Botan Build Guide

Jack Lloyd (lloyd@randombit.net)
November 14, 2003

Contents
1 Introduction

2 Building the Library
21 Unix /BeOS /Plan9 e
2.2 MS WIndows o i it e e e e e e
2.3 Configuration Parameters e

3 Building Applications
31 Unix . . . oo e e e e e
3.2 MS WIndows o o i it e e e e e e e e

1 Introduction

This document describes how to build Botan on Unix and MS Windows systems. The Unix oriented de-
scriptions should apply to most common Unix systems today, including Unix-like systems such as BeOS and
Plan 9 (and MacOS X). Currently, systems other than Windows and Unix (for example, VMS, MacOS 9,
and 0S/390) are not supported by the build system, primarily due to lack of access. Please contact the
maintainer if you would like to build Botan on such a system.

2 Building the Library

The first step is to run configure.pl, which is a Perl script that creates various directories, config files,
and a Makefile for building everything. It is run as ./configure.pl CC-0S-CPU <extra args>. The script
requires at least Perl 5.005, and preferably 5.6 or higher.

The tuple CC-OS-CPU specifies what system Botan is being built for, in terms of the C++ compiler,
the operating system, and the CPU model. For example, to use GNU C++ on a FreeBSD box that has an
Alpha EV6 CPU, one would use “gcc-freebsd-alphaev6”, and for Visual C++ on Windows with a Pentium
IT, “msvc-windows-pentium2”. To get the list of values for CC, 0S, and CPU that configure.pl supports,
run it with the “~--help” option.

You can put basically anything reasonable for CPU: the script knows about a large number of different
architectures, their sub-models, and common aliases for them. The script does not display all the possibilities
in it’s help message because there are simply too many entries (if you’re curious about what exactly is
available, you can look at the %ARCH, %ARCH_ALIAS, and %SUBMODEL_ALIAS hashes at the start of the script).
You should only select the 64-bit version of a CPU (like “sparc64” or “mips64”) if your operating system
knows how to handle 64-bit object code — a 32-bit kernel on a 64-bit CPU will generally not like 64-bit code.
For example, gce-solaris-sparc64 will not work unless you’re running a 64-bit Solaris kernel (for 32-bit Solaris
running on an UltraSPARC system, you want gcc-solaris-sparc32-v9). You may or may not have to install
64-bit versions of libc and related system libraries as well.

The script also knows about the various extension modules available. You can enable one or more with
the option “--modules=M0OD”, where MOD is some name that identifies the extension (or a comma separated
list of them). Modules provide additional capabilities which require the use of non portable APIs. You
should enable any extensions which makes sense for your system.

Not all OSes or CPUs have specific support in configure.pl. If the CPU architecture of your system
isn’t supported by configure.pl, use ’generic’. This setting disables machine-specific optimization flags.
Similarly, setting OS to ’generic’ disables things which depend greatly on OS support (specifically, shared
libraries).

However, it’s impossible to guess which options to give to a system compiler. Thus, if you want to
compile Botan with a compiler which configure.pl does not support, the script will have to be updated.
Preferably, mail the man pages (or similar documentation) for the C and C++ compilers and the system
linker to the author, or download the Botan-config package from the Botan web site, and do it yourself.
Modifying configure.pl on it’s own is useless aside from one-off hacks, because the script is auto-generated
by another Perl script, which reads a little mini-language that tells it all about the systems in question.

The script tries to guess what kind of makefile to generate, and it almost always guesses correctly
(basically, Visual C++ uses NMAKE with Windows commands, and everything else uses Unix make with
Unix commands). Just in case, you can override it with --make-style=somestyle. The styles Botan
currently knows about are ’unix’ (normal Unix makefiles), and ‘nmake’; the make variant commonly used
by Windows compilers.

2.1 Unix / BeOS / Plan9
The basic build procedure on Unix and Unix-like systems is:

$./configure.pl CC-0S-CPU --module-set=[unix|beos] --modules=<other mods>
$ make

$ make check # optional, but a good idea

$ make install

The "unix’ module set should work on most Unix systems out there (including MacOS X), while the *beos’
module is specific to BeOS. While the two sets share a number of modules, some normal Unix ones don’t
work on BeOS (in particular, BeOS doesn’t have a working mmap function), and BeOS has a few extras
just for it. Other important modules you might want to include are comp_zlib (which wraps zlib for use
in the library), and, if your hardware supports it, mp_asm64. That module is only usable on 64-bit systems
(x86-64, TA-64, SPARCv9, MIPS64, and PPC64), and provides a 20-300% increase in the performance of
public key algorithms when used.

The make install target has a default directory in which it will install Botan (on everything that’s a
real Unix, it’s /usr/local). You can override this by using the ——prefix argument to configure.pl, like
s0:

./configure.pl --prefix=/opt <other arguments>

On Unix, the makefile has to decide who should own the files once they are installed. By default, it
uses root:root, but on some systems (for example, MacOS X), there is no root group. Also, if you don’t
have root access on the system you will want them to be installed owned by something other than root (like
yourself). You can override the defaults at install time by setting the OWNER and GROUP variables from the
command line.

make OWNER=1loyd GROUP=users install

2.2 MS Windows

The situation is not much different here. We’ll assume you’re using Visual C++ (for Cygwin, the Unix
instructions are probably more relevant). You need to have a copy of Perl installed, and have both Perl and
Visual C++ in your path.

> perl configure.pl msvc-windows-<CPU> [--module-set=win32]
> nmake
> nmake check # optional, but recommended

The additional argument —-module-set=win32 is optional, but highly recommended. This will include
a set of modules for doing useful things on Windows systems, particularly gathering entropy for the PRNG.
In the future, support for high resolution timers, mutexes, and maybe even secure memory allocation will
also be made available by this flag.

For Win95 pre OSR2, the es_capi module will not work, because CryptoAPI didn’t exist. All versions
of N'T4 lack the ToolHelp32 interface, which is how es_win32 does it’s slow polls, so a version of the library
built with that module will not load under NT4. Later systems (98/ME/2000/XP) support both methods,
so this shouldn’t be much of an issue.

Unfortunately, there currently isn’t an install script usable on Windows. Basically all you have to do
is copy the newly created libbotan.lib to someplace where you can find it later (say, C:\Botan\). Then
copy the entire include\botan directory, which was constructed when you built the library, into the same
directory.

When building your applications, all you have to do is tell the compiler to look for both include files and
library files in C:\Botan, and it will find both.

2.3 Configuration Parameters

There are some configuration parameters which you may want to tweak before building the library. These
can be found in config.h. This file is overwritten every time the configure script is run (and does not exist
until after you run the script for the first time).

Also included in config.h are macros which are defined if one or more extensions are available. All of
them begin with BOTAN_EXT_. For example, if BOTAN_EXT_COMPRESSOR_BZIP2is defined, then an application
using Botan can include <botan/bzip2.h> and use the Bzip?2 filters.

MP_WORD_BITS: This macro controls the size of the words used for calculations with the MPI implementa-
tion in Botan. You can choose 8, 16, 32, or 64, with 32 being the default. You can use 8, 16, or 32 bit words
on any CPU, but the value should be set to the same size as the CPU’s registers for best performance. You
can only use 64-bit words if the mp_asm64 module is used; this offers vastly improved performance of public
key algorithms on certain 64-bit CPUs (it will set this to 64 automatically when used).

Note that MP_WORD_BITS is a macro that doesn’t start with the typical BOTAN_ prefix (mostly for historical
reasons).

BOTAN_VECTOR_OVER _ALLOCATE: The memory container SecureVector will over-allocate requests by this
amount (in elements). In several areas of the library, we grow a vector fairly often. By over-allocating by a
small amount, we don’t have to do allocations as often (which is good, because the allocators can be quite
slow). If you really want to reduce memory usage, set it to 0. Otherwise, the default should be perfectly
fine.

BOTAN_DEFAULT BUFFER SIZE: This constant is used as the size of buffers throughout Botan. A good rule
of thumb would be to use the page size of your machine. The default should be fine for most, if not all,
purposes.

3 Building Applications

3.1 Unix

Botan usually links in several different system libraries (such as librt and 1ibz), depending on which
modules are configured at compile time. In many environments, particularly ones using static libraries, an
application has to link against the same libraries as Botan for the linking step to succeed. But how does it
figure out what libraries it is linked against?

The answer is to ask the botan-config script. This basically solves the same problem all the other
x-config scripts solve, and in basically the same manner.

There are 4 options:

—-prefix[=DIR]: If no argument, print the prefix where Botan is installed (such as /opt or /usr/local).
If an argument is specified, other options given with the same command will execute as if Botan as actually
installed at DIR and not where it really is; or at least where botan-config thinks it really is. I should
mention that it

--version: Print the Botan version number.
--cflags: Print options that should be passed to the compiler whenever a C++ file is compiled.
—--1libs: Print options that should be passed to the compiler when the application is linked.

Your Makefile can run botan-config and get the options necessary for getting your application to
compile and link, regardless of whatever crazy libraries Botan might be linked against.

3.2 MS Windows

No special help exists for building applications on Windows. However, given that typically Windows software
is distributed as binaries, this is less of a problem - only the developer needs to worry about it. As long
as they can remember where they installed Botan, they just have to set the appropriate flags in their
Makefile/project file.

