws);
348 T2.mod_sub(T1, p, sub_ws);
349 T2.mod_sub(T1, p, sub_ws);
350
351 m_curve.sqr(T3, T0, ws);
352 T3.mod_mul(8, p, sub_ws);
353
354 T1.mod_sub(T2, p, sub_ws);
355
356 m_curve.mul(T0, T4, T1, ws);
357 T0.mod_sub(T3, p, sub_ws);
358
359 m_coord_x.swap(T2);
360
361 m_curve.mul(T2, m_coord_y, m_coord_z, ws);
362 T2.mod_mul(2, p, sub_ws);
363
364 m_coord_y.swap(T0);
365 m_coord_z.swap(T2);
366 }
BigInt & mod_add(const BigInt &y, const BigInt &mod, secure_vector< word > &ws)
Definition: big_ops2.cpp:50
bool a_is_minus_3() const
Definition: curve_gfp.h:146
const BigInt & get_a_rep() const
Definition: curve_gfp.h:140
bool a_is_zero() const
Definition: curve_gfp.h:147

References Botan::CurveGFp::a_is_minus_3(), Botan::CurveGFp::a_is_zero(), Botan::CurveGFp::get_a_rep(), Botan::CurveGFp::get_p(), Botan::CurveGFp::get_ws_size(), Botan::BigInt::is_zero(), is_zero(), Botan::BigInt::mod_add(), Botan::BigInt::mod_mul(), Botan::BigInt::mod_sub(), Botan::CurveGFp::mul(), PointGFp(), Botan::CurveGFp::sqr(), and Botan::BigInt::swap().

Referenced by add(), add_affine(), double_of(), mult2i(), Botan::operator*(), and Botan::PointGFp_Multi_Point_Precompute::PointGFp_Multi_Point_Precompute().

◆ mult2i()

void Botan::PointGFp::mult2i ( size_t  i,
std::vector< BigInt > &  workspace 
)

Repeated point doubling

Parameters
inumber of doublings to perform
workspacetemp space, at least WORKSPACE_SIZE elements

Definition at line 259 of file point_gfp.cpp.

260 {
261 if(iterations == 0)
262 return;
263
264 if(m_coord_y.is_zero())
265 {
266 *this = PointGFp(m_curve); // setting myself to zero
267 return;
268 }
269
270 /*
271 TODO we can save 2 squarings per iteration by computing
272 a*Z^4 using values cached from previous iteration
273 */
274 for(size_t i = 0; i != iterations; ++i)
275 mult2(ws_bn);
276 }

References Botan::BigInt::is_zero(), mult2(), and PointGFp().

Referenced by Botan::PointGFp_Var_Point_Precompute::mul(), and Botan::PointGFp_Multi_Point_Precompute::multi_exp().

◆ negate()

PointGFp & Botan::PointGFp::negate ( )
inline

Negate this point

Returns
*this

Definition at line 137 of file point_gfp.h.

138 {
139 if(!is_zero())
140 m_coord_y = m_curve.get_p() - m_coord_y;
141 return *this;
142 }

Referenced by Botan::PointGFp_Multi_Point_Precompute::multi_exp(), Botan::operator*(), and Botan::operator-().

◆ on_the_curve()

bool Botan::PointGFp::on_the_curve ( ) const

Checks whether the point is to be found on the underlying curve; used to prevent fault attacks.

Returns
if the point is on the curve

Definition at line 544 of file point_gfp.cpp.

545 {
546 /*
547 Is the point still on the curve?? (If everything is correct, the
548 point is always on its curve; then the function will return true.
549 If somehow the state is corrupted, which suggests a fault attack
550 (or internal computational error), then return false.
551 */
552 if(is_zero())
553 return true;
554
555 secure_vector<word> monty_ws;
556
557 const BigInt y2 = m_curve.from_rep_to_tmp(m_curve.sqr_to_tmp(m_coord_y, monty_ws), monty_ws);
558 const BigInt x3 = m_curve.mul_to_tmp(m_coord_x, m_curve.sqr_to_tmp(m_coord_x, monty_ws), monty_ws);
559 const BigInt ax = m_curve.mul_to_tmp(m_coord_x, m_curve.get_a_rep(), monty_ws);
560 const BigInt z2 = m_curve.sqr_to_tmp(m_coord_z, monty_ws);
561
562 if(m_coord_z == z2) // Is z equal to 1 (in Montgomery form)?
563 {
564 if(y2 != m_curve.from_rep_to_tmp(x3 + ax + m_curve.get_b_rep(), monty_ws))
565 return false;
566 }
567
568 const BigInt z3 = m_curve.mul_to_tmp(m_coord_z, z2, monty_ws);
569 const BigInt ax_z4 = m_curve.mul_to_tmp(ax, m_curve.sqr_to_tmp(z2, monty_ws), monty_ws);
570 const BigInt b_z6 = m_curve.mul_to_tmp(m_curve.get_b_rep(), m_curve.sqr_to_tmp(z3, monty_ws), monty_ws);
571
572 if(y2 != m_curve.from_rep_to_tmp(x3 + ax_z4 + b_z6, monty_ws))
573 return false;
574
575 return true;
576 }
const BigInt & get_b_rep() const
Definition: curve_gfp.h:142

References Botan::CurveGFp::from_rep_to_tmp(), Botan::CurveGFp::get_a_rep(), Botan::CurveGFp::get_b_rep(), is_zero(), Botan::CurveGFp::mul_to_tmp(), and Botan::CurveGFp::sqr_to_tmp().

Referenced by Botan::EC_PrivateKey::EC_PrivateKey(), Botan::GOST_3410_PublicKey::GOST_3410_PublicKey(), Botan::PointGFp_Base_Point_Precompute::mul(), Botan::PointGFp_Var_Point_Precompute::mul(), Botan::operator*(), Botan::OS2ECP(), Botan::EC_Group::verify_group(), and Botan::EC_Group::verify_public_element().

◆ operator*=()

PointGFp & Botan::PointGFp::operator*= ( const BigInt scalar)

*= Operator

Parameters
scalarthe PointGFp to multiply with *this
Returns
resulting PointGFp

Definition at line 388 of file point_gfp.cpp.

389 {
390 *this = scalar * *this;
391 return *this;
392 }

◆ operator+=()

PointGFp & Botan::PointGFp::operator+= ( const PointGFp rhs)

+= Operator

Parameters
rhsthe PointGFp to add to the local value
Returns
resulting PointGFp

Definition at line 369 of file point_gfp.cpp.

370 {
371 std::vector<BigInt> ws(PointGFp::WORKSPACE_SIZE);
372 add(rhs, ws);
373 return *this;
374 }

References add(), and WORKSPACE_SIZE.

◆ operator-=()

PointGFp & Botan::PointGFp::operator-= ( const PointGFp rhs)

-= Operator

Parameters
rhsthe PointGFp to subtract from the local value
Returns
resulting PointGFp

Definition at line 376 of file point_gfp.cpp.

377 {
378 PointGFp minus_rhs = PointGFp(rhs).negate();
379
380 if(is_zero())
381 *this = minus_rhs;
382 else
383 *this += minus_rhs;
384
385 return *this;
386 }

References is_zero(), and PointGFp().

◆ operator=() [1/2]

PointGFp & Botan::PointGFp::operator= ( const PointGFp )
default

Standard Assignment

◆ operator=() [2/2]

PointGFp & Botan::PointGFp::operator= ( PointGFp &&  other)
inline

Move Assignment

Definition at line 90 of file point_gfp.h.

91 {
92 if(this != &other)
93 this->swap(other);
94 return (*this);
95 }

◆ operator==()

bool Botan::PointGFp::operator== ( const PointGFp other) const

Equality operator

Definition at line 587 of file point_gfp.cpp.

588 {
589 if(m_curve != other.m_curve)
590 return false;
591
592 // If this is zero, only equal if other is also zero
593 if(is_zero())
594 return other.is_zero();
595
596 return (get_affine_x() == other.get_affine_x() &&
597 get_affine_y() == other.get_affine_y());
598 }

References get_affine_x(), get_affine_y(), and is_zero().

◆ plus()

PointGFp Botan::PointGFp::plus ( const PointGFp other,
std::vector< BigInt > &  workspace 
) const
inline

Point addition

Parameters
otherthe point to add to *this
workspacetemp space, at least WORKSPACE_SIZE elements
Returns
other plus *this

Definition at line 297 of file point_gfp.h.

298 {
299 PointGFp x = (*this);
300 x.add(other, workspace);
301 return x;
302 }

References add().

Referenced by Botan::PointGFp_Multi_Point_Precompute::PointGFp_Multi_Point_Precompute().

◆ randomize_repr() [1/2]

void Botan::PointGFp::randomize_repr ( RandomNumberGenerator rng)

Randomize the point representation The actual value (get_affine_x, get_affine_y) does not change

Definition at line 43 of file point_gfp.cpp.

44 {
45 secure_vector<word> ws(m_curve.get_ws_size());
46 randomize_repr(rng, ws);
47 }
void randomize_repr(RandomNumberGenerator &rng)
Definition: point_gfp.cpp:43

References Botan::CurveGFp::get_ws_size(), and randomize_repr().

Referenced by Botan::PointGFp_Base_Point_Precompute::mul(), Botan::PointGFp_Var_Point_Precompute::mul(), and randomize_repr().

◆ randomize_repr() [2/2]

void Botan::PointGFp::randomize_repr ( RandomNumberGenerator rng,
secure_vector< word > &  ws 
)

Randomize the point representation The actual value (get_affine_x, get_affine_y) does not change

Definition at line 49 of file point_gfp.cpp.

50 {
51 const BigInt mask = BigInt::random_integer(rng, 2, m_curve.get_p());
52
53 /*
54 * No reason to convert this to Montgomery representation first,
55 * just pretend the random mask was chosen as Redc(mask) and the
56 * random mask we generated above is in the Montgomery
57 * representation.
58 * //m_curve.to_rep(mask, ws);
59 */
60 const BigInt mask2 = m_curve.sqr_to_tmp(mask, ws);
61 const BigInt mask3 = m_curve.mul_to_tmp(mask2, mask, ws);
62
63 m_coord_x = m_curve.mul_to_tmp(m_coord_x, mask2, ws);
64 m_coord_y = m_curve.mul_to_tmp(m_coord_y, mask3, ws);
65 m_coord_z = m_curve.mul_to_tmp(m_coord_z, mask, ws);
66 }
static BigInt random_integer(RandomNumberGenerator &rng, const BigInt &min, const BigInt &max)
Definition: big_rand.cpp:45

References Botan::CurveGFp::get_p(), Botan::CurveGFp::mul_to_tmp(), Botan::BigInt::random_integer(), and Botan::CurveGFp::sqr_to_tmp().

◆ swap()

void Botan::PointGFp::swap ( PointGFp other)

swaps the states of *this and other, does not throw!

Parameters
otherthe object to swap values with

Definition at line 579 of file point_gfp.cpp.

580 {
581 m_curve.swap(other.m_curve);
582 m_coord_x.swap(other.m_coord_x);
583 m_coord_y.swap(other.m_coord_y);
584 m_coord_z.swap(other.m_coord_z);
585 }
void swap(CurveGFp &other)
Definition: curve_gfp.h:220

References Botan::BigInt::swap(), and Botan::CurveGFp::swap().

Referenced by std::swap< Botan::PointGFp >().

◆ swap_coords()

void Botan::PointGFp::swap_coords ( BigInt new_x,
BigInt new_y,
BigInt new_z 
)
inline

Definition at line 160 of file point_gfp.h.

161 {
162 m_coord_x.swap(new_x);
163 m_coord_y.swap(new_y);
164 m_coord_z.swap(new_z);
165 }

◆ zero()

PointGFp Botan::PointGFp::zero ( ) const
inline

Return the zero (aka infinite) point associated with this curve

Definition at line 319 of file point_gfp.h.

319{ return PointGFp(m_curve); }

Referenced by Botan::PointGFp_Base_Point_Precompute::mul(), and Botan::operator*().


The documentation for this class was generated from the following files: